
Appendix for
Variational Auto-Regressive Gaussian Processes for Continual Learning

Sanyam Kapoor 1 Theofanis Karaletsos 2 Thang D. Bui 3

A. VAR-GPs
A.1. Posterior Predictive

For a novel input x?, the posterior predictive is computed
via a Monte Carlo approximation of

p(y? | x?) =

Z
p(y? | f)qt(f, ✓ | x?)dfd✓ (12)

For a K-way classifier, we train K independent GPs and
use the Bayes optimal prediction argmaxi p(y

(i)
? | x?), for

all i 2 {1, . . . ,K}, to compute accuracies.

B. Ablations
B.1. Global Inducing Points

This section outlines the assumptions made for the ablation
titled as “Global”. The characterization for the first task
remains the same as in VAR-GPs. For subsequent tasks,
the general model and the variational assumption is written
as (with implicit dependence on Z),

p(y(t), f, ✓ | X
(t),D(<t)) ⇡

NtY

i=1

p(y(t)i | f,x(t)
i)

p(f 6=ut�1 | X
(t),ut�1, ✓)

q(ut�1)qt�1(✓) .

(13)

Note that we don’t have the auto-regressive characteriza-
tion of VAR-GPs in the model anymore and instead have
an approximate dependence through the variational poste-
rior for the previous task. We further note that,

p(f 6=ut�1

��X(t),ut�1, ✓) = p(f 6=ut�1,ut

��X(t),ut�1,ut, ✓)

p(ut�1,ut

��✓)
p(ut�1

��✓)
, (14)

p(f 6=ut

��X(t),ut, ✓) = p(f 6=ut�1,ut

��X(t),ut�1,ut, ✓)

p(ut�1,ut|✓)

p(ut

��✓)
. (15)

Owing to key cancellations, the variational lower bound
now is given by,

F(qt) =
NtX

i=1

Eqt(f,✓)

h
log p

⇣
y(t)i | f,x(t)

i

⌘i

�KL [qt(✓) || qt�1(✓)]

� Eqt(✓) [KL [q(ut) || p(ut | ✓)]]

+ Eqt(✓)q(ut|✓)p(ut�1|ut,✓)


log

q(ut�1)

p(ut�1 | ✓)

�
.

(16)

A key difference to note here is that the KL regularizer
containing inducing points ut is not conditional on the pre-
vious ones anymore.

B.2. Re-VAR-GP: Retraining old inducing points

In this version of VAR-GP, we allow retraining of old in-
ducing points and call it Retrainable VAR-GP (abbreviated
as Re-VAR-GP). We clarify the precise nature of terms.
Leading from (6) and (8), we highlight frozen eu<t and
eZ<t (with a tilde) in the prior model to differentiate against
learnable parameters,

p(y(t), f, ✓ | X
(t),D(<t)) =

NtY

i=1

p(y(t)i | f,x(t)
i)

p(f 6=ut,eu<t
| X

(t),ut, eu<t,Zt, eZ<t, ✓)

p(ut | Zt, eu<t, eZ<t, ✓)

q(eu<t |
eZ<t, ✓)qt�1(✓) .

(17)

We posit the variational posterior as,

qt(f, ✓) = p(f 6=ut,u<t | X
(t),ut,u<t,Zt,Z<t, ✓)

q(ut | Zt,u<t,Z<t, ✓)

q(u<t | Z<t, ✓)qt(✓)

(18)

To simplify these equations, we note the following identi-

Variational Auto-Regressive Gaussian Processes for Continual Learning (VAR-GPs)

ties.

p(f 6=ut,u<t | X
(t),ut,u<t,Zt,Z<t, ✓) =

p(f 6=ut,u<t,ũ<t | X
(t),ut,u<t, ũ<t,Zt,Z<t, Z̃<t, ✓)

p(ũ<t | ut,u<t,Zt,Z<t, Z̃<t, ✓) ,

p(f 6=ut,ũ<t | X
(t),ut, ũ<t,Zt, Z̃<t, ✓) =

p(f 6=ut,u<t,ũ<t | X
(t),ut,u<t, ũ<t,Zt,Z<t, Z̃<t, ✓)

p(u<t | ut, ũ<t,Zt,Z<t, Z̃<t, ✓) ,

p(ut | Zt, ũ<t, Z̃<t, ✓)p(u<t | ut, ũ<t,Zt,Z<t, Z̃<t, ✓)

p(ũ<t | ut,u<t,Zt,Z<t, Z̃<t, ✓)

=
p(u<t,ut | Zt,Z<t, ✓)

p(ũ<t | Z̃<t, ✓)
.

