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Abstract

Byzantine robustness has received significant at-
tention recently given its importance for dis-
tributed and federated learning. In spite of this,
we identify severe flaws in existing algorithms
even when the data across the participants is
identically distributed. First, we show realistic
examples where current state of the art robust
aggregation rules fail to converge even in the
absence of any Byzantine attackers. Secondly,
we prove that even if the aggregation rules may
succeed in limiting the influence of the attack-
ers in a single round, the attackers can couple
their attacks across time eventually leading to di-
vergence. To address these issues, we present
two surprisingly simple strategies: a new robust
iterative clipping procedure, and incorporating
worker momentum to overcome time-coupled at-
tacks. This is the first provably robust method for
the standard stochastic optimization setting. Our
code is open sourced at this link.

1. Introduction

“Those who cannot remember the past are
condemned to repeat it.” — George Santayana.

Growing sizes of datasets as well as concerns over data
ownership, security, and privacy have lead to emergence
of new machine learning paradigms such as distributed and
federated learning (Kairouz et al., 2019). In both of these
settings, a central coordinator orchestrates many worker
nodes in order to train a model over data which remains de-
centralized across the workers. While this decentralization
improves scalability security and privacy, it also opens up
the training process to manipulation by the workers (Lam-
port et al., 2019). These workers may be actively malicious

"EPFL, Switzerland. Correspondence to: Sai Praneeth Karim-
ireddy <sai.karimireddy @epfl.ch>.

Proceedings of the 38" International Conference on Machine

Learning, PMLR 139, 2021. Copyright 2021 by the author(s).
https://github.com/epfml/

byzantine-robust-optimizer

trying to derail the process, or might simply be malfunc-
tioning and hence sending arbitrary messages. Ensuring
that our training procedure is robust to a small fraction of
such potentially malicious agents is termed Byzantine ro-
bust learning and is the focus of the current work.

Given the importance of this problem, it has received sig-
nificant attention from the community with early works in-
cluding (Feng et al., 2014; Blanchard et al., 2017; Chen
et al., 2017; Yin et al., 2018). Most of these approaches
replace the averaging step of distributed or federated SGD
with a robust aggregation rule such as the median. How-
ever, a closer inspection reveals that these procedures are
quite brittle: we show that there exist realistic scenarios
where they fail to converge, even if there are no Byzantine
attackers and the data distribution is identical across the
workers (i.i.d.). This turns out to be because on their exces-
sive sensitivity to the distribution of the noise in the gradi-
ents. The impractical assumptions made by these methods
are often violated in practice, and lead to the failure of these
aggregation rules.

Further, there have been recent state of the art attacks
(Baruch et al., 2019; Xie et al., 2020) which empirically
demonstrate a second source of failure. They show that
even when current aggregation rules may succeed in limit-
ing the influence of the attackers in any single round, they
may still diverge when run for multiple rounds. We prove
that this is inevitable for a wide class of methods—any ag-
gregation rule which ignores history can be made to even-
tually diverge. This is accomplished by using the inherent
noise in the gradients to mask small perturbations which are
undetectable in a single round, but accumulate over time.

Finally, we show how to circumvent both the issues out-
lines above. We first describe a simple new aggregator
based on iterative centered clipping which is much more
robust to the distribution of the gradient noise. This ag-
gregator is especially interesting since, unlike most preced-
ing methods, it is very scalable requiring only O(n) com-
putation and communication per round. Further, it is also
compatible with other strategies such as asynchronous up-
dates (Chen et al., 2016) and secure aggregation (Bonawitz
et al., 2017), both of which are crucial for real world ap-
plications. Secondly, we show that the time coupled at-
tacks can easily be overcome by using worker momentum.


https://github.com/epfml/byzantine-robust-optimizer
https://github.com/epfml/byzantine-robust-optimizer
https://github.com/epfml/byzantine-robust-optimizer

Learning from History for Byzantine Robust Optimization

Momentum averages the updates of each worker over time,
reducing the variance of the good workers and exposing
the time-coupled perturbations. We prove that our meth-
ods obtain optimal rates, and our theory also sheds light on
the role of momentum in decreasing variance and building
resilience to Byzantine workers.

Contributions. Our main results are summarized below.

* We show that most state of the art robust aggregators
require strong assumptions and can fail in real settings
even in the complete absence of Byzantine workers.

* We prove a strong lower bound showing that any op-
timization procedure which does not use history will
diverge in the presence of time coupled attacks.

* We propose a simple and efficient aggregation rule
based on iterative clipping and prove its performance
under standard assumptions.

* We show that using momentum successfully defends
against time-coupled attacks and provably converges
when combined with any Byzantine robust aggregator.

e We incorporate the recent momentum based variance
reduction (MVR) with Byzantine aggregators to obtain
optimal rates for robust non-convex optimization.

e We perform extensive numerical experiments validat-
ing our techniques and results.

