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Abstract
We consider active learning for binary classifi-
cation in the agnostic pool-based setting. The
vast majority of works in active learning in the
agnostic setting are inspired by the CAL algo-
rithm where each query is uniformly sampled
from the disagreement region of the current ver-
sion space. The sample complexity of such algo-
rithms is described by a quantity known as the
disagreement coefficient which captures both the
geometry of the hypothesis space as well as the
underlying probability space. To date, the dis-
agreement coefficient has been justified by min-
imax lower bounds only, leaving the door open
for superior instance dependent sample complex-
ities. In this work we propose an algorithm that,
in contrast to uniform sampling over the disagree-
ment region, solves an experimental design prob-
lem to determine a distribution over examples
from which to request labels. We show that the
new approach achieves sample complexity bounds
that are never worse than the best disagreement
coefficient-based bounds, but in specific cases
can be dramatically smaller. From a practical
perspective, the proposed algorithm requires no
hyperparameters to tune (e.g., to control the ag-
gressiveness of sampling), and is computation-
ally efficient by means of assuming access to an
empirical risk minimization oracle (without any
constraints). Empirically, we demonstrate that our
algorithm is superior to state of the art agnostic
active learning algorithms on image classification
datasets.

1. Introduction
Most applications of machine learning have an enormous
amount of unlabeled data. Yet, many powerful machine
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learning methods require that this data be labeled and reli-
able labels are costly since they require human intervention.
The cost of providing labels has become one of the main
bottlenecks in applications of machine learning, generating
much interest in the problem of active classification where
the learner is given an unlabeled pool of examples and her
goal is to identify an accurate hypothesis using the minimum
number of labels possible (Settles, 2011).

One of the most popular algorithmic paradigms is
disagreement-based active classification (Hanneke et al.,
2014). Under this approach, after observing k labels a
version space Vk of the most promising classifiers is main-
tained, and the learner queries an example x if there are
two hypotheses h1 and h2 belonging to Vk that disagree on
the label of x. This approach has received much attention
because it applies to generic hypothesis classes, it can be
made robust to label noise, and it can be efficient by using a
constrained cost-sensitive classification oracle, a problem
for which there are many reasonable heuristics (Agarwal
et al., 2018; Beygelzimer et al., 2010).

However, disagreement-based active classification suffers
from two significant shortcomings. First, it queries uni-
formly any example on which there is disagreement even
though intuitively some of these examples may be much
more informative than others. Second, disagreement-based
active classification algorithms tend to take a naive union
bound over all hypotheses, which ignores many of the de-
pendencies among the hypotheses. Indeed, recent work
in pure exploration combinatorial and linear bandits has
shown that such naive union bounds can be highly subopti-
mal and have a significant impact on empirical performance
(Cao & Krishnamurthy, 2019; Jain & Jamieson, 2019; Katz-
Samuels et al., 2020). Given that these naive union bounds
are very loose and appear in the confidence bounds used
by the algorithms, in practice, many works instead replace
these union bounds with a constant that can be tuned to
control the aggressiveness of the algorithm (Beygelzimer
et al., 2010; Huang et al., 2015). Unfortunately, this constant
introduces a hyperparameter to the active learning algorithm
that is difficult to set before seeing lots of data.

We design a new algorithm for pool-based active classi-
fication that addresses these shortcomings. It optimizes
a novel experimental design objective that finds the best
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subset of examples in the disagreement region to query in
order to identify the best classifier. It avoids wasteful union
bounds by adapting to the geometry of the hypothesis space
and thus avoiding the need to choose hyperparameters. We
introduce a new notion of sample complexity inspired by
experimental design that improves on disagreement-based
active classification by a factor up to

√
n where n is the size

of the pool while being only a logarithmic factor worse than
disagreement-based learning in the worst case.

1.1. Preliminaries

Let X denote the input space, and let {x1, . . . , xn} ⊂ X
denote a pool of examples. LetH denote a class of hypothe-
ses where each h : X 7→ {0, 1} assigns a label to each
example in the pool. Let Hx := {(h(xi))i∈[n] : h ∈ H}
denote the set of labelings over the pool induced by the
hypothesis class H. Let d denote the VC dimension of H.
When example i ∈ [n] is queried, the agent receives label
Yi ∼ Bern(ηi) where η = (ηi)

n
i=1 ∈ [0, 1]n. We define the

error of a hypothesis h ∈ H on the pool of examples as
given by

err(h) =
1

n

n∑
i=1

P(Yi 6= h(xi)) (1)

=
1

n

∑
i∈[n]

ηi(1− h(xi)) + (1− ηi)h(xi).

