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Abstract

We study off-policy evaluation (OPE) from multi-
ple logging policies, each generating a dataset of
fixed size, i.e., stratified sampling. Previous work
noted that in this setting the ordering of the vari-
ances of different importance sampling estimators
is instance-dependent, which brings up a dilemma
as to which importance sampling weights to use.
In this paper, we resolve this dilemma by find-
ing the OPE estimator for multiple loggers with
minimum variance for any instance, i.e., the effi-
cient one. In particular, we establish the efficiency
bound under stratified sampling and propose an
estimator achieving this bound when given con-
sistent q-estimates. To guard against misspecifi-
cation of q-functions, we also provide a way to
choose the control variate in a hypothesis class
to minimize variance. Extensive experiments
demonstrate the benefits of our methods’ effi-
ciently leveraging of the stratified sampling of
off-policy data from multiple loggers.

1. Introduction
In many applications where personalized and dynamic de-
cision making is of interest, exploration is costly, risky, un-
ethical, or otherwise infeasible ruling out the use of online
algorithms for contextual bandits (CB) and reinforcement
learning (RL) that need to explore in order to learn. This
includes both healthcare, where we fear bad patient out-
comes, and e-commerce, where we fear alienating users.
This motivates the study of off-policy evaluation (OPE),
which is the task of estimating the value of a given policy
using only historical data, which is generated by current
decision policies. Given how invaluable this is, OPE has
been studied extensively both in CB (Kallus, 2018; Wang
et al., 2017; Dudík et al., 2014; Swaminathan et al., 2017)
and in RL (Farajtabar et al., 2018; Liu et al., 2018; Kallus
and Uehara, 2019a; Jiang and Li, 2016; Yin et al., 2020).

* Alphabetical Order 1Cornell University, NY, USA . Corre-
spondence to: Masatoshi Uehara <mu223@cornell.edu>.

Proceedings of the 38 th International Conference on Machine
Learning, PMLR 139, 2021. Copyright 2021 by the author(s).

In most of the above studies, the observations used to evalu-
ate a new policy are assumed generated by a single logging
policy. Often, however, we have the opportunity to leverage
multiple datasets, each potentially generated by a different
logging policy (Agarwal et al., 2017; He et al., 2019; Strehl
et al., 2010; Bareinboim and Pearl, 2016). For example, in
hospitals, we might have the two-types datasets (clinical
trials data) by different design (logging policies) to evaluate
the efficacy of some drugs. The goal here is to combine
these two datasets efficiently. In these cases, the size of each
dataset is generally fixed by design, which distinguishes this
setting from a single logging policy given by the mixture of
logging policies. Such fixed dataset sizes is an example of
stratified sampling (Wooldridge, 2001), where the identity
of the logging policies constitute the stratum.

The distinction of these two settings is crucial since the
same estimator may have varying precision in each setting
(a fact well-known in Monte Carlo integration, Geyer, 1994;
Kong et al., 2003, noise contrastive estimation, Gutmann
and Hyvärinen, 2010; Uehara et al., 2018, and survey sam-
pling (Fuller, 2009)). Thus, many results in the standard
unstratified OPE setting cannot be directly translated to a
multiple logger setting, most crucially the efficiency lower
bound on mean-squared error (MSE) and estimators that
achieve this lower bound (Kallus and Uehara, 2020a; Narita
et al., 2019). In the multiple logger setting, we may addition-
ally consider a much greater variety of estimators that can
utilize the logger identity as data. In this paper, we study a
wide range of such estimators, establish the efficiency lower
bound, and propose estimators that achieve it.

Previous work on OPE with multiple loggers proposed vari-
ous importance sampling (IS) estimators that use the logger
identity (Agarwal et al., 2017). However, they arrived at a
dilemma: there is no strict ordering between the IS estimate
with marginalized logging probabilities and a precision-
weighted combination of the IS estimates in each dataset.
That is, which estimate has lower MSE depends on the prob-
lem instance and is not known a priori, and therefore it is
not clear which should be preferred. Our analysis resolves
this dilemma by developing an efficient estimator, which
has MSE better (or not worse) than both of the above.

Our contributions are as follows.

• (I) When the logging policies are known, we study the
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variances of a new class of unbiased estimators that
includes and is much bigger than the class considered
in Agarwal et al. (2017). This new class incorporates
both control variates and flexible weights that may
depend on logger identity. In this way the class is
special to the multiple-logger setting. We show that a
single estimator has minimum (non-asymptotic) MSE
in this class (Sections 3.1 and 3.2).

• (II) Considering the case where the logging policies
are possibly unknown, we derive the lower bound (i.e.
efficiency bound) of the asymptotic MSEs among the
class of all regular estimators, which is a larger class
than the above new class (Section 3.3). This derivation
is fundamentally different than the single-logger setting
because the data in the multiple-logger setting is not
independent and identically distributed (iid). We show
how to construct an efficient estimator. We also extend
this result to the RL case (Section 7).

• (III) We investigate the differences between in the strat-
ified and unstratified cases by showing that the vari-
ances of the estimators are generally different under the
two settings (Section 5). We use this insight to choose
optimal control variates to directly minimize variance,
extending the More Robust Doubly Robust (MRDR)
estimator of Rubin and der Laan (2008); Farajtabar
et al. (2018) to the stratified setting (Section 6).