Setup. Let us formalize the robust non-convex stochas-
tic optimization problem in the presence of a ¢ fraction of
Byzantine workers.

Definition A (§-robust non-convex optimization). Given
some loss function f(x), € > 0, and access to n workers we
want to find a stationary point x such that E||V f(z)||? <
€. The optimization proceeds in rounds where in every
round, each worker i € [n] can compute a stochastic gra-
dient g;(y) at any parameter y in parallel. Then, each
worker i € [n] sends some message M, to the server.
The server utilizes these messages to update the parame-
ters and proceeds to the next round. During this process,
we will assume that

* The function f is L-smooth i.e. it satisfies ||V f(x) —
Vil < Lljx — y|| for any z,y, and is bounded
from below by f*.

* Each worker i has access to an independent and unbi-
ased stochastic gradient with E[g;(x)|x] = V f(x) and
variance bounded by o?, E||g;(xz) — V f(x)||* < o2

* Of the n workers, at least (1 — §)n workers are good
(denoted by G) and will follow the protocol faithfully.
The rest of the bad or Byzantine workers (denoted by
B) may act maliciously and can communicate arbitrary
messages to the server.

¢ These Byzantine workers are assumed to omniscient i.e.
they have access to the computations made by the rest
of the good workers. However, we assume that this set

of Byzantine workers BB remains fixed throughout the

optimization process.
2. Related work
Robust aggregators. Distributed algorithms in the pres-

ence of Byzantine agents has a long history (Lamport et al.,
2019) and is becoming increasingly important in mod-
ern distribution and federated machine learning (Kairouz
et al.,, 2019). Most solutions involve replacing the av-
eraging of the updates from the different machines with
more robust aggregation rules such as coordinate-wise me-
dian method (Yin et al., 2018), geometric median meth-
ods (Blanchard et al., 2017; Chen et al., 2017; Pillutla et al.,
2019), majority voting (Bernstein et al., 2018; Jin et al.,
2020) etc. There have also been attempts to use recent
breakthroughs in robust high-dimensional aggregators (Di-
akonikolas et al., 2018; Su & Xu, 2018; El-Mhamdi &
Guerraoui, 2019; Data et al., 2019; Data & Diggavi, 2020).
However, these latter procedures are computationally ex-
pensive (quadratic in dimensions per round) and further it
is unclear if the improved guarantees for mean estimation
translate to improved performance in the distributed ma-
chine learning settings. Finally, for most of the above ap-
proaches, convergence guarantees when provided rely on
using an extremely large batch size or strong unrealistic as-
sumptions making them practically irrelevant.

Other more heuristic approaches propose to use a penal-
ization or reweighting of the updates based on reputations
(Peng & Ling, 2020; Li et al., 2019; Fu et al., 2019; Regatti
& Gupta, 2020; Rodriguez-Barroso et al., 2020). These
schemes however need to trust that all workers report cor-
rect statistics. In such settings where we have full control
over the workers (e.g. within a datacenter) coding theory
based solutions which can correct for the mistakes have
also been proposed (Chen et al., 2018; Rajput et al., 2019;
Gupta & Vaidya, 2019; Konstantinidis & Ramamoorthy,
2020; Data et al., 2018; 2019). These however are not ap-
plicable in federated learning where the data is decentral-
ized across untrusted workers.

Time coupled attacks and defenses. Recently, two
state-of-the-art attacks have been proposed which show that
the state of the art Byzantine aggregation rules can be eas-
ily circumvented (Baruch et al., 2019; Xie et al., 2020).
The key insight is that while the robust aggregation rules
may ensure that the influence of the Byzantine workers in
any single round is limited, the attackers can couple their
attacks across the rounds. This way, over many training
rounds the attacker is able to move weights significantly
away from the desired direction and thus achieve the goal
of lowering the model quality. Defending against time-
coupled attacks and showing provable guarantees is one of
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the main concerns of this work.

It is clear that time-coupled attacks need time-coupled de-
fenses. Closest to our work is that of Alistarh et al. (2018)
who use martingale concentration across the rounds to give
optimal Byzantine robust algorithms for convex functions.
However, this algorithm is inherently not applicable to
more general non-convex functions. The recent indepen-
dent work of Allen-Zhu et al. (2021) extend the method
of Alistarh et al. (2018) to non-convex functions as well.
However, they assume that the noise in stochastic gradients
is bounded almost surely instead of the more standard as-
sumption that only the variance is bounded. Theoretically,
such strong assumptions are unlikely to hold (Zhang et al.,
2019) and even Gaussian noise is excluded. Further, the
lower-bounds of (Arjevani et al., 2019) no longer apply,
and thus their algorithm may be sub-optimal. Practically,
their algorithm removes suspected workers either perma-
nently (a decision of high risk), or resets the list of suspects
at each window boundary (which is sensitive to the choice
of hyperparameters). Having said that, (Allen-Zhu et al.,
2021) prove convergence to a local minimum instead of to a
saddle point as we do here. Finally, in another independent
work El-Mhamdi et al. (2021) empirically observe that us-
ing momentum may be beneficial, though they provide no
theoretical guarantees.