Using these identities, the lower bound now simplifies as,

F(qt) =
NtX

i=1

Eqt(f,✓)

h
log p(y(t)

i | f,x(t)
i)

i

�KL [qt(✓) || qt�1(✓)]

� Eqt(✓) [KL [q(ut | Zt, ✓) || p(ut | Zt, ✓)]]

� Eqt(✓)q(ut|Zt,✓)p(ũ<t|Z̃<t,ut,Zt,✓)
[Rt] ,

(19)

where Rt = log p(ũ<t|Z̃<t,✓)

q(ũ<t|Z̃<t,✓)
. The key differences to note

here are the fact that prior model now conditions on the
frozen inducing points while the new variational distribu-
tions introduced are still free to optimize those points fur-
ther. This leads to additional terms in the variational lower
bound. We briefly discuss the performance next.

B.2.1. PERFORMANCE ON TOY DATASET

Similar in spirit to Figure 1, we train Re-VAR-GP on the
toy dataset in Figure 2. The density plots for training af-
ter both first task (training on classes 0/1) and the second
(training on classes 2/3) are presented in Figure 7.

As shown in Figure 7, Re-VAR-GP is not able to retain
the information gained from previous task, a sign of catas-
trophic forgetting. This can be understood from the nature
of the lower bound in (19). The only term that can poten-
tially contribute to preservation of old information is the
expected ratio log p(ũ<t|Z̃<t,✓)

q(ũ<t|eZ<t,✓)
. However, this term avoids

any interaction between eut and ut. As a result, the
retrainable parameters ut and Zt have no information-
preserving regularization unlike VAR-GPs as seen in (8).
Owing to this observation, we do not pursue this model
further.

Figure 7. This figure shows class-wise output probabilities in
each column for classifiers trained using a synthetic dataset (Fig-
ure 2) on the 2-D plane x, y 2 [�3., 3.]. The first row represents
the density surface after training for Task 0 (observing classes
0/1) and the second after training for Task 1 (observing classes
2/3). Brighter regions represent higher probabilities. Training
points for each class are marked . Re-VAR-GP tends to suffer
from catastrophic forgetting. Notice the approximately uniform
uncertainty in regions for Class 0 and Class 1 after training on the
second task.

B.3. Deep Kernel Learning

For increased representational power in the kernel, we also
provide preliminary experiments with Deep Kernel Learn-
ing (Wilson et al., 2016). Effectively, we augment the Ex-
ponentiated Quadratic kernel with a feature extractor g�(x)
in the form of a neural network and allow them to be trained
with additional kernel hyperparameters �. This amounts to
replacing x and x

0 in (20) with g�(x) and g�(x0) respec-
tively. We only use point estimates for �, initialized at the
previous task for all t > 1.

B.3.1. EXPERIMENTS WITH SPLIT MNIST

We use a neural network with two hidden layers of size 256
each and the final output feature size of 64 to parameterize
f� and train the system end-to-end. As we see in Figure 8,
the performance declines much faster than in VAR-GPs.

This result hints towards weak regularization of the feature
extractor as we encounter subsequent tasks. The introduc-
tion of a neural network makes the inference problem much
harder and any potential remedies are beyond the scope of
current work. We, therefore, do not discuss this further but
makes for an exciting direction to pursue in the future.