2. Background
We start by setting up the problem and summarizing the
relevant literature.

2.1. Problem Setup

We focus on the CB setting as was the topic of previous
work (Agarwal et al., 2017).

We are concerned with the average reward of taking an ac-
tion a ∈ A in context (state) s ∈ S when following the pol-
icy πe(a | s), known as the evaluation policy. Both A and
S may be discrete or continuous. Rewards r ∈ [0, Rmax]
are described by the (unknown) reward emission probability
density pR|S,A(r | s, a), and contexts are drawn from the
(unknown) density pS(s). Thus, the average reward under
πe, which is our target estimand is

J := Eπe [r],

where the subscript πe refers to the joint density pS(s)πe(a |
s)pR|S,A(r | s, a) over (s, a, r).

To help estimate J , we consider observing K datasets, D =
{D1, · · · ,DK}, each of (fixed) size nk and associated with
the logging policy πk(a | s), for k ∈ [K] = {1, . . . ,K}.

(We consider both the cases where πk are known and un-
known.) Each dataset consists of observations of state-
action-reward triplets, Dk = {(Skj , Akj , Rkj)}nkj=1, drawn
independently according to the product density

(Skj , Akj , Rkj) ∼ pS(s)πk(a | s)pR|S,A(r | s, a).

Notice that the distribution above differs from the distri-
bution in the definition of J in the policy used to gen-
erate actions. We let n = n1 + · · · + nK be the total
dataset size. We often reindex the whole data as D =⋃K
k=1{(k, s, a, r) : (s, a, r) ∈ Dk} = {(ki, Si, Ai, Ri) :

i = 1, . . . , n}, treating the logger identity ki as an ad-
ditional component of an observation in one big pooled
dataset. For a function f(s, a, r) we let Enk [f ] =
1
nk

∑
(s,a,r)∈Dk f(s, a, r) and for a function f(k, s, a, r)

we let En[f ] = 1
n

∑
(k,s,a,r)∈D f(k, s, a, r). As mentioned

above, we let Eπ refer to expectations with respect to the dis-
tribution on (s, a, r) induced by playing π (similarly, varπ).
Unsubscripted expectations and variances are with respect
to the data generation (such as the variance of an estimator).

We let ρk = nk/n be the dataset proportions and π∗(a |
s) =

∑K
k=1 ρkπk(a | s) be the marginal logging policy

(as a policy, it corresponds to randomizing the choice of
logger with weights ρk and then playing the chosen logger,
but note this is not how the data is generated, as nk are
fixed). For any function f(s, a), let f(s, π) = Eπ[f(s, a) |
s] =

∫
f(s, a)π(a | s)d(a). We let q(s, a) = EpR|S,A [r |

s, a], v(s) = q(s, πe), σ2
r(s, a) = varpR|S,A [r | s, a]. We

define the L2 norm by ‖f‖2 = {Eπ∗ [f2(s, a, r)]}1/2. We
denote the normal distribution with mean µ and variance σ2

by N (µ, σ2).

We always let n, n1, . . . , nK be fixed and finite. When we
discuss asymptotic behavior we consider sample sizes n′ =
mn, n′k = mnk and m→∞ such that sample proportions
ρk = nk/n = n′k/n

′ remain fixed. This setting is generally
called a stratified sampling (Wooldridge, 2001; Imbens and
Lancaster, 1996). When combining datasets, it is most
natural to assume nk is fixed rather than random just as
when dealing with one dataset we treat n as fixed rather
than random. The same perspective is generally taken in
causal inference (Yang and Ding, 2020).

2.2. Previous Work and the Multiple Logger Dilemma

In the unstratified setting, wherein the logging policy first
chooses k at random from [K] with weights ρk and then
plays the logging policy πk, the standard IS estimator is

ĴIS := En
[
πe(a|s)r
π∗(a|s)

]
.

This estimator can still be applied in the stratified setting in
the sense that is unbiased under weak overlap.
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Assumption 1 (Weak Overlap). For almost all s ∈ S,
{a : πe(a | s) > 0} ⊂

⋃
k∈[K]{a : πk(a | s) > 0}.

Agarwal et al. (2017) study the multiple logger setting and
propose estimators that combine the IS estimators in each
of the K datasets: given simplex weights λ ∈ ∆K = {λ ∈
RK : λk ≥ 0,

∑K
k=1 λk = 1}, they let

Υ(D;λ) =
∑K
k=1 λkEnk

[
πe(a|s)r
πk(a|s)

]
. (1)

For any λ ∈ ∆K , Υ(D;λ) is unbiased under whole weak
overlap.

Assumption 2 (Whole Weak Overlap). For almost all s ∈
S, {a : πe(a | s) > 0} ⊂

⋂
k∈[K]{a : πk(a | s) > 0}.

Clearly Assumption 2 implies Assumption 1.

Then, they consider two important special cases: the naïve
average of the K IS estimates,

ĴIS-Avg := Υ(D; (n1/n, . . . , nK/n)),

and a precision-weighted average,

ĴIS-PW := Υ(D;λ∗), λ∗k =
nk/varπk [{πe(a|s)r}/{πk(a|s)}]∑
k′ nk′/varπ

k′
[{πe(a|s)r}/{πk′ (a|s)}]

.