Let h∗ := arg minh∈H err(h) be the hypothesis of mini-
mum error, and let ν = err(h∗). The goal in active classi-
fication is to find an h ∈ H with error close to that of h∗
using as few label queries as possible. In this paper, we
quantify performance as follows:

Problem. Agnostic Pool Based PAC Active Classifica-
tion: Given ε > 0, δ ∈ (0, 1), identify an ε-good classifier,
that is, an h ∈ H such that err(h) − err(h∗) ≤ ε with
probability at least 1− δ using as few labels as possible.
Remark 1. The goal of finding an ε-good classifier over
a pool of examples is closely related to the goal of using
an active classification algorithm to find a classifier with
good generalization. Suppose V Cdim(H) = d and let D
be a distribution over X × {0, 1}. For i = 1, . . . , n let
(xi, yi) ∼ D. If ĥ satisfies err(ĥ) ≤ minh∈H err(h) + ε,
then with probability at least 1− δ

P(x,y)∼D(ĥ(x) 6= y) ≤

min
h∈H

P(x,y)∼D(h(x) 6= y) + ε+O
(√d ln(1/δ)

n

)
.

by standard passive generalization bounds (Boucheron et al.,
2005).

1.2. Main contributions

We briefly summarize our contributions:

• We cast pool-based active binary classification as an adap-
tive experimental design problem that computes an op-
timal sampling distribution over the pool of unlabelled
examples. We demonstrate that an ε-good classifier can
be obtained with probability at least 1− δ by requesting
just γ∗(ε) +ρ∗(ε) log(1/δ) labels if examples to label are
drawn from the optimal design, where γ∗(ε) and ρ∗(ε) are
problem-dependent quantities defined in the next section.

• Since this optimal design uses problem dependent infor-
mation like η, it is not a constructive strategy or algorithm
for a learner. Treating the sample complexity achieved
by this optimal design as a target, we design an algorithm
that performs sequential stages of experimental design
to match the sample complexity of the optimal design,
γ∗(ε) + ρ∗(ε) log(1/δ) up to a log(1/ε) factor. The algo-
rithm employs the use of a novel estimator that appeals
to a chaining argument. Unfortunately, the method is not
computationally efficient.

• We propose a second algorithm that is computationally
efficient given access to an empirical risk minimization or-
acle. The price for computational tractability is a slightly
worse sample complexity. Besides being computationally
efficient, our approach avoids the need to tune hyper-
parameters and the use of a constrained empirical risk
minimization oracle which are required by other active
learning algorithms (Beygelzimer et al., 2010; Huang
et al., 2015).

• We compare our sample complexity results to those of
state-of-the-art disagreement-based learning algorithms
that are given in terms of the so-called disagreement coef-
ficient. We demonstrate that our results, up to log factors,
are never worse than previous results, but can be substan-
tially better in certain cases.

• Empirically, we compare our procedure to state-of-the-
art algorithms for the agnostic setting including vari-
ants of the importance weighted active learning algo-
rithm (IWAL) (Beygelzimer et al., 2010) and active cover
(Huang et al., 2015). We demonstrate that our method is
superior across four image classification tasks.1

2. Experimental Design for Active
Classification

We seek to identify an ε-good classifier by seeing as few
labels as possible. To this end, we can take motivation
from experimental design to consider the optimal sampling
distribution over our pool of unlabeled examples [n]. For an
arbitrary distribution λ ∈ 4n := {p ∈ Rn : pi ≥ 0,∀i ∈
[n];

∑n
i=1 pi = 1} suppose we sampled I1, · · · , It ∼ λ and

then observed ys for each s ∈ [t]. Then an unbiased natural
estimator for the error of a classifier h ∈ H defined by (1)

1Code can be found at https://github.com/jifanz/
ACED.

https://github.com/jifanz/ACED
https://github.com/jifanz/ACED
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is given by

ẽrr(h) =
1

t

t∑
s=1

1/n

λIs
1{h(xIs) 6= ys}.

