
Variational Auto-Regressive Gaussian Processes for Continual Learning

Sanyam Kapoor 1 Theofanis Karaletsos 2 Thang D. Bui 3

Abstract
Through sequential construction of posteriors on
observing data online, Bayes’ theorem provides
a natural framework for continual learning. We
develop Variational Auto-Regressive Gaussian
Processes (VAR-GPs), a principled posterior up-
dating mechanism to solve sequential tasks in
continual learning. By relying on sparse induc-
ing point approximations for scalable posteriors,
we propose a novel auto-regressive variational
distribution which reveals two fruitful connec-
tions to existing results in Bayesian inference,
expectation propagation and orthogonal induc-
ing points. Mean predictive entropy estimates
show VAR-GPs prevent catastrophic forgetting,
which is empirically supported by strong perfor-
mance on modern continual learning benchmarks
against competitive baselines. A thorough abla-
tion study demonstrates the efficacy of our mod-
eling choices.

1. Introduction
Continual Learning (CL) is the constant development of
complex behaviors by building upon previously acquired
skills (Ring, 1994; Thrun, 1998); humans and other animals
exhibit knowledge acquisition for continual skill develop-
ment (Hoppitt & Laland, 2013). To the contrary, modern
artificial intelligence methods based on supervised machine
learning rely on a stronger assumption of all representative
information being available at once, i.e. i.i.d data. Many
systems, however, violate this assumption. A hospital may
not have legal access to past patient data to provide auto-
mated diagnosis, real-time learning systems may be limited
by compute to utilize all available data, and a mobile device
may prefer on-device learning and inference to guarantee
user privacy. In each of these examples, the learning algo-
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(a) VAR-GP (ours)

(b) VCL (with coreset size 10)

Figure 1. By first, only training on classes 0/1 (Task 0), and next,
only training on classes 2/3 (Task 1), we show the posterior pre-
dictive density surface (brighter is higher) for a four-way classifier
on the synthetic dataset (marked ) from Figure 2. (a) VAR-GPs
preserve information from Task 0 even after training on Task 1,
i.e. prevent catastrophic forgetting (seen as bright regions around
data from Task 0). (b) VCL is overconfident in its predictions and
is structurally less stable (seen as large variations in predictive
probabilities between Task 0 and Task 1).

rithm does not observe i.i.d data, but only new parts of the
data space. We still want to improve our models using new
data without compromising existing performance.

Conventional training methods, however, tend to perform
poorly when it comes to balancing rigidity: the inability
to adapt to new experience, and plasticity: the tendency to
forget past experience. For example, neural network train-
ing is known to be vulnerable to catastrophic forgetting,
causing any data distribution shift to override past learn-
ing (McCloskey & Cohen, 1989; Ratcliff, 1990). Many ap-
proaches have been pursued to address these issues, and
among them, the Bayesian framework is arguably the most
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general and principled. By allowing us to sequentially con-
struct posteriors after observing data online, Bayes’ the-
orem provides a coherent framework to build continual
learning algorithms, and avoid pitfalls like catastrophic for-
getting; this principle is seen in Sato (2001) for online
model selection, and in Broderick et al. (2013) for infer-
ence on streaming data. More recently, much literature has
been devoted to scalable posterior updating schemes with
neural networks — regularization using a Laplace approx-
imation with a diagonal Fisher information matrix (Kirk-
patrick et al., 2017), using approximate path integral of
gradient vector fields (Zenke et al., 2017), using recursive
variational posterior approximations (Nguyen et al., 2018;
Swaroop et al., 2019; Ahn et al., 2019), targeting adap-
tive capacity in Bayesian neural networks (Kessler et al.,
2019), and using episodic memory (Lopez-Paz & Ranzato,
2017; Rebuffi et al., 2017). Alternatively, the effectiveness
of Gaussian Process (GP) priors is demonstrated by Csató
& Opper (2002) for online regression, and by Bui et al.
(2017a) for streaming data. Despite favorable properties,
GPs remain under-explored for modern continual learning
tasks.

We take a step in this direction and propose Variational
Auto-Regressive Gaussian Processes (VAR-GPs) for con-
tinual learning. By utilizing scalable sparse approxima-
tions for Gaussian processes (Titsias, 2009; Hensman et al.,
2013; 2015) and advances in variational inference (Hoff-
man et al., 2013), we make the following key contribu-
tions — i) a generalized continual variational lower bound
for sequential datasets with a natural interpretation, ii) a
novel auto-regressive variational distribution for continual
learning with GPs, iii) two fruitful connections to results
in Bayesian inference, Expectation Propagation (EP) and
orthogonal inducing point approximation, and iv) evidence
on the effectiveness of hyper-priors.