Notice that λ∗ = arg minλ∈∆K var[Υ(D;λ)]. Unlike ĴIS

and ĴIS-Avg, the estimator ĴIS-PW is not feasible in practice
since λ∗ needs to be estimated from data first (we discuss
this in more detail in Section 3.2 and show that asymptoti-
cally there is no inflation in variance).

Agarwal et al. (2017) established two relationships about
the above:

var[ĴIS-Avg] ≥ var[ĴIS], var[ĴIS-Avg] ≥ var[ĴIS-PW].

However, they noted that they cannot find a theoretical re-
lationship between var[ĴIS] and var[ĴIS-PW]. In fact, unlike
the above two relationships, which of these two estimators
has smaller variance depends on the problem instance. This
brings up an apparent dilemma: which one should we use?
We resolve this dilemma by showing another estimator dom-
inates both. In fact, it dominates a much bigger class of
estimators, that includes ĴIS,Υ(D;λ), ĴIS-Avg, ĴIS-PW.

3. Optimality
We next tackle the question of what would be the optimal
estimator. We tackle this from three perspectives. First, we
study a class of estimators like Υ(D;λ) but larger, allow-
ing for control variates, and determine the single estimator
with minimal (non-asymptotic) MSE among these. Second,
since not all estimators (including this optimum) are feasible
in practice as they may involve unknown nuisances (just

DR

DR-Avg

IS-PW(f)

DR-PW

IS

IS-Avg

IS-PW

Figure 1. Relationship between the classes of estimators con-
sidered in Section 3. The green circle represents the class
{Γ(D;h, g)}. The red circle is regular estimators. The blue shaded
region is the estimators ĴBI(ĥ, ĝ) with feasible and consistent esti-
mators ĥ, ĝ (see Theorem 2). The minimal asymptotic MSE in any
one of these sets is the same and achievable by a feasible estimator.

like ĴIS-PW depends on the unknown λ∗), we then consider
a class of feasible estimators given by plugging in these
nuisances and we show that asymptotically the minimum
MSE is the same and achievable. Third, we show that this
minimum is in fact the efficiency lower bound, that is, the
minimum asymptotic MSE among all regular estimators.
Fig. 1 illustrates the relationship between these different
classes of estimators.

3.1. A Class of (Possibly Infeasible) Unbiased
Estimators

Consider the class of estimators given by

Γ(D;h, g) = En[h(k, s, a)πe(a | s)(r − g(s, a)) + g(s, πe)],

for any choice of functions h(k, s, a), g(s, a), where we
restrict to functions h that satisfy∑K

k=1 nkπk(a | s)h(k, s, a) = n
∀s, a : πe(a | s) > 0.

(2)

This is designed to satisfy the following property:
Lemma 1. E[Γ(D;h, g)] = J .

This is a fairly large class in the sense that it allows both for
flexible weights that depend on logger identity and for con-
trol variates. In fact, it includes the class Υ(D;λ) as a sub-
class (including ĴIS-Avg, ĴIS-PW) by letting h(k, s, a) = 1/πk
or h(k, s, a) = nλ∗k/(nkπk(a | s)), and g = 0. It
also includes ĴIS by letting hk(k, s, a) = 1/π∗(a | s)
and g = 0. This class of estimators is unbiased, i.e.,
E[Γ(D;h, g)] = J . But notice that the restriction on h
(Eq. (2)) implicitly requires a form of h-specific overlap.
E.g., for h(k, s, a) = 1/π∗(a | s), it corresponds to As-
sumption 1, and for h(k, s, a) = nλ∗k/(nkπk(a | s)), it is
implied by Assumption 2.

Here h, g may depend on unknown aspects of the data gen-
erating distribution (e.g., g = q). Thus, certain choices may
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be infeasible in practice. Feasible analogs may be derived
by estimating h, g and plugging the estimates in as we will
do in the next section. We refer to the class of estimator as
we range over h, g satisfying Eq. (2) as {Γ(D;h, g)}, and
we refer to h as “weights” and g as “control variates.”

We have the following optimality result.

Theorem 1. Suppose Assumption 1 holds. The minimum
of the variances (MSEs) among estimators in the class
{Γ(D;h, g)} is V ∗/n where

V ∗ := Eπ∗(a|s)pS(s)

[{
πe(a|s)
π∗(a|s)

}2

σ2
r(s, a)

]
+ varpS [v(s)].

This minimum is achieved by Γ(D; 1/π∗, q).

The result is remarkable in two ways. First, it gives an
answer to the dilemma outlined in Section 2. In the end,
none of the three estimators ĴIS-PW, ĴIS, ĴIS-Avg studied by
(Agarwal et al., 2017) are optimal. Second, it states the
surprising fact that logger identity information does not
contribute to the lower bound. In other words, whether
we allow different weights in different strata (allow h to
depend on k), the minimum variance is unchanged since it
is achieved by a stratum-independent weight function.

3.2. A Class of Feasible Unbiased Estimators

When h, g depend on unknowns, such as g = q as in the
optimal estimator in Theorem 1, the estimator Γ(D;h, g)
is actually infeasible in practice. We therefore next study
what happens when we estimate g, h and plug them in. Gen-
erally, when we plug nuisance estimates in, the variance
may inflate due to the additional uncertainty associated with
these estimates, both in finite samples and asymptotically:
for example, when we consider a direct method estimator
En[q̂(S, πe)], the asymptotic variance is much larger than
En[q(S, πe)]. Interestingly, for the current case, this infla-
tion does not occur asymptotically.