Indeed, by i.i.d. sampling from λ, we have for any s ∈ [t]

E[ẽrr(h))] = E
[1/n

λIs
1{h(xIs) 6= ys}

]
=

n∑
i=1

P(Is = i)
1/n

λi
E[1{h(xi) 6= ys}|Is = i]

=
1

n

n∑
i=1

P(Yi 6= h(xi)) = err(h)

since by definition, P(Is = i) = λi. Likewise, an estimator
for the excess risk is given by

ẽrr(h)− ẽrr(h∗) = (2)

1

t

t∑
s=1

1/n

λi
(1{h(xIs) 6= ys} − 1{h∗(xIs) 6= ys}).

It is straightforward to show that the variance of ẽrr(h) −
ẽrr(h∗) is upper bounded by 1

n

∑n
i=1

1
λin21{h∗(xi) 6=

h(xi)}, using the upper bound 1{h(xI) 6= ys} −
1{h∗(xI) 6= ys}) ≤ 1{h∗(xI) 6= h(xI)}. Applying Bern-
stein’s inequality (and ignoring the 1/t term) with probabil-
ity at least 1− δ

|ẽrr(h)− ẽrr(h∗)− (err(h)− err(h∗))| /√∑n
i=1

1
λin21{h∗(xi) 6= h(xi)} log(|Hx|/δ)

t
. (3)

This then suggests that to estimate the excess error of
this particular h with probability at least 1 − δ, it suf-
fices to take t large enough to make the RHS of (3)
less than ε. To upper bound the excess risk of ev-
ery h ∈ H simultaneously, it suffices to take t ≥

suph∈H

∑n
i=1

1
λin

2 1{h∗(xi)6=h(xi)}
max{ε2,(err(h)−err(h∗))2} log(|H|/δ). If we seek

to minimize the total number of observations, we simply
minimize over all λ ∈ 4n, motivating the complexity mea-
sure:

ρ∗(ε) := inf
λ∈4n

sup
h∈H\{h∗}

∑n
i=1

1
λin21{h∗(xi) 6= h(xi)}

max(err(h)− err(h∗), ε)2
.

Thus, we’d expect that if t ≥ ρ∗(ε) log(|H|/δ) samples
are drawn from the λ that minimizes ρ∗(ε), then ĥ =
arg minh∈H ẽrr(h) will be ε-good.

2.1. Sidestepping the Naive Union Bound

A significant shortcoming of the standard approach of ap-
plying Bernstein’s inequality with a naive union bound is

that the the naive union bound incurs an additional factor
of log(|Hx |) in the sample complexity. For infinite classes,
log(|Hx |) can be replaced by the VC-dimension of Hx,
however this can still be very loose. In practice, active learn-
ing algorithms replace log(|Hx |) by a tunable parameter
C0 (Beygelzimer et al., 2010; Huang et al., 2015). Ideally
C0 would be chosen via cross-validation but since our data
is being chosen adaptively, under an active algorithm that
depends on C0, it is unclear how to make the choice a priori.

To improve upon the naive union-bound we appeal to re-
sults from empirical process theory. Appealing to the
Talagrand/Bousquet inequality (Boucheron et al., 2005),
for all h ∈ H, especially the empirical risk minimizer
ĥ = arg minh∈H ẽrr(h), we have

ẽrr(h)− ẽrr(h∗)− (err(h)− errh∗)
≤2E[sup

h∈H
|ẽrr(h)− ẽrr(h∗)− (err(h)− errh∗)|]

+

√
suph∈H

∑n
i=1

1
λin21{h∗(xi) 6= h(xi)} log(1/δ)

t

+
4 supi∈[n] 1/λi log(1/δ)

3t
.

Traditionally, we compute the expectation of the suprema
using symmeterization to obtain the Rademacher complex-
ity of H\{h∗}. In general, the Rademacher complexity is
within a log(n) factor of the Gaussian Width (Bartlett &
Mendelson, 2002). In particular,

E[ sup
h∈H
|ẽrr(h)− ẽrr(h∗)− (err(h)− errh∗)|]

≤ 1√
t
Eζ∼N(0,I)

[
sup
h∈H

∑
i∈[n]

ζi
nλ1/2

(h∗(xi)− h(xi))
]
.

Using the same argument that motivated ρ∗(ε) but applying
Bousquet’s inequality instead of Bernstein’s inequality, we
introduce the following new complexity measure for active
classification:

γ∗(ε) := inf
λ∈4n

Eζ
[

sup
h∈H

∑
i∈[n]

ζi(h∗(xi)−h(xi))

nλ
1/2
i

max(err(h)− err(h∗), ε)

]2
.