The rest of the paper is organized as follows — Section 2
puts prior work in context and highlights the key similari-
ties or differences. Section 3 summarizes the relevant back-
ground needed to develop VAR-GPs. Section 4 derives
VAR-GPs for continual learning and describes connections
to two existing results in Bayesian inference. Section 5 de-
velops an intuitive characterization of how VAR-GPs avoid
catastrophic forgetting, supported by empirical results and
thorough ablation studies. Finally, Section 6 concludes
with a discussion on limitations and future directions.

2. Related Work
Our work aligns with the key desiderata for continual learn-
ing outlined by Farquhar & Gal (2018) and van de Ven
& Tolias (2019). In particular, unlike prior work (Kirk-
patrick et al., 2017; Zenke et al., 2017; Nguyen et al., 2018;
Swaroop et al., 2019) where task identity is revealed by

a multi-head architecture, we tackle a considerably harder
and more realistic continual learning setup where task iden-
tity is unknown and rely on approximate Bayesian infer-
ence for all learning. While the broader literature focuses
on many aspects of CL like vanilla transfer learning (Li &
Hoiem, 2017), adaptive model capacity, and episodic mem-
ory, we emphasize on developing an automated posterior
updating mechanism for continual learning.

Continual learning with neural networks relies on regu-
larization of the parameters through the previous approx-
imate posterior (or the prior in absence of learning) -
Elastic Weight Consolidation (EWC) (Kirkpatrick et al.,
2017) uses Laplace approximations with a diagonal Fisher
Matrix, Synaptic Intelligence (SI) (Zenke et al., 2017)
uses approximate path integral of gradient vector fields,
and RWalk (Chaudhry et al., 2018) unifies these methods
from a KL-divergence perspective. Ritter et al. (2018)
use Kronecker-factored approximated Laplace approxima-
tion for tractability instead. By directly estimating a re-
cursive approximate variational posterior, Improved Vari-
ational Continual Learning (VCL) (Nguyen et al., 2018;
Swaroop et al., 2019) proves to be one of the most compet-
itive methods, and forms our main baseline. Although, in
principle VCL relies on regularizing only w.r.t the last con-
structed posterior, in practice episodic memory (Swaroop
et al., 2019; Shin et al., 2017; Rebuffi et al., 2017) of real
samples is used to limit catastrophic forgetting. We avoid
this ad-hoc data subset selection problem by naturally in-
corporating past tasks into our learning objective.

Model capacity has been investigated by Progressive Neu-
ral Networks (Rusu et al., 2016; Schwarz et al., 2018),
which adapt by rewiring neural networks. Kessler et al.
(2019) provide a fully Bayesian treatment through Indian
Buffet Process priors. While, assessing model capacity re-
quired for both batch and continual learning remains an
open problem, including in GP-based models, we empha-
size only on an automated inference scheme in this work.

Csató & Opper (2002); Csató (2002) are seminal contri-
butions towards utilizing Gaussian processes (GPs) in on-
line regression. In the spirit of streaming variational Bayes
framework (Broderick et al., 2013), Bui et al. (2017a)
demonstrate the effectiveness of GPs for a single-task on-
line regression problems. Moreno-Muñoz et al. (2019)
adapt recursive construction from VCL (Nguyen et al.,
2018) to multi-task GPs. To the best of our knowl-
edge, no prior work addresses modern continual learn-
ing benchmarks and desiderata with GPs alone. More re-
cently, FCRL (Titsias et al., 2020) applies functional reg-
ularization to neural networks using sparse GPs, unifying
memory-based (Lopez-Paz & Ranzato, 2017; Rebuffi et al.,
2017) and Bayesian methods through inducing points se-
lection. Unlike FCRL, our proposed approach naturally



Variational Auto-Regressive Gaussian Processes for Continual Learning (VAR-GPs)

models cross-task covariances through structured approx-
imations, and allows joint optimization of both the varia-
tional approximation and inducing inputs using a unified
objective.

3. Background
Exact Gaussian processes We assume basic familiarity
with Gaussian processes (GPs) (Rasmussen & Williams,
2005). By expressing priors over the function space,
GPs provide a flexible non-parametric framework to per-
form probabilistic inference. For a dataset D of size N ,
we model the relationship between a collection of inputs
X = {xi}

N
i=1 and targets y = {yi}Ni=1 using a Gaussian

Process prior f | ✓ ⇠ GP (µ✓(·), k✓(·, ·)) and a likelihood
model p(y | f(X)). The prior is fully defined by a mean
function µ✓ and a covariance function k✓, where ✓ is a small
set of hyperparameters. Often, we will denote the covari-
ance matrix as KX,Z to be explicit about the two sets of
inputs X and Z that generate the matrix, keeping depen-
dence on ✓ implicit. As typical in literature, we set the
mean function to zero.