Other concerns. To deploy robust learning for real world
applications, many other issues such as data heterogeneity
become important (Kairouz et al., 2019; Karimireddy et al.,
2020b). Robust learning algorithms which assume worker
data are i.i.d. may fail in the federated learning setting (He
et al., 2020a). Numerous variations have been proposed
which can handle non-iid data with varying degrees of suc-
cess (Li et al., 2019; Ghosh et al., 2019; Chen et al., 2019;
Peng et al., 2020; Data & Diggavi, 2020; He et al., 2020a;
El-Mhamdi et al., 2020; Dong et al., 2020). Further, com-
bining robustness with notions of privacy and security is
also a crucial and challenging problem (He et al., 2020b; So
etal., 2020a;b; Jin et al., 2020). Such heterogeneity is espe-
cially challenging and can lead to backdoor attacks (which
are orthogonal to the training attacks discussed here) (Bag-
dasaryan et al., 2019; Sun et al., 2019; Wang et al., 2020)
and remains an open challenge.

3. Brittleness of existing aggregation rules

In this section, we study the robustness of existing popular
Byzantine aggregation rules. Unfortunately, we come to a
surprising conclusion—most state of the art aggregators re-
quire strong non-realistic restrictions on the noise distribu-
tion. We show this frequently does not hold in practice, and
present counter-examples where these aggregators fail even
in the complete absence of Byzantine workers. State of
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Figure 1: Failure of existing methods on imbalanced
MNIST dataset. Only the head classes (class 1 and 2 here)
are learnt, and the rest 8 classes are ignored. See Sec. 7.1.

the art aggregators such as Krum (Blanchard et al., 2017),
coordinate-wise median (CW) (Yin et al., 2018),

RFA (Pillutla et al., 2019), Bulyan (Mhamdi et al., 2018),
etc. all generalize the scalar notion of the median to
higher dimensions and are hence exhibit different ways of
‘middle-seeking’. At a high level, these schemes require
the noise distribution to be unimodal and highly concen-
trated, discarding any gradients from the tail of the distri-
bution too aggressively as ‘outliers’. We give a brief sum-
mary of these rules below. We use [v]; to indicate the jth
coordinate of vector v.

Coordinate-wise median:

[CM(z1, . ..,z,)]; = median([z1];, . .., [T5];) -

RFA (robust federated averaging) aka geometric median:

n
RFA(z1,...,x,) = argminZHv — ;]2
v =1

Trimmed Mean: For each coordinate j, compute sorting

II; which sorts the coordinate values. Compute the average

after excluding (‘trimming’) én largest and smallest values.
n—on

1
L &)]j = n—2n z [, ()], -

i=on

[TM($17 ..

Krum: Krum tries to select a point x; which is closest
to the mean after excluding dn + 2 furthest away points.
Suppose that S C [n] of size at least (n — dn — 2). Then,

Krum(zy,...,x,) = arg minmsin g 2 — ;|13
xT; .
JjES

Counterexample 1. Let us pick n random variables +1
with uniform probability for some odd n. These variables
have mean 0. Since n is odd, Krum, CW, Bulyan all will
necessarily return either of £1. This remains true even if
we have infinite samples (large n), and if there are no cor-
ruptions. This simple examples illustrates the fragility of
such ‘middle-seekers’ to bimodal noise.
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Counterexample 2. Fig. | illustrates a more realistic ex-
ample where imbalanced MNIST dataset causes a similar
problem. Here, 0.5 fraction of data corresponds to class
1, 0.25 to class 2, and so on. The gradients over data of
the same class are much closer than those of a different
class. Hence, when we pick n i.i.d. gradients, most them
will belong to class 1 or 2 with very few belonging to the
rest. Thus, coordinate-wise median, geometric median and
Krum always select the gradient corresponding to classes
1 or 2, ensuring that we only optimize over these classes
ignoring the rest.

Counterexample 3. Middle-seekers can also fail

on continuous uni-modal distributions. Consider,
3r=% forx>1 E median

pla) = ' mean
0 0.W. !

ignored
This power-law distribution

has mean 1.5 and variance
0.75. However, since the dis-
tribution is skewed, its median
is 21/3 ~ 1.26 and is smaller
than the mean. This difference
persists even with infinite sam-
ples showing that with imbal-
anced (i.e. skewed) distribu-
tions, coordinate-wise median,
geometric median and Krum do not obtain the true opti-
mum. Empirical evidence suggests that such heavy-tailed
distributions abound in deep learning, making this setting
very relevant to practice (Zhang et al., 2019).