Analogous to above, if we ignore the 1/t term, we’d expect
that if t ≥ γ∗(ε) + ρ∗(ε) log(1/δ) samples are drawn from
the λ that minimizes the maximum of γ∗(ε) and ρ∗(ε), then
ĥ = arg minh∈H ẽrr(h) will be ε-good.

We can relate γ∗(ε) to ρ∗(ε) in the following way.

Proposition 1 (Katz-Samuels et al. (2020)). γ∗(ε) ≤
c log(|Hx |)ρ∗(ε) ≤ cd log(nd )ρ∗(ε).

The first inequality parallels the application of Massart’s
finite class lemma to bound the Rademacher complexity in
statistical learning theory and the second inequality follows
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from the Sauer-Shelah Lemma. Katz-Samuels et al. (2020)
also demonstrates a lower bound on γ∗(ε) that is dominated
by ρ∗(ε). In the appendix, we show that γ∗(ε) matches the
minimax rates for classification given for the hypothesis
class of thresholds in (Castro & Nowak, 2008).

Main Takeaway: In Section 3 we will establish an al-
gorithm that achieves a sample complexity of (γ∗(ε) +
ρ∗(ε) log(1/δ)) log(1/ε) to obtain an ε-good classifier with
probability greater than 1− δ. In the next section we com-
pare this result to disagreement based methods. Note that
we will write ρ∗ := ρ∗(0) and γ∗ := γ∗(0).

2.2. Comparison with the Disagreement Coefficient

To date, theoretically grounded active learning algorithms
in the agnostic setting are disagreement region sampling
methods. At the beginning of each round t these algorithms
construct a version space V ⊂ H which is defined to be
the set of classifiers that have yet to be ruled out by the
algorithm using the observed labels up to round t−1. These
algorithms then choose xIt to be uniformly sampled from
DIS(V), the disagreement region, which is the set of points
on which any two hypotheses in V disagree:

DIS(V) = {i : ∃h, h′ ∈ V s.t. h(xi) 6= h′(xi)}.

In the notation of the previous section, these algorithms
are sampling from λt where λt is the uniform distribution
supported on DIS(V) (Hanneke et al., 2014).

The main complexity measure considered for disagreement
based algorithms is the disagreement coefficient defined as

θ(ξ) = sup
r≥ξ

|DIS(B(h∗, r))|/n
r

where B(h∗, r) is the ball of radius r centered at h∗:

B(h∗, r) = {h ∈ H :

∑
i∈[n] 1{h∗(xi) 6= h(xi)}

n
≤ r}.

We consider sample complexity results for finding an h with
err(h) ≤ ν + ε, where ν = err(h∗) under two common
settings.

1. The Agnostic Setting: we make no assumptions on η ∈
[0, 1]n. In this case the best known sample complexities
scale like

θ(ε)(
ν2

ε2
+ log(1/ε))d

where d is the VC dimension ofH (Hanneke et al., 2014).
Note that the noiseless setting of η ∈ {0, 1}n is a special
case.

2. The Tsybakov noise condition: for some a ∈ [1,∞)
and α ∈ (0, 1] every h ∈ H \ {h∗} satisfies∑

i∈[n] 1{h∗(xi) 6= h(xi)}
n

≤ a(err(h)− err(h∗))α.

In this case the best known sample complexities scale
like:

a2 1

ε2−2α
θ(aεα)d log(1/ε).

We now compare our claimed sample complexity of γ∗(ε) +
ρ∗(ε) log(1/δ) to these known sample complexity results.
Define ∆min := minh∈H\{h∗} err(h)− err(h∗).

Proposition 2. • Suppose that η ∈ {0, 1}n.

ρ∗(ε) ≤ c log(n∆−1
min ∨ ε

−1) θ(ε)[1 +
ν2

ε2
].

• Suppose that the Tsabokov noise condition holds for some
a ∈ [1,∞) and α ∈ (0, 1]. Then,

ρ∗(ε) ≤ ca2 1

ε2−2α
θ(aεα) log(n∆−1

min ∨ ε
−1).

Recall that Propositions 1 shows γ∗(ε) ≤ cdρ∗(ε) log(n/d).
Hence from Proposition 2, we see that our sample complex-
ity, γ∗+ρ∗ log(1/δ) is always as good as the state-of-the-art
sample complexities of disagreement-based learning up to
logarithmic factors in n and ε−1 in both settings.