The intertwined goals of exact inference are to infer the
posterior distribution p(f | D, ✓) and obtain the marginal
likelihood p(y | X, ✓) =

R
p(y | f(X))p(f | ✓)df .

The posterior distribution can be used to obtain
the predictive distribution for a novel input x?, as
p(y?|x?,D, ✓) =

R
p(y?|f(x?))p(f |D, ✓)df , while the

marginal likelihood can be used for model selection. For
instance, a Gaussian likelihood model with a diagonal
covariance p(y|f,X) = N (y; f(X),�2

yI) leads to closed-
form expressions for predictive distribution, which is a
Gaussian defined by the following mean and variance,

µ? = K
>
? (K+ �2

yI)
�1

y , (1)

�2
? = K?? �K

>
? (K+ �2

yI)
�1

K? , (2)

where K?? = k✓(x?,x?), and the covariance matrices
are given by (K?)i = k✓(xi,x?), and (K)ij = k✓(xi,xj).
This model can be extended for K-way classification by
building K independent functions and using a softmax like-
lihood function such that class probabilities are given by
p(y = k | f1, . . . , fK ,x) / exp{fk(x)}.

Unfortunately, exact inference is analytically and compu-
tationally intractable for many models and datasets of in-
terest. Even for the closed-form solution above for GP re-
gression, the computational complexity is O

�
N3

�
for in-

ference & learning, and O
�
N2

�
for every subsequent pre-

diction. We will rely on sparse variational approximations
to sidestep both intractabilities.

Sparse Variational Gaussian processes Among various
sparse approximations of Gaussian processes (Quiñonero-

Candela & Rasmussen, 2005; Bui et al., 2017b), our con-
tinual learning algorithm builds on inducing-point meth-
ods (Titsias, 2009; Hensman et al., 2013; 2015). Fol-
lowing Hensman et al. (2015), we introduce M inducing
outputs u = {ui}

M
i=1, and corresponding inducing inputs

Z = {zi}
M
i=1. We view u,Z not simply as a collection of

points, but u as values of a continuous function f evaluated
at Z, i.e. u = f(Z). By noting that the underlying function
can be decomposed as f = {f 6=u,u}, the joint distribution
can be equivalently written as,

p(y, f | X, ✓) = p(y | f,X)

p(f 6=u | u, ✓)p(u | Z, ✓) .
(3)

The structured variational approximation is judiciously
chosen to be q(f) = p(f 6=u|u, ✓)q(u). This leads to a can-
cellation of difficult terms, yielding the following varia-
tional lower bound,

F(q, ✓) = Eq(f)


log

p(y | f)((((((p (f 6=u | u, ✓)p(u | Z, ✓)

((((((p(f 6=u | u, ✓)q(u)

�

F(q, ✓) =
NX

i=1

Eq(f) [log p (yi | f,xi)]

�KL [q(u) || p(u | ✓)] .

(4)

The first term in this bound remains intractable for a gen-
eral likelihood and large N . However, it can be approxi-
mated by simple Monte Carlo with reparameterisation gra-
dients and data subsampling (Jordan et al., 1999; Hoffman
et al., 2013; Hensman et al., 2013). Bui et al. (2017a) ex-
tend this bound for streaming data, and show good perfor-
mance on time series regression. This approach, however,
employs a single set of inducing points which is shared
across multiple time steps or tasks and, as a result, the in-
ducing points are either too rigid to adapt, or too quickly
moving to regions of new data. We demonstrate this pitfall
in Section 5. Equipped with this background, we are now
ready to derive the proposed approximation, VAR-GPs.

4. Variational Auto-Regressive Gaussian
Processes

Consider datasets {D
(1), . . . ,D(T )

}, of sizes
{N1, . . . , NT } respectively, for T different but re-
lated tasks. These tasks are observed sequentially and only
once. We want a model which performs well not only on
the current task, but also sustains performance on previous
tasks. In subsequent notations, we identify task-specific
quantities with corresponding task numbers, {1, . . . , T}.

4.1. Learning the First Task

We first extend the model in (3) to incorpo-
rate a prior over the hyperparameters p(✓) and
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choose the corresponding variational posterior
q1(f, ✓) = p (f 6=u1 | u1, ✓) q(u1)q1(✓). While the
correlation between u and ✓ is ignored in the approximate
posterior, the dependencies between ✓ and the remaining
function values are retained through the conditional prior
term. Learning the first task using D

(1) is thus a direct
extension of the sparse variational approach in Section 3,
leading to the following bound,

F(q1) =
N1X

i=1

Eq1(f,✓)

h
log p

⇣
y(1)i | f,x(1)

i

⌘i

�KL [q1(✓) || p(✓)]

� Eq1(✓) [KL [q(u1) || p(u1 | ✓)]] .