Figure 2: For fat-tailed
distributions, median
based aggregators
ignore the tail. This
bias remains even if we
have infinite samples.

Theorem I (Failure of ‘middle-seekers’). There exist sim-
ple convex stochastic optimization settings with bounded
variance where traditional distributed SGD converges but
coordinate-wise median, RFA, and Krum do not converge
to the optimum almost surely for any number of workers
and even if none of them are Byzantine.

Remark 1 (Practical usage). Theorem I notes that one must
be cautious while using median or Krum as aggregation
rules when we suspect that our data is multi-modal (typi-
cally occurs when using small batch sizes), or if we believe
our data to be heavy-tailed (typically occurs in imbalanced
datasets or language tasks). These aggregators may suffice
for standard image recognition tasks with large batch sizes
since the noise is nearly Gaussian (Zhang et al., 2019).

Median based aggregators have a long and rich history in
the field of robust statistics (Minsker et al., 2015). How-
ever, classically the focus of robust statistics has been to
design methods which can withstand a large fraction of
Byzantine workers (high break down point d,,,,) and not
result in infinities (Hubert et al., 2008). It was sufficient for
the output to be bounded, but the quality of the result was
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Figure 3: Failure of pegﬁcl)lclqzltion invariant algorithms on
CIFAR10 dataset with (Baruch et al., 2019) attack. Com-
paring to simple average with no attacker (dashed lines),
all robust aggregators (including centered clip) see a sig-
nificant drop in accuracy against time coupled attacks. See
Sec. 7.2.

not a concern. The counter examples in this section exactly
stem from this issue. We will later define a finer notion of
a robust statistic which accounts for both the quality of the
output as well as the breakdown point 6y, ..

4. Necessity of using history

Recent work (Baruch et al., 2019; Xie et al., 2020) has
shown a surprising second source vulnerability for most
currently popular robust aggregators. In this section we
take a closer look at their attack and use our observations to
make an even stronger claim—any aggregation rule which
is oblivious of the past cannot converge to the optimum and
retains a non-zero error even after infinite time.

The inner-product manipulation attack as defined by
(Baruch et al., 2019; Xie et al., 2020) is deceptively sim-
ple. Their attacks works by hiding small Byzantine pertur-
bations within the variance of the good gradients. Since we
only have access to noisy stochastic gradients, the aggrega-
tors fail to identify these perturbations. While this pertur-
bation is small in any single round, these can accumulate
over time. We formalize this argument into a lower bound
in Theorem III. We show that the key reason why this at-
tack works on algorithms such as CM, RFA, or Krum is
that they are oblivious and do not track information from
previous rounds. Thus, an attacker can couple the pertur-
bations across time eventually leading to divergence. This
is also demonstrated experimentally in Fig. 3.

Definition B (Permutation invariant algorithm). Suppose
we are given an instance of d-robust optimization problem
satisfying Definition A. Define the set of stochastic gradi-
ents computed by each of the n workers at some round t to
be [g1,t,---+Gnt). For a good worker i € G, these repre-
sent the true stochastic gradients whereas for a bad worker
J € B, these represent arbitrary vectors. The output of any
optimization algorithm ALG is a function of these gradi-
ents. A permutation-invariant algorithm is one which for
any set of permutations over t rounds {1, ..., m}, its out-



Learning from History for Byzantine Robust Optimization

put remains unchanged if we permute the gradients.

[gl,h "'agn,l]a
ALG

[Gri(1),15 -+ Gy (), 1)
= ALG

[gl,ta"'agn,t] [gm,(l),ta'“agﬂ't(n),t]

Remark 2 (Memoryless methods are permutation invari-
ant). Any algorithm which is ‘memoryless’ i.e. uses only
the computations resulting from current round is necessar-
ily permutation-invariant since the indices corresponding
to the stochastic gradient are meaningless. It is only when
these stochastic gradients are tracked over multiple rounds
(i.e. we use memory) do the indices carry information.

Theorem II (Failure of permutation-invariant methods).
Suppose we are given any permutation invariant algorithm
AGG as in Definition B, p > 0, § € [0,1], and n large
enough that én. > 4(1 + logt). Then, there exists a §-
robust . strongly-convex optimization problem satisfying
Definition A, such that the output ; of ALG after t rounds
necessarily has error

ELf(@0)] - fla) > 9(52) |

Nearly all currently popular aggregation rules, including
coordinate-wise median, trimmed mean (Yin et al., 2018),
Krum (Blanchard et al., 2017), Bulyan (Mhamdi et al.,
2018), RFA, geometric median (Ghosh et al., 2019), etc.
are permutation invariant and satisfy Definition B. Theo-
rem II proves a very startling result—all of them fail to
converge to the optimum even for strongly-convex prob-
lems. Further, as p decreases (the problem becomes less
strongly-convex), the error becomes unbounded.