C. Implementation
C.1. Exponentiated Quadratic kernel

The precise parametrization of the kernel used is given be-
low. k·k2 is the `2-norm. We parameterize log � and log �.

k(x,x0) = � exp

⇢
||x� x

0
||
2
2

2�2

�
(20)

Variational Auto-Regressive Gaussian Processes for Continual Learning (VAR-GPs)

Figure 8. This figure shows the task-wise test accuracy on Split
MNIST over five independent runs. We train a neural network as
a feature extractor before applying the kernel (as described in Ap-
pendix B.3). It is clear that the neural networks require stronger
regularization as we incorporate more tasks.

C.2. Parameterizing covariance matrices

In all experiments, we parameterize a covariance matrix
⌃ 2 RM⇥M using its Cholesky decomposition ⌃ = LL

|,
where L 2 RM⇥M is a lower triangular matrix with posi-
tive diagonals. The positivity of the diagonals is maintained
via a softplus transform. As a result, we can apply un-
constrained optimization on 1

2 (M ⇥ (M + 1)) free param-
eters corresponding to the lower trianglular matrix L.

C.3. Computing the auto-regressive distributions in
VAR-GPs

When using the auto-regressive parametrization in VAR-
GPs, the joint distribution over all inducing points up to
and including the current time step can be decomposed as
follows,

q(ut|✓) = q(u<t|✓)q(ut|u<t, ✓)

= N (u<t;m<t,⌃<t)

N (ut;Atu<t +mt,⌃t) ,

(21)

such that At = KZt,Z<tK
�1
Z<t,Z<t

.

While we cannot avoid sampling the hyperparameters ✓, we
can avoid variance introduced by the ancestral sampling of
variational distribution for computation of (8). We recog-
nize that the full auto-regressive distribution can be com-
puted in closed form as it is a product Gaussians with linear
dependence in the mean, similar in spirit to linear Gaussian
dynamical systems (Murphy, 2012). Hence, for all t > 1,
we have

q(ut|✓) = N

✓
u<t

ut

�
;


m<t

Atm<t +mt

�
,⌃

◆
(22)

where,

⌃ ,


⌃<t ⌃<tA
|
t

At⌃
|
<t ⌃t +At⌃<tA

|
t

�

D. Hyperparameters
D.1. Search Space

The search space for all hyperparameters used across ex-
periments is described in Table 2. Top hyperparameters
were picked using a held-out validation set.

Table 2. List of key hyperparameters with relevant search spaces.

Hyperparameter Range / Value
Learning Rate (⌘) [0.001, 0.01]
Inducing Points (M) [40, 200]
Hypers KL Tempering Factor (�) [1.0, 10.0]
Batch Size (B) 512
Maximum Epochs (E) 500
Early Stopping Patience Epochs (K) 200
Early Stopping Tolerance (�) 0.0001

D.2. Varying number of inducing points M

In Figure 9, we note the mean performance by varying the
number of inducing points M from 20 to 200 in steps of 20,
for Split MNIST. The key takeaway here is that increasing
the number of inducing points generally does improve the
performance. This indicates that there may be more capac-
ity available to be exploited further.

Figure 9. This figure shows the mean task-wise (on x-axis) test
accuracy (y-axis) on Split MNIST over five independent runs,
varying number of inducing points M from 20 to 200 in steps
of 20. The key insight to draw here is about the general trend that
increasing the number of inducing points M improves the mean
peformance, hinting towards more capacity being available to be
exploited by the learning algorithm.

	Introduction
	Related Work
	Background
	Variational Auto-Regressive Gaussian Processes
	Learning the First Task
	Generalized Continual Variational Lower Bound
	Distributional Choices
	Connections to Expectation Propagation and Orthogonal Inducing Points

	Experiments
	Qualitative Analysis
	Benchmark Results
	Ablations

	Discussion
	VAR-GPs
	Posterior Predictive

	Ablations
	Global Inducing Points
	Re-VAR-GP: Retraining old inducing points
	Performance on Toy Dataset

	Deep Kernel Learning
	Experiments with Split MNIST

	Implementation
	Exponentiated Quadratic kernel
	Parameterizing covariance matrices
	Computing the auto-regressive distributions in VAR-GPs

	Hyperparameters
	Search Space
	Varying number of inducing points M