(5)

We stress that quantifying uncertainty in hyperparameters
through q1(✓) is important for continual learning, as sup-
ported by our ablation studies in Section 5.3.

4.2. Generalized Continual Variational Lower Bound

Instead of reusing and updating the same set of inducing
inputs and outputs for all subsequent tasks as in Bui et al.
(2017a), we introduce a separate set of inducing inputs and
outputs, {Zt,ut}, for each task. Consider the t-th task and
t > 1, using notation in a spirit similar to (3), the function
can be split into, f = {f 6=ut

,u<t,ut} that describes a de-
composition in terms of all past inducing outputs u<t and
current inducing outputs ut. This leads to an approximate
running joint for D(t) conditioned on past data as,

p(y(t), f, ✓ | X
(t),D(<t)) ⇡

NtY

i=1

p(y(t)i | f,x(t)
i )

p(f 6=ut
| ut, ✓)

p(ut | Zt,u<t, ✓)

q(u<t | Z<t, ✓)

qt�1(✓) .

(6)

We mirror the form of the prior in the approximate pos-
terior, in a similar fashion to the first task, to obtain the
following variational distribution,

qt(f, ✓) = p(f 6=ut
| ut, ✓)q(ut | Zt,u<t,Z<t, ✓)

q(u<t | Z<t, ✓)qt(✓) .
(7)

This structured form leads to the cancellation of
p(f 6=ut

| ut, ✓) and q(u<t | Z<t, ✓) to arrive at the gen-
eralized continual variational lower bound,

F(qt) =
NtX

i=1

Eqt(f,✓)

h
log p(y(t)i | f,x(t)

i )
i

�KL [qt(✓) || qt�1(✓)]

� Eqt(✓)q(u<t|Z<t,✓) [Dt] ,

(8)

where,

Dt = KL [q(ut | Zt,u<t,Z<t, ✓) || p(ut | Zt,u<t,Z<t, ✓)] .

We emphasize that any dependence on ut is accompanied
by corresponding Zt as presented in (1) and (2), but may
often keep it implicit for concise notation.

As our learning objective, the maximization of (8) takes
a natural interpretation — we maximize the likelihood of
current data D

(t), subject to a KL-regularization that bal-
ances past posterior and new data. The regularization
term involves hyperparameters and current inducing out-
puts. In practice, tempering the hyperparameter distribu-
tion may prove helpful under misspecified models (Wenzel
et al., 2020; Wilson & Izmailov, 2020), which is equiva-
lent to scaling KL [qt(✓) || qt�1(✓)] by a positive scalar �.
The new inducing points {Zt,ut} are used to explain new
parts of the data space while the old ones {Z<t,u<t} aim
to preserve past experience, as demonstrated in Figure 1.
Next, we develop this intuition further, and experimentally
demonstrate in Section 5.1.

4.3. Distributional Choices

We now detail the parametrizations for all aforementioned
distributions. All prior-related densities, i.e. p(u1 | ✓),
p(ut | u<t, ✓), and p(fut

| X
(t),ut, ✓) can be com-

puted by invoking the GP prior. All experiments use
the Exponentiated Quadratic kernel such that ✓ includes
the log-ARD lengthscales and a log-scale factor (see Ap-
pendix C.1). The prior over the log-hyperparameters for
the first task p(✓) is assumed to be a standard Normal,
N (✓;0, I).

The variational distribution of the log-hyperparameters is
assumed to be a mean-field Gaussian, i.e. parametrized
by a diagonal covariance, qt(✓) = N (✓;µt,diag(�t)).
These choices allow for closed-form KL computations
in (5) and (8). The variational distribution over in-
ducing outputs for the first task is parametrized as
q(u1) = N (u1;m1,⌃1) for a set of M1 inducing outputs,
as standard in sparse variational GPs using mean m1 and
covariance matrix ⌃1.

One of our key contributions is an auto-regressive
parametrization for the variational distribution given
by q(ut | ✓) = q(u1)

Qt
j=2 q(uj | u<j , ✓), where

q(ut | u<t, ✓) = N (ut;KZt,Z<tK
�1
Z<t,Z<t

u<t +mt,⌃t)
relies on Mt inducing variables for all subsequent tasks
t > 1. As a consequence of this structure, Dt becomes
independent of u<t and avoids sampling variance intro-
duced by samples from q(u<t | Z<t, ✓). A simplifying
trick to compute q(u<t | ✓) using conditional Gaussian
identities (see Appendix C.3). We further note that (i) the
marginal density for inducing outputs ut when t > 1 is
non-Gaussian, and (ii) even though Zt,mt,⌃t are kept
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fixed after training on the t-th task, the marginal density
q(ut) can still change over time due to the change in q(✓).