Remark 3 (Fixed Byzantine workers). The failure of
permutation-invariant algorithms also illustrates the im-
portance of assuming that the indices of Byzantine workers
are fixed across rounds. If a different fraction of workers
are allowed to be Byzantine each round, then the lower
bound in Theorem II applies to all algorithms and con-
vergence is impossible. While it is indeed a valid concern
that Byzantine workers may pretend to be someone else (or
more generally perform Sybil attacks where they pretend
to be multiple workers), simple mechanisms such as pre-
registering all participants (perhaps using some identifica-
tion) can circumvent such attacks.

There are very few methods which are not permutation in-
variant and are not subject to our lower bound. Exam-
ples include Byzantine SGD (Alistarh et al., 2018) which
only works for convex problems, and some heuristic scor-
ing rules such as (Regatti & Gupta, 2020). There has also
been a recent independent work (Allen-Zhu et al., 2021)
which utilizes history, but they have strong requirements

on the noise (see Section 3 for why this might be an is-
sue) and are not compatible with our problem setting. See
Appendix G.3 for a more detailed comparison.

5. Robust robust aggregation

Past work on Byzantine robust methods have had wildly
varying assumptions making an unified comparison diffi-
cult. Perhaps more importantly, this lead to unanticipated
failures as we saw in Sec. 3. In this section, we attempt to
provide a standardized specification for an robust aggrega-
tor which we believe captures a wide variety of real world
behavior i.e. a robust aggregator which is robust to its as-
sumptions. We then design a simple and efficient clipping
based aggregator which satisfies this notion.

5.1. Anatomy of a robust aggregator

Suppose that we are given an aggregation rule AGG(---)
and n vectors {x1,...,x,}. Among the given n vectors,
let G C [n] be good (i.e. satisfy some closeness property),
and the rest are Byzantine (and hence can be arbitrary).
The ideal aggregator would return ‘?1' > jeg x; but this re-
quires exactly identifying the good workers, and hence may
not be possible. We will instead be satisfied if our aggrega-
tion rule approximates the ideal update up to some error.

Our notion of a robust aggregator is characterized by two
quantities: d,,,x which denotes the breakdown point, and a
constant ¢ which determines the quality of the solution. We
want an aggregator which has as large d,,,x and a small c.

Definition C ((0,,ax, ¢)-robust aggregator). Suppose that
Sfor some § < Omax < 0.5 we are given n random vectors
X1,...,&y suchthat a good subset G C [n] of size at least
|G| > (1 — d)n are independent with distance bounded as

Elle; —a|* < p°,

for any fixed i,j € G. Then, define * := ﬁ Ejeg ;.
The, the robust aggregation rule AGG(x1 , . . . , Ty, ) outputs
& such that, .
Elj& — &||* < cdp?,

where the expectation is over the random variables
{@i}ic[n) and randomness in the aggregation rule AGG.

The error in Definition C is of the order §p?. Thus, if § = 0
(no Byzantine workers), we recover the ideal average of the
workers exactly. Further, we recover the exact average @ if
p = 0 (no variance) since in this case all the good points are
identical and are trivial to identify if they are in the majority
(0 < dmax < 0.5). We demand that when the fraction of
Byzantine workers is less than the breakdown point dp,ax,
the error of the output degrades gracefully with 6.

However, the error remains positive (5p?) even with infi-
nite n and seems to indicate that having additional workers
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Algorithm 1 AGG - Centered Clipping

input: (my,...,m,), 7,v, L

1:

2: default: L = 1 and v = m (previous round aggreg.)
3: for each iteration/ =1,..., L do

4. ¢+ (m; —v) min(l, m)

5 vev+ %Zie[n] ci

6: end for

7: output: v

may not help. It turns out that this is unfortunately the price
to pay for not knowing the good subset and is unavoidable.
The following theorem is adapted from standard robust es-
timation lower bounds (e.g. see Lai et al. (2016)).

Theorem III (Limits of robustness). There exist a set of
n random vectors i ,...,x, Such that a good subset
G C [n] of size at least |G| > (1 — d)n is i.i.d. satisfy-
ing Ell@; — x;||* < p?, for any apriori fixed i, j € G . For
these vectors, any aggregation rule & = AGG(x1 ..., xy,)
necessarily has an error

Ell& — pl* > 6p*.
Further, the error can be unbounded (o) if 6 > %
This establishes Definition C as the tightest notion of a ro-
bust aggregation oracle possible.