Specifically, we propose the feasible estimators ĴBI(ĥ, ĝ)
given by the meta-algorithm in Algorithm 1, which uses
a cross-fitting technique (Zheng and van Der Laan, 2011;
Chernozhukov et al., 2018). The idea is to split the sample
into a part where we estimate g, h and a part where we plug
them in and then averaging over different roles of the splits.
If each ĥ(z) satisfies Eq. (2), then this feasible estimator is
still unbiased since

E[Γ(Lz; ĥ(z), ĝ(z))] = E[E[Γ(Lz; ĥ(z), ĝ(z)) | Uz]] = J.

If we do not use cross-fitting, this unbiasedness cannot be
ensured.

In addition, in the asymptotic regime (recall that in the
asymptotic regime we consider n′ = mn, n′k = mnk ob-
servations and m → ∞) we can show that whenever ĥ, ĝ

Algorithm 1 Feasible Cross-Fold Version of Γ(D;h, g)

1: Input: Estimators ĥ(k, s, a), ĝ(s, a)
2: Fix a positive integer Z. For each k ∈ [K], take a Z-

fold random even partition (Ikz)
Z
z=1 of the observation

indices {1, . . . , nk} such that the size of each fold, |Ikz|,
is within 1 of nk/Z

3: Let Lz = {(Ski, Aki, Rki) : k = 1, . . . ,K, i ∈ Ikz},
Uz = {(Ski, Aki, Rki) : k = 1, . . . ,K, i /∈ Ikz}

4: for z = 1, · · · , Z do
5: Construct estimators ĥ(z) = ĥ(k, s, a;Uz), ĝ(z) =

ĝ(s, a;Uz) of h, g using only Uz as data
6: Set Ĵz = Γ(Lz; ĥ(z), ĝ(z))
7: end for
8: Return: ĴBI(ĥ, ĝ) = 1

n

∑Z
z=1 |Lz| Ĵz.

are consistent, the feasible estimator ĴBI(ĥ, ĝ) is also asymp-
totically normal with the same variance as the possibly in-
feasible Γ(D;h, g).

Theorem 2. Suppose ‖πe/ĥ(z)−πe/h‖2 = op(1), ‖ĝ(z)−
g‖2 = op(1), πe/ĥ(z), ĝ(z), πe/h, g are uniformly bounded
by some constants, and h, ĥ(z) satisfy Eq. (2). Then,
ĴBI(ĥ, ĝ) is unbiased and

√
n′(ĴBI(ĥ, ĝ)− J)

d→ N (0, nvar[Γ(D;h, g)]).

Note the restriction on ĥ(z) implicitly assumes we know
logging policies. Theorems 1 and 2 together immediately
lead to two important corollaries:

Corollary 1. Under the assumptions of Theorem 2,
ĴBI(ĥ, ĝ) is asymptotically normal and has asymptotic MSE
lower bounded by V ∗.

Corollary 1 shows that among the class {ĴBI(ĥ, ĝ)}, V ∗
is also an MSE lower bound. This class is larger than
{Γ(D;h, g)} since we can always take ĥ = h, ĝ = g al-
though it may be infeasible in practice.

Corollary 2. Suppose g = q and ‖q̂(z) − q‖2 = op(1), As-
sumption 1 holds, and q̂(z), πe/π∗, q are uniformly bounded
by some constants. Then, the cross-fitting doubly robust
estimator

ĴDR := ĴBI(1/π∗, q̂)

is asymptotically normal and achieves the asymptotic vari-
ance lower bound V ∗.

Corollary 2 shows that, when the logging policies are known,
the minimum MSE is achievable by the cross-fitting doubly
robust estimator ĴDR. In Section 6, we discuss how to
estimate q̂, which is a necessary ingredient in constructing
ĴDR.

Theorem 2 can also be used to establish new the-
oretical results about other (suboptimal) estimators.
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For example, we can consider a feasible version of
ĴIS-PW, which we call ĴIS-PW(f), where we use λ̂∗k =

nk/varnk [πe(a|s)r/πk(a|s)]∑
k′ nk′/varn

k′
[πe(a|s)r/πk′ (a|s)]

. Theorem 2 shows it has

the same asymptotic variance as ĴIS-PW, which was not es-
tablished in Agarwal et al. (2017). Additionally, we can con-
sider the naively weighted and precision-weighted average
of the doubly robust estimators in each dataset, respectively:

ĴDR-Avg := ĴBI(1/πk(a | s), q̂),

ĴDR-PW := ĴBI(nkλ̂
†
k/(nπk(a | s)), q̂),

λ̂†k :=
nkvarnk [πer/πk{r−q̂(s,a)}+q̂(s,πe)]∑
k′ nk′varn

k′
[πer/πk′{r−q̂(s,a)}+q̂(s,πe)] .

These have the same asymptotic variance as Γ(D; 1/πk(a |
s), q),Γ(D;nkλ

†
k/(nπk(a | s)), q), respectively, where λ†k

is the same as λ̂†k with varnk replaced with varπk . Neither,
however, is optimal and ĴBI(1/π∗, q̂) outperforms these
both.