Next, Section 4.4 provide two fruitful connections of the
proposed structured variational approximation to existing
literature.

4.4. Connections to Expectation Propagation and
Orthogonal Inducing Points

Structured EP Factor Approximation leads to an Auto-
regressive Approximate Posterior For the approximate
running joint in (6), we can introduce an approximation to
the posterior as,

qt(f, ✓) /

"
NtY

i=1

g
(t)
i (✓)h(t)

i (ut)

#
p(f 6=ut

| ut, ✓)

q(u<t | ✓)p(ut | u<t, ✓)qt�1(✓),

(9)

where the difficult likelihood term,
QNt

i=1 p(y
(t)
i | f,x(t)

i ),
is approximated by

QNt

i=1 g
(t)
i (✓)h(t)

i (ut) such that gi

and hi are the approximate contributions of each likeli-
hood term to the posterior. Expectation Propagation (EP)
(Minka, 2001) then proceeds by repeating the following
steps to convergence: i) remove the approximate contri-
butions gi and hi from the posterior to form the cavity
for i-th datum, ii) merge the cavity with p(y(t)i | f,x(t)

i ) to
form the tilted distribution p̃i, iii) minimize the divergence
KL[p̃i || qt] to find a new approximate posterior, and iv)
obtain the new approximate factors gi and hi by removing
the cavity from the new posterior.

We are, however, not interested in running EP, but only in
the form of the approximate posterior induced by EP. Merg-
ing relevant terms in the approximate posterior as

qt(f, ✓) / p(f 6=ut
| ut, ✓)

q(ut | u<t, ✓)q(u<t | ✓)

qt(✓) ,

(10)

where,

qt(✓) / qt�1(✓)
NtY

i=1

g(t)
i (✓) ,

q(ut | u<t, ✓) / p(ut | u<t, ✓)
NtY

i=1

h(t)
i (ut) .

We find that the auto-regressive factor is
given by p(ut | u<t, ✓) = N (ut;Atu<t,Ct),
where we define At , KZt,Z<tK

�1
Z<t,Z<t

, and
Ct , KZt,Zt �KZt,Z<tK

�1
Z<t,Z<t

KZ<t,Zt .

Now, consider a Gaussian factor approximation
Ht(ut) =

QNt

i=1 ht(ut) = N (ut;µ,⌃). By multi-

plying Ht(ut) with p(ut | u<t, ✓) and renormaliz-
ing, we arrive at q(ut | u<t, ✓) = N (ut; µ̃, ⌃̃), where
e⌃�1 = ⌃�1 +C

�1
t and e⌃�1µ̃ = ⌃�1µ+C

�1
t Atu<t.

The conditional posterior mean can be reformu-
lated as eµ = Atu<t + (I + ⌃C�1

t )�1(µ�Atu<t),
so that we can parameterize the conditional pos-
terior instead of the factor Ht(ut), giving us
q(ut | u<t, ✓) = N (ut;Atu<t +m,⌃). This is equiva-
lent to our auto-regressive parametrization.

Equivalence to Orthogonal Inducing Points Our auto-
regressive parametrization is also exactly equivalent to the
orthogonal inducing points formulation when T = 2 (Shi
et al., 2020, §3.3). A variational approximation over two
set of orthogonal inducing points, u and v, is presented as

q(u,v) = N

✓
u

v

�
;


mu

KvuK
�1
uumu

�
,⌃

◆
, (11)

where,

⌃ ,


⌃u ⌃uK
�1
uuKuv

KvuK
�1
vu⌃u ⌃v +KvuK

�1
uu⌃uK

�1
uuKuv

�
.

By appealing to conditional Gaussian identities, the
joint can be factored as q(u,v) = q(u)q(v | u),
such that q(u) = N (u;mu,⌃u), and
q(v | u) = N (v;KvuK

�1
uuu+mv,⌃v). This con-

ditional is exactly equivalent to our proposal when there
are two tasks, i.e. u , u1 and v , u2. Intuitively, the
second set of inducing variables u2 attempt to explain the
data space that is not well-explained by the first set u1. Shi
et al. (2020) briefly discussed using more than two sets of
inducing points for a fixed dataset but did not investigate
further due to implementation complexity and the potential
small gain beyond two sets. Unlike the batch setting of Shi
et al. (2020), our work extends the idea of using many sets
of such inducing points to the continual learning setting.