5.2. Robust aggregation via centered clipping

Given that most existing aggregation rules fail to satisfy
Definition C, one may wonder if any such rule exists. We
propose the following iterative centered clipping (CC) rule:
starting from some point v, for [ > 0 compute

1 n
v :'vl—i—wa-—vl min (1
- " i:l( Z ) ( s — v

Remark 4 (Ease of implementation). The centered clip-
ping update is extremely simple to implement requiring
O(n) computation and communication per step similar to
coordinate-wise median. This is unlike more complicated
mechanisms such as Krum or Bulyan which require O(n?)
computation and are hence less scalable. Further, as we
will see later empirically, a single iteration of CC is of-
ten sufficient in practice. This means that the update can
be implemented in an asynchronous manner (Chen et al.,
2016), and is compatible with secure aggregation for fed-
erated learning (Bonawitz et al., 2017).

We can formalize the convergence of this procedure.

Theorem IV (Robustness of centered clipping). Suppose
that for § < 0.15 we are given n random vectors
X1,...,&, such that a good subset G C [n] of size at
least |G| > (1 — 0)n are independent with bounded as

Ellx;—x;||? < p? for any fixed i, j € G. Then, running CC
starting from any v for | steps with 77 = O(r*/5) satisfies

Ellv; — &||? < (6.456)'2E||vg — &||* + 13605p° .

Proof Sketch. Suppose that we are given {xi,...,@,}
with a subset of size at most dn are bad (denoted by 1),
and the rest are good (G). Consider the following simple
scenario where |z;||*> < p? almost surely for any i € G.
In such a case, a very simple aggregation rule exists: clip
all values to a radius p and then compute the average. All
the good vectors remain unchanged. The magnitude of a
clipped bad vector is at most p and since only a § of the
vectors are bad, they can move the center by at most pd
ensuring that our error is 62p?. This is even better than
Definition C, which only requires the error to be smaller
than §p?. Of course there were two aspects which over-
simplified our computations in the above discussion: i) we
measure the pair-wise distance ||x; — ;|| between good
workers instead of absolute norms, and ii) we do not have
an almost sure bound, but only in expectation. O

Corollary V. Starting from any vy with an initial error
estimate of E|lvg — Z||* < B2 running CC for | =
3110g(232/5p2) is a (Omax, C)-robust aggregator as per
Definition C with ¢ = 1360 and §nax = 0.15.

Further, if E||vo — Z||? < p? then a single step of CC is a
(Omax, €)-robust aggregator with the same values.

The above corollary proves that starting from any point vg
and running enough iterations of CC is guaranteed to pro-
vide a robust estimate. However, if we have a good starting
point, we can prove a much stronger statement—that a sin-
gle clipping step is sufficient to provide robustness. We will
use this latter part in designing an efficient robust optimiza-
tion scheme in the next section.

Note that we have not tried to optimize for the constants
in the theorem above—there is room for improvement in
bringing d.,,x closer to 0.5, as well as in reducing the value
of c. This may need a more careful analysis, or perhaps
even a new oracle. We leave such improvements for future.

With this, we have addressed the first stumbling block and
now have a robust aggregator. Next, we see how using mo-
mentum can defend against time-coupled attacks.

6. Robust optimization using momentum

In this section we will show that any Byzantine robust ag-
gregator satisfying Definition C can be combined with (lo-
cal) worker momentum, to obtain a Byzantine robust op-
timization algorithm which successfully defends against
time coupled attacks. Every time step ¢ > 1, the server
sends the workers parameters x;_; and each good worker
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Algorithm 2 Robustness using Momentum

1: input: x, n, 5, AGG

2: initialize: m; < 0 Vi € [n]

3. for eachroundt =1,... do

4:  server communicates x to workers

on worker i € G in parallel do
compute mini-batch gradient g; ()
compute m,; < (1 — B)gi(x) + fm;
communicate m; to server

end on worker

10:  aggregate m = AGG(my, ...

11: update x < x — nm

12: end for

LRI

;M)

i € G sends back m ; computed recursively as below start-
ing from mg; = 0

my; = (1—B)gi(xi—1) + Bymy—1,. (WORKER)

The workers communicate their momentum vector to the
server instead of the stochastic gradients directly since they
have a much smaller variance. Byzantine workers may
send arbitrary vectors to the server. The server then uses
a Byzantine-resilient aggregation rule AGG such as (CC)
and computes the update

myy = AGG(le gy mtm)

(SERVER)
Lt = L—1 — MMy -

Intuitively, using momentum with 3 = (1 — «) averages
the stochastic gradients of the workers over their past !/«
gradients. This results in a reduction of the variance of the
good workers by a factor « since their noise is uncoupled.
However, the variance of the time-coupled Byzantine per-
turbations does not reduce and becomes easy to detect.

6.1. Rate of convergence

Now we prove a rate of convergence of our Byzantine ag-
gregation algorithm.