Even if the estimators ĥ(z) does not satisfy Eq. (2), as long as
the convergence point h satisfies Eq. (2), the final estimator
is consistent, but it may not be asymptotically normal. In
this case, we need additional conditions on the convergence
rates to ensure

√
n′-consistency. This is relevant when the

logging policies are not known. We explore this in Section 4.

3.3. The Class of Regular Estimators

The previous sections considered the minimal MSE in a
class of estimators given explicitly by a certain structure or
by a meta-algorithm. We now show that the same minimum
in fact reigns among the asymptotic MSE of (almost) all
estimators that are feasible in that they “work” for all data-
generating processes (DGPs).

Recall our data is drawn from

D ∼
∏K,nk
k=1,i=1 pS(ski)πk(aki | ski)pR|S,A(rki | ski, aki),

and that in the asymptotic regime we consider observing
m independent copies of D (for total data size n′ = mn).
Consider first the case where πk are known. Then, pS
and pR|S,A are the only unknowns in the above DGP. That
is, different instances of the problem are given by setting
these two to different densities. Thus, in the known-logger
case, we consider the model (i.e., class of instances) given
by all DGPs where pS and pR|S,A vary arbitrarily and πk
are fixed. (This is a nonparametric model in that these
distributions are unrestricted.) Regular estimators are those
that are

√
n′-consistent and remain so under perturbations

to of size 1/
√
n′ to the DGP that remain inside the model

(for exact definition see van der Vaart, 1998). When ĥ, ĝ
satisfy the conditions of Theorem 2, ĴBI(ĥ, ĝ) is a regular
estimator, as a consequence of Theorem 2 and van der Vaart
(1998, Lemma 8.14) as in Fig. 1.

We next establish the efficiency bound in this model, mean-
ing the minimal possible asymptotic variance among regular
estimators. We paraphrase the key characteristic of the effi-
ciency bound and provide additional detail in Appendix C.

Theorem 3. (van der Vaart, 1998, Theorem 25.20 and
Lemma 25.23) Given a model and a DGP in that model,
if the efficiency bound Veff <∞ exists for the estimand J ,
then: (I) for any estimator Ĵ that is regular with respect
to the model, the variance of the limiting distribution of√
n′(Ĵ − J) is at least Veff . (II) There exists an (unknown)

estimator that is regular at the DGP with respect to the
model achieving this bound.

We next derive the efficiency bound for our problem. That
is, for our average-reward estimand J in the model given by
varying pS , pR|S,A arbitrarily.

Theorem 4. In the model with pS , pR|S,A varying and πk
fixed, the efficiency bound is V ∗ as in Theorem 1, if finite.

This shows that, remarkably, V ∗ is the lower bound in this
large class of estimators, and that ĴDR is in fact also optimal
in the much broader sense of semiparametric efficiency.
Moreover, while Theorem 3 only ensures some unknown
(hence infeasible) efficient estimator exists for each DGP, we
have shown that a single feasible estimator, ĴDR, is efficient
in any DGP satisfying the conditions of Corollary 2.

Our derivation of the efficiency bounds is quite different
from the one under the standard unstratified case. In ef-
ficiency theory for OPE in the standard unstratified case
(Kallus and Uehara, 2020a) and in other standard semipara-
metric theory (Bickel et al., 1998; Tsiatis, 2006), we must
consider iid sampling of observations. However, in the strat-
ified case the data are not iid, since nk are fixed. To be
able to tackle the stratified case meaningfully we consider
a dataset of size n′ → ∞ where the proportions of data
from each logger, ρk, are always fixed. We achieve this in
a new way via the equivalent construction of observing m
independent copies of D with m → ∞. Finally, note we
will also discuss the difference between these two settings
in more detail in Section 5.

4. Unknown Logging Policies Case
We now consider the case where the logging policies πk
are not known. Namely, we consider the model where we
allow all of pS , pR|S,A, π1, . . . , πK can vary arbitrarily. In
this larger model, the efficiency bound is again the same.

Theorem 5. In the model where pS , pR|S,A, π1, . . . , πK all
vary, the efficiency bound is V ∗ as in Theorem 1, if finite.

Next, we prove double robustness of ĴDR-π̂∗ . This suggests
when we posit parametric models for q̂, π̂, as long as ei-
ther model is well-specified, the final estimator ĴDR-π̂∗ is



Optimal Off-Policy Evaluation from Multiple Logging Policies
√
n′-consistent though might not be efficient. This is formal-

ized as follows noting that well-specified parametric models
converge at rate n′−1/2.

Theorem 6 (Double Robustness). Suppose Assumption 1
holds. Assume ∀z ∈ [Z], for some q†, π†∗, ‖q̂(z) − q†‖2 =

Op(n′−1/2) and ‖πe/π̂
(z)
∗ − πe/π†∗‖2 = Op(n′−1/2), and

1/π†∗, q
†, q̂(z), 1/π̂

(z)
∗ are uniformly bounded by some con-

stants. Then, as long as either q† = q or π†∗ = π∗, ĴDR-π̂∗
is
√
n′-consistent.

Finally, we consider how to achieve efficient estimation.
The efficient estimator proposed in Section 3, ĴDR =
ĴBI(1/π∗, q̂), only works when logging policies, hence π∗,
are known. A natural estimation approach when we do not
know logging policies is to estimate π∗ and plug it in:

ĴDR-π̂∗ := ĴBI(1/π̂∗, q̂).

