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A. Hyperparameters

Table 5 documents all the hyperparameters used for train-
ing Simplex-GPs. All kernels use automatic relevance de-
termination (ARD). We find that higher values of r (e.g. 2
or 3) do not meaningfully improve the test RMSE perfor-
mance, but significantly increase the training time.

Table 5. We document all the settings and hyperparameters in-
volved in training Simplex-GPs.

HYPERPARAMETER VALUE(S)

MAX. EPOCHS 100
OPTIMIZER Adam
LEARNING RATE 0.1
CG TRAIN TOLERANCE 1.0
CG EVAL/TEST TOLERANCE 0.01
MAX. CG ITERATIONS 500
CG PRE-CONDITIONER RANK 100
MAX. LANCZOS ITERATIONS 100
KERNEL FAMILY { Matérn-3/2, RBF }

BLUR STENCIL ORDER (r) 1
MIN. LIKELIHOOD NOISE (�2) { 10�4 , 10�1

}

B. Visualizing Training Instabilities

We visualize the training instabilities that arise as a conse-
quence of using a high CG tolerance value. As noted in
Section 5.4, we follow the recommendation of Wang et al.
(2019), and use a CG tolerance of 1.0 during training and
0.01 during validation and test. We find that the train MLL
does not improve monotonically, due to lack of CG con-
vergence, often owing to early truncation. This leads to
undesirable behavior in the test RMSE as visualized in Fig-
ure 7(a).

As addressed in Section 5.4, a more stable training run is
achieved by simply reducing the tolerance to 10�4, as vi-
sualized in Figure 7(b). But this leads to a significant slow-
down, defeating the computational gains from Simplex-
GPs. Therefore, this remains a noteworthy design decision
for practical usage.

C. Comparing Learned Lengthscales with

Exact GPs

When comparing the results from the Simplex-GP approx-
imation to exact GPs via KeOps (Charlier et al., 2020), we
find that the learned lengthscales for the Matérn-3/2 ARD
kernel agree qualitatively, i.e. the relevance determined by
Simplex-GPs corresponds to the relevance determined by
KeOps too. In many cases, these agree quantitatively too.
This is visualized in Figure 8. The learned scale factors for
the kernels are often different, partially accounting for the
difference in the magnitude of lengthscales.

This hints that the approximations constructed by Simplex-
GPs are meaningful in practice, and similar in quality to
exact GPs, than the performance just being coincidental ar-
tifact of optimization.
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Figure 7. We visualize the pathology discussed in Section 5.4, when using conjugate gradients (CG) on the keggdirected dataset.
We observe similar behavior for other datasets too. (a) Using a high CG error tolerance of 1.0 during training leads to non-monotonic
improvements in the train marginal log-likelihood (MLL) due to convergence issues in CG. More significantly, this makes the test
RMSE curves look unstable. (b) By simply reducing the CG error tolerance to 10�4, we are able to stabilize these curves, behaving
more favorably.

Figure 8. For all our benchmark UCI datasets, when comparing the lengthscales between those learned by Simplex-GPs, and those
learned by exact GPs using KeOps, we find that the learned values agree in terms of determined relevance. The label `d refers to the
lengthscale learned for dimension d.
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