5. Experiments
Through our experiments, we highlight the qualitative
characteristics of the derived generalized learning objec-
tive (8), and provide evidence for the competitiveness of
VAR-GPs compared to our main baseline Improved Vari-
ational Continual Learning (VCL) (Nguyen et al., 2018;
Swaroop et al., 2019), among others. A thorough ab-
lation study demonstrates the efficacy of our modeling
choices. The full reference implementation of VAR-GPs
in PyTorch (Paszke et al., 2019) in publicly available at
u.perhapsbay.es/vargp-code.

To mimic a real continual learning setting, the model only
observes D(t) for training and is tested on all the tasks seen

https://u.perhapsbay.es/vargp-code
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Figure 2. A synthetic toy dataset used for the four-way classifica-
tion problem in Figure 1.

so far using D
(t). We track validation accuracy on a sub-

set of the training set for early stopping. To optimize both
variational objectives (5) and (8), we use a mini-batch size
of 512 and 3 samples from variational distribution with the
Yogi optimizer (Zaheer et al., 2018). Predictive distribu-
tions are estimated via 10 Monte-Carlo samples. The train-
ing for the t-th task is summarized in Algorithm 1.

Algorithm 1 VAR-GP per-task training
Input: Learning rate ⌘, Batch size B, Number of induc-
ing points M , Maximum epochs E, Task dataset D(t),
hyperparameters: KL tempering factor �, Early stopping
patience of K epochs and tolerance �
Output: Per-task variational approximations for kernel
hyper-parameters ✓ and inducing outputs ut, and induc-
ing inputs Zt

Initialize Zt 2 RM⇥D
⇢ X

(t)
2 RNt⇥D

for e in 1 . . . E do
for {xi, yi}Bi=1 ⇢ D

(t) do
Compute F(qt) — using (5) for the first task, and
(8) for all subsequent ones.
Update ✓, mt, ⌃t and Zt with learning rate ⌘ and
tempering factor �

end for
Compute validation accuracy Ae

if e > K and |Ae �Ae�K | < � then
break

end if
end for

All covariance matrices in the variational distributions are
modeled as a lower triangular Cholesky factors, described
in Appendix C.2, initialized at an identity matrix for nu-
merical stability, with diagonals constrained to be positive
during optimization using a softplus transform. Fur-
ther, as described in Appendix C.1, the kernel parameters ✓,
including lengthscales and scale factors modeled as log-
transforms to maintain positivity. Appendix D.1 lists the

search space for all hyper-parameters. Results report the
mean and one standard deviation of five independent trials.
Next, we describe the datasets used for experiments.

Synthetic Classification Dataset Visualized in Figure 2,
we use a synthetic 2-D dataset with four classes in the
range x, y 2 [�3., 3.] for qualitative assessments. We ob-
serve classes in pairs 0/1 (Task 0) and 2/3 (Task 1), each
only once. We do not use any tempering for this dataset,
i.e. � = 1.

Split MNIST Following Zenke et al. (2017), we consider
the full 10-way classification task at each time step but re-
ceive a dataset D(t) of only a subset of MNIST digits in the
sequence 0/1, 2/3, 4/5, 6/7, and 8/9. 10000 training sam-
ples are cumulatively set aside for validation set across all
tasks. We allocate 60 inducing points for each task, with a
learning rate of 0.003, and � = 10.0. We remind the reader
that unlike prior work which uses a multi-head model with
task information, we only use a single-head to report the
classification test accuracy, making the benchmark consid-
erably harder and more representative of reality.

Permuted MNIST In this benchmark, we receive a dataset
D

(t) of MNIST digits at each time step t, such that the
pixels undergo an unknown but fixed permutation. 10000
samples are set aside for validation. We allocate 100 in-
ducing points for each task, with a learning rate of 0.0037,
and � = 1.64. The first task is fixed to be the unpermuted
MNIST to provide an upper bound on the performance of
subsequent tasks. While prior work (Zenke et al., 2017;
Kirkpatrick et al., 2017) uses this benchmark as an indica-
tor of representational capacity of neural networks, we use
this to test performance under distributional shift.

5.1. Qualitative Analysis

Before presenting benchmark results, we seek to intuitively
understand how VAR-GPs learn and avoid catastrophic for-
getting. By modeling the cross-task covariances through
Dt in (8), we are able to bias the learning such that un-
der the given budget of inducing points, VAR-GPs retain
information about the previous tasks. This is exemplified
in Figure 1. Observing predictive density plots for Classes
0 and 1 after “Task 1”, we notice that the high density re-
gions from “Task 0” are preserved by VAR-GPs, whereas
VCL suffers from large variations in the predictions.