We next prove the efficiency of ĴDR-π̂∗ under lax nonpara-
metric rate conditions for the nuisance estimators.

Theorem 7 (Efficiency). Suppose πe/π∗, q, q̂
(z), πe/π̂

(z)
∗

are uniformly bounded by some constants and that Assump-
tion 1 holds. Assume ∀z ∈ [Z], ‖q̂(z) − q‖2 = op(1),
‖πe/π̂

(z)
∗ − πe/π∗‖2 = op(1), and ‖q̂(z) − q‖2‖πe/π̂

(z)
∗ −

πe/π∗‖2 = op(n
′−1/2). Then, ĴDR-π̂∗ is efficient:

√
n′(ĴDR-π̂∗ − J)

d→ N (0, V ∗).

First, notice that Corollary 2 can also be seen as corollary of
Theorem 7 by noting that if we set π̂∗ = π∗ then ‖πe/π̂

(z)
∗ −

πe/π∗‖2 = 0. Second, notice that unlike Theorem 2, we do
not restrict ĥ = 1/π̂∗ to satisfy Eq. (2), as indeed satisfying
it would be impossible when πk are unknown. At the same
time, ĴDR-π̂∗ is not unbiased (only asymptotically). Finally,
notice that again ĴDR-π̂∗, an efficient estimator, does not
appear to use logger identity data. We will, however, use it
in Section 6 to improve q-estimation.

5. Stratified vs iid Sampling
We next discuss in more detail the differences and sim-
ilarities between stratified and iid sampling. To make
comparisons, consider the alternative iid DGP: D′ =
{(Si, Ai, Ri) : i = 1, . . . , n}, where (Si, Ai, Ri) ∼
pS(s)π∗(a | s)pR|S,A(r | s, a) independently 1 for i =
1, . . . , n. That is, we observe n iid samples from the log-
ging policy π∗. This is equivalent to randomizing the dataset
sizes as (n1, . . . , nK) ∼ Multinomial(n, ρ1, . . . , ρK). In
this iid setting, the results of Kallus and Uehara (2020a)
show that the efficiency bound is the same V ∗ as in Theo-
rems 1, 2 and 4.

1This assumption is primarily assumed to simplify the discus-
sion. We can relax it by assuming some mixing conditions.

This is surprising since usually an estimator has different
variances in different DGPs. For example, the variance of
ĴIS under the two different sampling settings are different,
i.e.:

varD[ĴIS] = 1
n

∑K
k=1 ρkvarπk

[
πe(a|s)r
π∗(a|s)

]
≤ 1

nvarπ∗

[
πe(a|s)r
π∗(a|s)

]
= varD′ [ĴIS].

This inequality is easily proved by law of total variance and
shows that the variance under stratified sampling is lower.
The inequality is generally strict when πk are distinct. This
observation generalizes.

Theorem 8. Suppose Assumption 1 holds. Consider the
class of estimators {En [φ(s, a, r; g)]}, where φ is given by

φ(s, a, r; g) = πe(a|s)
π∗(a|s) (r − g(s, a)) + g(s, πe)

and g is any function. Then: (I) Estimators in this class are
unbiased. (II) We have

varD[En [φ(s, a, r; g)]] ≤ varD′ [En [φ(s, a, r; g)]]. (3)

(III) The above holds with equality if g(s, a) = q(s, a) (IV)
Conversely, if equality holds then Eπe [g(s, a)−q(s, a)] = 0.

We have already seen the statement (III). The intuition
for the statement (IV) is that the difference in Eq. (3),
var[E[En [φ(s, a, r; g)] | {nk}Kk=1]], is zero exactly when
Eπk [φ(s, a, r; g)] = J ∀k ∈ [K], which leads to
Eπe [g(s, a)−q(s, a)] = 0. This conveys two things: stratifi-
cation is still beneficial in reducing variance in finite samples
since we never know the true q exactly, while at the same
time the efficiency bound is the same in the two settings so
this reduction washes out asymptotically when we use an
efficient estimator.

This is related to but different from the benefit of stratifica-
tion in survey sampling (Athey and Imbens, 2017; Fuller,
2009). In survey sampling, one considers stratification on
the covariates s. Instead, we consider stratification on the
treatment-assignment policies. Our result is distinct from
the former and unique to our setting.

6. Stratified More Robust Doubly Robust
Estimation

We have so far considered a meta-algorithm for efficient
estimation given a q-estimator, which can be constructed by
applying any type of off-the-shelf nonparametric or machine
learning regression method to the whole dataset D. How-
ever, if q̂ is misspecified and inconsistent, the theoretical
guarantees such as efficiency fail to hold. This a serious
concern in practice as we always risk some level of model
misspecification. We therefore next consider a more tailored
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loss function for q-estimation that can still provide intrinsic
efficiency guarantees regardless of specification.

Specifically, following Rubin and der Laan (2008); Cao et al.
(2009); Farajtabar et al. (2018), we consider choosing the
control variate g in a hypothesis class Q to minimize the
variance of Γ(D; 1/π∗, g) = En[φ(s, a, r; g)]. Specifically,
we are interested in q̃:

q̃ ∈ arg ming∈Q V (g), V (g) = nvar[En[φ(s, a, r; g)]]

=

K∑
k=1

ρkvarπk [φ(s, a, r; g)].