However, the converse is not true. In general the disagree-
ment based active classification sample complexities can be
substantially larger than ρ∗ and γ∗.

Proposition 3. There exists an instance where for suffi-
ciently small ξ, θ(ξ) ≥ Ω(n1/2) while ρ∗ = O(1) and
γ∗ = log(n).

We emphasize that this is not just a feature of the analysis;
any algorithm that selects queries uniformly at random in
the region of disagreement will perform poorly on the in-
stance in the proposition. This gap demonstrates a provable
improvement over prior art.

3. Fixed Confidence Algorithm
Algorithm 1 is an elimination-style algorithm, in the style
of A2 (Balcan et al., 2009; Dasgupta et al., 2007; Huang
et al., 2015; Jain & Jamieson, 2019), but optimizes the
querying distribution similarly to algorithms from the pure
exploration linear bandits literature (Fiez et al., 2019; Katz-
Samuels et al., 2020). It chooses a distribution λk over
the examples in (4) that minimizes the confidence bounds
from Theorem 1 and queries enough random examples from
λk to ensure that the estimates of the difference in error
rates, err(h)− err(h∗), improve at least by a factor of 2 for
all remaining hypotheses h ∈ Hk. Using these improved
estimates of the gaps, it then eliminates all hypotheses that
can be shown to be suboptimal using the confidence bound
in Theorem 1.

Given an estimator η̂ for η, denote the induced estimate for
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Algorithm 1 ACED (Active Classification using Experi-
mental Design).

Input: Confidence level δ ∈ (0, 1).
H1 ←− H, k ←− 1, δk ←− δ/2k2.
while |Hk| > 1 do

Let λk and τk be the solution and value of the following
optimization problem

inf
λ∈4n

Eζ∼N(0,I)

[
max
h∈Hk

∑
i∈[n]

h(xi)
ζi

nλ
1/2
i

]2
(4)

+2 log(
1

δk
) max
h,h′∈Hk

max
h,h′∈G

n∑
i=1

1

λin2
1{h(xi) 6= h′(xi)}

Set Nk ←− cτk22(k+1) where c is a universal constant.
Query I1, . . . , INk ∼ λk and receive rewards y1, . . . , yNk .
Let η̂k := η̂(Hk, δk) be the estimator defined in Theo-
rem 1 for Hk with failure probability δk using the samples
{(xIs , ys)}

Nk
s=1

Hk+1 ←− Hk \ {h ∈ Hk : ∃h′ such that ẽrr(h′, η̂k) −
ẽrr(h, η̂k) + 1

2k+1 ≤ 0}.
k ←− k + 1

end while
Return: Hk = {ĥ}.

the error as

ẽrr(h, η̂) =
1

n

∑
i∈[n]

η̂i(1− h(xi)) + (1− η̂i)h(xi).

Theorem 1. Let G ⊂ H. There exists an estimator η̂(G, δ)
for η constructed from t samples drawn i.i.d. from λ such
that with probability at least 1− δ,

sup
h,h′∈G

|[ẽrr(h, η̂)− ẽrr(h′, η̂)]− [err(h)− err(h′)]|

.

√
log(2/δ) maxh,h′∈G

∑n
i=1

1
λin21{h(xi) 6= h′(xi)}

t

+

√
E[suph∈G

∑
i∈[n] h(xi)

ζi

nλ
1/2
i

]2

t
.

For now, we treat the estimator in Theorem 1 as a black-box
and defer its discussion until Section 4.1. Note that unlike
the Talagrand/Bousquet inequality presented before (3), this
confidence interval does not have a term depending on the
inverse of the worst case importance weight.

Algorithm 1 attains the following sample complexity.

Theorem 2. Let δ ∈ (0, 1) and ε > 0. With probability
at least 1 − δ Algorithm 1 returns ĥ ∈ H after τ samples
where err(ĥ) ≤ err(h∗) + ε and

τ . log(1/ε)[log(1/δ)ρ∗(ε) + γ∗(ε)].