Theorem VI (Byzantine robust SGDm). Suppose that
we are given a §-robust problem satisfying Def. A and
@ (Omax, C)-robust aggregation rule satisfying Def. C for
Omax > 0. Then, running WORKER update with step-sizes

(fl@o)—f)+3002

20LT o2 (%+c5> » 8L
rameter vy = 1 and ay = 8Lm,—1 for t > 2 satisfies

Ny = min<\/ ) and momentum pa-

T

1

= EIV (@) <
t=1

16\/‘W(10L(f(m0) — %) + 3cdo?)+

32L(f(xo) — f*)  200%(1 + cén)
T + nT '

Remark 5 (Convergence rate). The rate of convergence
in Theorem VI is asymptotically (ignoring constants and
higher order terms) of the order:

1 TEV N
7 LEIVI @ISy 7 (5 +).

First note that when § = 0 i.e. when there are no Byzan-
tine adversaries, we recover the optimal rate of \/(:TT which
linearly scales with the number of workers n. In the pres-
ence of a § fraction of adversaries, the rate has two terms:

the first term —~ which linearly scales with the number of
vnT

o/
T

tion of adversaries 0 but does not improve with increasing

workers. Similar phenomenon occurs in the classical ro-

bust mean estimation setting (Lai et al., 2016) and is un-

fortunately not possible to improve.

workers n, and a second which depends on the frac-

Our algorithm uses step-size 17 and momentum parameter

a = (1 — B) of the order of y/~* + 7. Here § rep-
resents the fraction of adversarial workers. When there
are very few bad workers with § = O(2), the momen-
tum and the step-size parameters can remain as in the non-
Byzantine case. As the number of adversaries increases, d
increases meaning we should use smaller learning rate and
larger momentum. Either when using linear scaling (Goyal
etal., 2017) or square-root scaling (Hoffer et al., 2017), we
need to scale both the learning-rate and momentum param-
eters as (% + 5) instead of the traditional % in the presence
of a d fraction of adversaries.

The above algorithm and convergence analysis crucially re-
lied on the low variance of the update from the workers us-
ing worker momentum. The very high momentum ensures
that the variance of the updates from the workers to the

o2 do?
\/ 77 + 7. Note that
this variance asymptotically goes to O with 7" and is sig-
nificantly smaller than the variance of the stochastic gradi-

ent o2. This way, the Byzantine adversaries have very little
lee-way to fool the aggregator.

server have a variance of the order

6.2. Improved convergence using MVR

Recently, a variation of the standard momentum, called
momentum based variance reduction or MVR, was pro-
posed by Tran-Dinh et al. (2020); Cutkosky & Orabona
(2019). They show that by adding a small correction to
correct for bias, we can improve SGD’s O(T~2) rate of
convergence to O(T~3). By combining worker momen-
tum based variance reduction with a Byzantine robust ag-
gregator, we can obtain a faster Byzantine robust algorithm.

Theorem VII (Byzantine robust MVR). Suppose we are
given a 0-robust Byzantine optimization problem Def. A.



Learning from History for Byzantine Robust Optimization

B =0.0| ATK = IPM B =0.0 | ATK = ALIE

Accuracy (%)
19,1
o

B =0.0| ATK = BF

B=0.0| ATK = LF

AGG
— CM

Accuracy (%)
[9,]
o

B =0.99 | ATK = IPM B =0.99 | ATK = ALIE

~
w

Accuracy (%)
N wv
6] o

0 25 50 75

1000 25 50 75

—— RFA
— TM
— KRUM
— CC
— AVG
6=0

=099 |ATK=LF  — False
---- True

//,,#

1000 25 50 75 100
Epochs

B = 0.99 | ATK = BF

25 50 75
Epochs

Figure 4: Coordinate median (CM), Robust Federated Aggregation (RFA), Trimmed Mean (TM), Krum, and Centered Clip
(CCQ) are tested on Cifar10 with 25 workers. Attackers run inner-product manipulation attack (IPM) (Xie et al., 2020), “a
little is enough” (ALIE) (Baruch et al., 2019), bit-flipping (BF), and label-flipping (LF). IPM uses 11 Byzantine workers
while others use 5. The dashed brown line is average aggregator under no attacks (6 = 0). Momentum generally improves
all methods, with larger momentum adding stability. Centered Clip (CC) consistently has the best performance.
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Figure 5: Robust aggregation rules on imbalanced MNIST
where each successive class is a y-fraction of the previous.
Centered Clip is unaffected by imbalance where as the ac-
curacy RFA, Krum, and CM corresponds to only learning
class 1 and 2 (marked by horizontal gray dashed line).
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Figure 6: Final test accuracy of Centered Clip as we vary
clipping iterations (/) and radius (7). It is stable across all
hyper-parameters, justifying using [ = 1 as default.