Of course, per Theorem 1, if q ∈ Q then q̃ = q, but the
concern is that q /∈ Q. In this case, q̃ will ensure best-in-
class variance and will generally perform better than the
best-in-class regression function q̄ = arg ming∈Q Eπ∗ [(r−
g(s, a))2], which empirical risk minimization would esti-
mate.

In practice, we need to estimate varπk [φ(s, a, r; g)]. A fea-
sible estimator is

q̂SMRDR := arg ming∈Q
∑K
k=1 ρkvarnk [φ(s, a, r; g)].

Then, we define the Stratified More Robust Doubly Robust
estimator as ĴSMRDR := ĴBI(1/π∗, q̂SMRDR).

Theorem 9. Suppose q̃ satisfies ‖q̂SMRDR − q̃‖2 =
op(1). Also, suppose πe/π∗, supg∈Q ‖g‖∞ are uniformly

bounded by some constants. Then,
√
n′(ĴSMRDR − J)

d→
N (0,ming∈Q V (g)).

Here, the assumption ‖q̂SMRDR − q̃‖2 = op(1) is essentially
satisfied by identifiability and assuming that φ belongs to
a Glivenko–Cantelli class, i.e., the function class where
uniform law of large number is satisfied (van der Vaart,
1998, Chapter 19).

Notice that if we had ignored the stratification and used the
standard MRDR estimator (Cao et al., 2009), we would end
up minimizing the wrong objective:

q̂MRDR := arg ming∈Q varn[φ(s, a, r; g)],

which targets the variance under iid sampling. In particular,
we will not obtain the best-in-class variance. This is again a
consequence of Theorem 8: when the control variates is not
exactly q, the variances under stratified and iid setting are
generally different.

Remark 1. When π∗ is unknown, though we can just plug
π̂∗ in, the variance estimator has some bias. When π∗ is
parametrically estimated, we might be able to correct it
following Cao et al. (2009). We leave it to future work
regarding its formalization. We will show that the simple
plug-in method empirically works in Section 8.

7. Extension to Reinforcement Learning
OPE with a single logging policy has been extensively stud-
ied in the RL setting (Precup et al., 2000; Liu et al., 2018;
Jiang and Li, 2016; Kallus and Uehara, 2019a). We discuss
the RL case with multiple loggers (Chen et al., 2020).

We consider observing D = {D1, · · · , DK}, where

Dk = {Skj , Akj , Rkj , S′kj}
nk
j=1

i.i.d∼
pk(s)πk(a | s)pR|S,A(r | s, a)pS′|S,A(s′ | s, a),

When K = 1, this is the standard DGP assumed in RL.
Here, we consider K different loggers. The state densities
pk(s) for each logger are also possibly different for each
dataset. Our target is the policy value J(γ) defined by the
same MDP, an initial known density pe(s) and an evaluation
policy πe with a discount factor γ:

J(γ) = (1− γ) limT→∞ Eπe [
∑T
t=1 γ

t−1rt],

where the expectation is taken w.r.t s1 ∼ pe(s), a1 ∼
πe(a | s1), r1 ∼ pR|S,A(r | s1, a1), s2 ∼ pS′|S,A(s |
s1, a1), a2 ∼ πe(a | s2), . . . . We define the q-function
as q(s, a) := Eπe [

∑∞
t=1 γ

t−1rt | s1 = s, a1 = a].

We next derive efficiency bound in this model.

Theorem 10. Let π∗(s, a) :=
∑K
k=1(nk/n)πk(a|s)pk(s).

Whether the logging policies are known or unknown, the
efficiency bounds is

Eπ∗(s,a)

[{
p
(∞)
πe,γ

(s)πe(a|s)
π∗(s,a)

}2

var[r + γq(s′, πe) | s, a]

]
,

where p(∞)
πe,γ(s) is the average visitation density with dis-

count factor γ and an initial density pe(s).

If γ = 0, RL reduces to the bandit setting, and indeed the
above would match the first term in V ∗ in Theorem 1. The
second term in V ∗ does not appear here since we assume
that the initial density pe(s) is known.

Next, we propose an efficient estimator. We define

w(s, a) :=
p
(∞)
πe,γ

(s)πe(a|s)
π∗(s,a) .

We can estimate q using fitted q-iteration (Antos et al., 2008)
and q or w using minimax methods (Liu et al., 2018; Zhang
et al., 2020; Uehara et al., 2020). Given some estimates
ŵ(s, a), q̂(s, a) for w(s, a), q(s, a), we set

Ĵ(γ) = 1
n

∑n
i=1 ŵ(Si, Ai){Ri + γq̂(S′i, π

e)− q̂(Si, Ai)}
+ Epe(s)[q̂(s, πe)]

The efficiency is proved as in Theorem 7. For details, refer
to Appendix B.
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Table 1. The evaluation and logging policies used in the experi-
ments.

evaluation policy (πe) 1.00πdet + 0.00πu
logging policy 1 (π1) 0.95πdet + 0.05πu
logging policy 2 (π2) 0.05πdet + 0.95πu

We next compare to Chen et al. (2020). Their estimator
is given by setting q̂ = 0, i.e., the RL extension of the IS
estimator. In contrast, we incorporate control variates and
can therefore obtain efficiency, similarly to our key point in
the bandit setting. Additionally, unlike Chen et al. (2020),
we do not assume that pk(s) is a stationary distribution.