This characteristic is not restricted to the toy dataset. Using
mean predictive entropy estimates to quantify uncertainty
over the test set, we visualize the degree of forgetting for
benchmark datasets in Figure 3. Even as tasks progress,
VAR-GPs demonstrate information preservation from old
tasks by keeping entropy low. In contrast, often being over-
confident in predictions, VCL keeps entropy low only for
the old tasks at the expense of new ones.
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(a) Split MNIST

(b) Permuted MNIST

Figure 3. As we continually train on tasks (shown along the y-
axis), we evaluate the mean predictive entropy on the test set for
all tasks (shown along the x-axis). In other words, the upper trian-
gular region shows tasks which are not yet seen during training.
The values are normalized by the entropy of a random ten-way
classifier, log 10. Brighter regions correspond to a higher entropy,
i.e. larger predictive uncertainty. (Top) For Split MNIST, we ob-
serve that VAR-GPs lead to lower forgetting rates through lower
predictive entropy in the lower triangular regions, and higher un-
certainties in upper triangular regions. VCL (Swaroop et al.,
2019), on the other hand fails to improve much on subsequent
tasks. (Bottom) For Permuted MNIST, we see that while both
VAR-GPs and VCL maintain reasonably low catastrophic forget-
ting on the tasks seen so far, VCL tends to be overconfident on
unseen tasks, i.e. low predictive entropy in the upper triangular
region.

Finally, an inspection of the optimized inducing points re-
veals that VAR-GPs tend to focus on covering the regions
of the current task, as one would naturally expect. Figure 4
showcases this behavior for Split MNIST. We anticipate
such space covering behavior from our learning objective
(8) due to the cross-correlations modeled in the regulariza-
tion term Dt.

5.2. Benchmark Results

With a qualitative picture of how VAR-GPs learn favorably
for sequential tasks in continual learning, we validate its
performance on the benchmark datasets of Split MNIST
and Permuted MNIST.

Figure 4. We visualize the inducing points learned after each task
in Split MNIST, progressing from left to right. This figure reveals
that VAR-GPs spread inducing points to cover the input space for
each task.

Figure 5 shows how the cumulative performance across all
tasks seen so far evolves as the number of tasks increase.
VAR-GPs perform favorably by performing consistently
better throughout. One of the most competitive methods,
VCL and its variants involving episodic memory through
coresets (Swaroop et al., 2019) tend to deteriorate much
faster, hinting at catastrophic forgetting. Quantitatively, we
find the final mean test accuracy achieved by VAR-GPs af-
ter training on five Split MNIST tasks is 90.57%, which is
significantly better than the best performing VCL variant at
81.90%. Similarly, VAR-GPs achieve a mean test accuracy
of 97.2% after training on ten tasks of Permuted MNIST, as
compared to 95.06% by the best variant of VCL. Compar-
isons against other continual learning algorithms are sum-
marized in Table 1.

(a) Split MNIST (b) Permuted MNIST

Figure 5. Comparing VAR-GPs to variants of VCL (Nguyen
et al., 2018; Swaroop et al., 2019) as we see more tasks (shown
along the X-axis). We compute the average test accuracy (show
along Y-axis) across all tasks seen so far, including the current
one. The plots show mean and one standard deviation across
five independent trials. VAR-GPs preserve information from old
tasks, avoid catastrophic forgetting and consequently perform
much better on newer tasks without compromising on old ones.
See Table 1, for all numerical results.

5.3. Ablations

Finally, we validate the specific modeling choices in VAR-
GPs via a thorough ablation study.
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Table 1. The final average test accuracy (in %) after sequential
training on benchmark dataset tasks —five for Split MNIST and
ten for Permuted MNIST are noted below. We provide the mean
and one standard deviation (where available) over five indepen-
dent trials. ?Split MNIST results for SI (Zenke et al., 2017) and
EWC (Kirkpatrick et al., 2017) are taken from VCL (Swaroop
et al., 2019), however, are not directly comparable as they use a
multi-head setup making evaluation easier; CS = coreset.; [100]
and [100, 100] represent hidden layer sizes of the neural networks.