Let us run the MVR algorithm combined with a (0ax, €)-
robust aggregation rule AGGwith § < Opyax, Step-size n =

3/ f(@o)—f* 1 _
=——, 1r |, and momentum parameter o =

O(L?*n?). Then,

1 & Lo+/co+1/n 2
T;EHVJC(%—OHZ S (T)

min O

Note that Theorem VII provides a significant asymptotic
speedup over the traditional momentum used in Theo-
rem VI and matches the lower bound of (Arjevani et al.,
2019) when § = 0. This result highlights the versatility
of our approach and the ease with which our notion of a
Byzantine oracle can be combined with any state of the art
optimization methods.

7. Experiments

In this section, we empirically demonstrate the effective-
ness of CC and SGDM for Byzantine-robust learning. We
refer to the baseline robust aggregation rules as RFA (Pil-
lutla et al., 2019), coordinate-wise median (CM), trimmed
mean (TM) (Yin et al., 2018), and Krum (Blanchard et al.,
2017). The inner iteration (T) of RFA is fixed to 3 as sug-
gested in (Pillutla et al., 2019). Throughout the section, we
consider the distributed training for two image classifica-
tion tasks, namely MNIST (LeCun & Cortes, 2010) on 16
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nodes and CIFAR-10 (Krizhevsky et al., 2009) on 25 nodes.
All experiments are repeated at least 2 times. The detailed
setups are deferred to Appendix G.1.

7.1. Failure of “middle seekers”

In this experiment, we demonstrate the challenge stated in
Section 3 by comparing robust aggregation rules on imbal-
anced datasets without attackers. Imbalanced training and
test MNIST dataset are created by sampling classes with
exponential decay, that is 1,,72,...,v5~! for classes 1
to K (v € (0, 1]). Then we shuffle the dataset and divide it
equally into 16 nodes. The mini-batch for each node is 1.

The experimental results are presented in Fig. 5. For drastic
decay v = 0.5, the median and geometric median based
rules can only achieve 75% accuracy which is the portion
of class 1 and 2 in the data. This is a practical example
of how “middle-seekers” fail. On the other hand, centered
clip CC and trimmed mean have no such bound as they
incorporate the gradients from tail distributions.

7.2. Impact of momentum on robust aggregation rules

The traditional implementation of momentum slightly dif-
fers from (WORKER) update and uses

my; = gi(Ti—1) + Smy_1,. ()

This version is equivalent to running (WORKER) update
with a re-scaled learning rate of 7/(1—g). Further, note that
our theory predicts that the clipping radius 7 should be pro-
portional to the variance of the updates which in turn de-
pends on the momentum parameter 5. We scale 7 by a
factor of (1 — B) if using (WORKER) update, and leave it
constant if using update of the form (1).

In this experiment, we study the the influence of mo-
mentum on robust aggregation rules against various at-
tacks, including bit-flipping (BF), label-flipping (LF), little
is enough (Baruch et al., 2019), and inner product manip-
ulation (Xie et al., 2020). We train ResNet-20 (He et al.,
2016) on CIFAR-10 for 100 epochs on 25 workers where
5 of them are adversaries. For (Xie et al., 2020) we use
11 Byzantine workers to amplify the attack. The batch size
per worker is set to 32 and the learning rate is 0.1 before
75th epoch and 0.01 afterwards. Note that the smaller batch
size, e.g. 32, leads to larger variance among good gradients
which makes the attacks in (Baruch et al., 2019; Xie et al.,
2020) more challenging.

The results are presented in Fig. 4. Momentum generally
makes the convergence faster and better for all aggregators,
especially against SOTA attacks (Baruch et al., 2019; Xie
et al., 2020). CC achieves best performance in almost all
experiments. More specifically, it performs especially well
on (Baruch et al., 2019; Xie et al., 2020) which is very close

to training without attackers (6 = 0).

7.3. Stability of Centered Clip

To demonstrate the impact of two hyperparameters 7, [ of
centered clip CC, we grid search 7 in [0.1, 10, 1000] and [
in [1,3,5]. The setup is the same as in Sec. 7.2 and mo-
mentum is 0 to exclude its effect. The final accuracies are
presented in Fig. 6. Centered clipping is very stable to the
choice of hyperparameters, and can achieve good accuracy
even without momentum.

8. Conclusion

The wildly disparate assumptions made in Byzantine ro-
bust learning not only makes comparison between different
results impossible, but can also mask unexpected sources
of failure. In this work, we strongly advocated for provid-
ing end to end convergence guarantees under realistic as-
sumptions. We provided well-justified notions of a Byzan-
tine robust aggregator and formalized the Byzantine ro-
bust stochastic optimization problem. Our theoretical lens
led us to a surprisingly simple yet highly effective pair of
strategies: using centered clipping and worker momentum.
These strategies were thoroughly tested on a variety of at-
tacks and shown to consistently outperform all baselines.
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