8. Experimental Results
We next empirically compare our methods with the existing
estimators for OPE with multiple loggers. To focus on main
takeaways, we restrict our attention to the bandit setting.

Setup. Following previous work on OPE (Farajtabar et al.,
2018; Wang et al., 2017; Kallus and Uehara, 2019b) we eval-
uate our estimators using multiclass classification datasets
from the UCI repository. Here we consider the optdigits
and pendigits datasets (see Table 3 in Appendix E.). We
transform each classification dataset into a contextual ban-
dit dataset by treating the labels as actions and recording
reward of 1 if the correct label is chosen by a classifier,
and 0 otherwise. This lets us evaluate and compare several
different estimators with the ground-truth policy value of an
evaluation policy.

We split the original data into training (30%) and evaluation
(70%) sets. We first obtain a deterministic policy πdet by
training a logistic regression model on the training set. Then,
following Table 1, we construct evaluation and logging poli-
cies as mixtures of one of the deterministic policy and the
uniform random policy πu. We vary ρ1/(1− ρ1) = n1/n2

in {0.1, 0.25, 0.5, 1, 2, 4, 10}. Since π1 is closer to πe than
π2, larger ρ1/ρ2 corresponds to an easier problem. We then
split the evaluation dataset into two according to proportions
ρ1, ρ2 and in each dataset we use the corresponding policy
to make decisions and generate reward observations (the
true label is then omitted). Using the resulting dataset we
consider various estimators Ĵ for J . We describe additional
details of the experimental setup in Appendix E.

We repeat the processM = 200 times with different random
seeds and report the relative root MSE:

Relative-RMSE (Ĵ) = 1
J
√
M

√∑M
m=1

(
J − Ĵm

)2

where Ĵm is an estimated policy value with m-th data.

Estimators considered. We consider the following esti-
mators:

• Our proposed estimators, JDR-π̂∗, ĴSMRDR.

• Standard estimators in the iid setting, ĴIS, ĴMRDR.

• (Feasible versions of) the two estimators proposed
by (Agarwal et al., 2017), ĴIS-Avg, ĴIS-PW.

• The natural doubly robust extension of these as discussed
in Section 3.2, ĴDR-Avg, ĴDR-PW.

We suppose we do not know logging policies. For all es-
timators, we estimate the logging policies using logistic
regression on the evaluation set with 2-fold cross-fitting
as in Algorithm 1. Most of the estimators above are intro-
duced with known logging densities in the previous sections.
Here, we just replace each πk with their estimates. For
DR, DR-Avg, and DR-PW, we construct q-estimates using
logistic regression again using 2-fold cross-fitting as in Al-
gorithm 1. For SMRDR and MRDR, we optimize their
respective estimated variance objectives over the class of
logistic regression Q. We use tensorflow and the same hy-
perparameter setting for DR, DR-Avg, DR-PW, SMRDR,
and MRDR to ensure a fair comparison.

Results. The resulting Relative-RMSEs on optdigits and
pendigits datasets with varying values of n1/n2 are given
in Figs. 2 and 3. Several findings emerge from the results.
First, we see the dilemma pointed out by Agarwal et al.
(2017): Specifically, the ordering of the variances of IS-Avg
and IS-PW depend on the instance. More generally, there
is no clear ordering between IS, IS-Avg, IS-PW, DR-Avg,
and DR-PW. For example, on the optdigits data, DR-PW
performs best among baselines with small values of n1/n2,
while IS performs better with large values of n1/n2. This
behavior is predicted by our analysis showing none of these
estimators are optimal.

Second, our proposed estimators successfully resolve the
dilemma and are superior to the above suboptimal estima-
tors. Moreover, we see SMRDR generally performs better
than DR, especially when the overlap is weak (n1/n2 is
small), which exacerbates issues of misspecification. Recall
DR is generally not efficient when the q-hypothesis class is
misspecified; on the other hand, SMRDR is the best among
the hypothesis class as in Theorem 9. It does appear that DR
outperforms SMRDR in the specific example of optdigits
when overlap is strong (n1/n2 is large), which might be
attributed to bad optimization of the non-convex objective
compared to a reasonably good-enough plug-in q-estimate.

Finally, we directly compare the performances of SMRDR
and MRDR in Figure 3. We observe that SMRDR signifi-
cantly outperforms MRDR in the stratified setting, leading
to up to 45% reduction in error. This strongly highlights that
even though the asymptotic efficiency bounds are the same
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Figure 2. Comparing proposed estimators to some variants of IS type
estimators.

Figure 3. Comparing SMRDR (leveraging the stratification) and
MRDR (ignoring the stratification).

in the stratified and iid settings, leveraging the stratifica-
tion structure can still offer significant gains in the multiple
logger setting.

9. Conclusions
We studied OPE in the multiple logger setting, framing it
as a form of stratified sampling. We then studied optimality
in several classes of estimators and showed that, at least
asymptotically, the minimum MSE is the same among all
of them. We proposed feasible estimators that can achieve
this minimum, whether logging policies are known or not.
This gives a concrete and positive resolution to the multi-
ple logger dilemma posed in Agarwal et al. (2017). We
further discuss how to take stratification into account when
choosing best-in-class control variates.
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