Method Split MNIST Permuted MNIST
SI 98.9? 86.02
EWC 63.1? 84.11

VCL, [100] 19.90 ± 0.14 82.94 ± 0.85
+ CS(50) 76.21 ± 2.02 85.80 ± 0.41
+ CS(100) 81.90 ± 1.64 86.45 ± 0.26

VCL, [100, 100] 19.91 ± 7.79 94.31 ± 1.05
+ CS(50) 71.89 ± 5.06 95.43 ± 0.39
+ CS(100) 75.54 ± 1.06 95.06 ± 0.22

VAR-GP (ours) 90.57 ± 1.06 97.20 ± 0.08
+ Block Diag. 78.64 ± 1.41 96.31 ± 0.42
+ MLE Hypers 10.09 ± 0.40 10.07 ± 0.15
+ Global 39.31 ± 0.28 46.02 ± 1.09

Block-Diagonal Variational Distribution
Instead of the auto-regressive posterior
q(ut | u<t, ✓) = N (ut;KZt,Z<tK

�1
Z<t,Z<t

u<t +mt,⌃t),
we choose a simpler variational distribution given by
q0(ut | u<t, ✓) = N (ut;mt,⌃t), keeping everything else
the same. Effectively, removing the conditioning induces
a block diagonal structure in the full covariance matrix
across the inducing variables where each block represents
the covariance among the inducing points for a given task.
This also decouples the inducing points and the hyperpa-
rameters in the approximate posterior. We hypothesize
that this is detrimental to performance. Figure 6 shows
that the long-term continual learning performance tends to
deteriorate faster, hinting at greater catastrophic forgetting.

Global Inducing Points In an alternative model,
we completely do away with the auto-regressive na-
ture of the variational distribution and just rely on
a single set of inducing points at each time step
qt(f, ✓) = qt(✓)p(f 6=ut | ut, ✓)q(ut). Bui et al. (2017a)
rely on this variational distribution for the inducing points
and an MLE estimate of the hyperparameters for streaming
regression tasks. See Appendix B.1 for precise modeling
details and derivations. The experimental evidence in Fig-
ure 6, however, shows that such variational approximation
is poor for large scale continual classification tasks.

MLE Hyperparameters Quantifying uncertainty about
the hyperparameters considerably helps the model to per-
form well across tasks without a detrimental effect on the
old ones. In this section, we validate this hypothesis by
simply switching off the KL-divergence term for the hyper-
parameters in both (5) and (8). Instead, we rely on a point
estimate of the hyperparameters and use the maximum like-
lihood estimate at each step. The stark performance com-
parison is shown in Figure 6. The hyper-parameters are
stuck in a local minimum and virtually never recover for
subsequent tasks.

Retraining Old Inducing Points We also investigate a
variant of VAR-GP named Re-VAR-GP where unlike ear-
lier, we retrain the old inducing points Z<t. This changes
the form of the variational lower bound. The precise details
and implications are discussed in Appendix B.2, owing to
which we do not pursue this approach further.

(a) Split MNIST (b) Permuted MNIST

Figure 6. A thorough ablation study reveals the significance of
our modeling choices. Evidently, VAR-GPs are able to sustain
long-term continual learning performance than any other variant.
See Section 5.3 for a detailed description of the ablations con-
ducted.

6. Discussion
In this work, we develop VAR-GPs, a principled Bayesian
inference scheme for continual learning. Using a sparse in-
ducing point approximation, we propose a structured varia-
tional approximation to the true posterior for Gaussian pro-
cesses, which reveals two fruitful connections to Expecta-
tion Propagation and Orthogonal Inducing Points. The re-
sulting lower bound provides a natural learning objective to
update the belief over underlying functions as new data ar-
rives. A qualitative characterization of how VAR-GPs learn
is presented, backed by strong empirical results on modern
continual learning benchmarks. Further, a thorough abla-
tion study establishes the efficacy of modeling choices.

In its current form, the number of inducing points grows
linearly in the number of tasks. Consequently, the infer-
ence grows cubic in the number of tasks. This computa-
tional complexity limits the scaling of VAR-GPs to only a
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moderate number of continual learning tasks. Nevertheless,
accommodating a post-hoc information distillation proce-
dure in the learning process can prove helpful for scalabil-
ity, and remains an open research problem. While Gaussian
processes provide a flexible approach towards priors in the
functional space, the representational power of VAR-GPs
can be improved by the use of deep kernel learning. This,
however, leads to new regularization challenges to be tack-
led (see Appendix B.3). Contemporary approaches relying
on a memory buffer are also amenable to the proposed in-
ference scheme, since the inducing points provide an auto-
mated data selection procedure. Finally, model-based rein-
forcement learning, where dataset shift is unavoidable, is a
promising application space for VAR-GPs.

Through VAR-GPs, we remain optimistic that Gaussian
processes provide an effective foundation for predictions
under uncertainty in continual learning. More broadly,
the characteristics highlighted by our learning objective (8)
serve as a principled starting point to guide future research
in continual learning objectives.
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