4. Fixed Budget Algorithm

Algorithm 2 Fixed Budget ACED.
Input: Budget T , tolerance ε > 0

N ←−
⌊
T/ log2(ε−1)

⌋
, and η̂0 = 0

for k = 1, 2, . . . ,
⌊

log2(ε−1)
⌋

do

h̃k ←− arg minh∈H ẽrr(h, η̂k−1).
Let λk be the solution of the following optimization problem

inf
λ∈4n

Eζ∼N(0,I)

[
max
h∈H

∑
i∈[n](h̃k(xi)− h(xi))

ζi

nλ
1/2
i

2−k+1 + ẽrr(h, η̂k−1)− ẽrr(h̃k, η̂k−1)

]
(5)

Sample {xI1 , . . . , xIN } ∼ λk.
Query xI1 , . . . , xIN and observe y1, . . . , yN .
Compute an estimate η̂k.

end for
Return: arg minh∈H ẽrr(h, η̂k)

In many applications, the agent is given a budget of T
queries and a performance target ε > 0, and the goal is
to maximize the probability of outputing a classifier ĥ ∈ H
such that err(ĥ) ≤ err(h∗) + ε. We design a new algorithm
for this setting that can be made computationally efficient
given access to a weighted classification oracle (defined
shortly).

Algorithm 2 splits the budget into
⌊

log(ε−1)
⌋

phases.
In each phase, the algorithm computes the design that
optimizes (5), the objective of which approximates

E
[

maxh∈H\{h∗}

∑
i∈[n]

ζi

nλ1/2
(h∗(xi)−h(xi))

max(err(h)−err(h∗),2−k+1)

]2
. The algo-

rithm can use any estimator η̂k at each round k. The next
theorem uses the estimator of Theorem 1.
Theorem 3. Let T ∈ N and ε > 0. Let ĥ denote the h ∈ H
returned by Algorithm 2. There exists an estimator η̂k using
the samples {(xIs , ys)}Ns=1 in round k of Algorithm 2 such
that for an absolute constant c > 0

P(err(ĥ) ≥ err(h∗) + ε)

≤ log(nε−1)2 exp
(
− cT

log(ε−1)[γ∗(ε) + ρ∗(ε)]

)
.

If T ≥ c log(log(ε−1)) log(1/δ) log(ε−1)[γ∗(ε) + ρ∗(ε)],
then with probability at least 1−δ, Algorithm 2 outputs ĥ ∈
H such that err(ĥ) ≤ err(h∗) + ε. The proof of Theorem
3 leverages the estimator defined in Theorem 1 for H and
failure probability δk = exp(−Θ(N/γk)) with γk equal to
the value of (5).
Remark 2. Given {(It, yt)}Tt=1 where It ∼ λ define

η̂(Importance)
γ =

1

T

T∑
t=1

yt
λIt + γ

eIt . (6)

If importance-weighted estimator η̂(Importance)
γ with γ = 0 is

used in Algorithm 2 (with a slightly modified objective func-
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tion in (5), see the Supplementary Material), one can obtain
a computationally efficient algorithm whose probability of
error scales as

P(err(ĥ) ≥ err(h∗) + ε) ≤

log(nε−1)2 exp(− T − log(|Hx |)ψ∗(ε)
log(ε−1)[γ∗(ε) + ρ∗(ε) + ψ∗(ε)]

)

where

ψ∗(ε) := min
λ∈4n

max
i∈[n]:∃h∈H
h∗(xi)6=h(xi)

1/nλi
max(ε, err(h)− err(h∗))

.

There are instances where ψ∗(ε)� γ∗(ε) and therefore the
cost of computational efficiency is a worse sample complex-
ity. See the appendix for more details.

4.1. Discussion of Theorem 1

Theorem 1 above demonstrates the existence of an estimator
that avoids any dependence on log(|Hx |). The construc-
tion of the estimator in Theorem 1 uses generic chaining,
a technique that builds a highly optimized union bound
to avoid extraneous logarithmic factors (Talagrand, 2014).
Generic chaining is most easily applied when a given esti-
mator η̂ satisfies the property that ẽrr(h, η̂) − ẽrr(h′, η̂) is
sub-Gaussian for every “direction” h− h′ of interest (e.g.,
see (Katz-Samuels et al., 2020)). Though the η̂(Importance)

γ

estimator has sub-Gamma tails in general, ruling out its
use, the following result shows that for h − h′ in a ball
under a certain norm, we can construct an estimator for
ẽrr(h, η̂)− ẽrr(h′, η̂) with a sub-Gaussian-like tail.

Proposition 4. Fix λ ∈ 4n, δ ∈ (0, 1), and h, h′ ∈ H.
If T samples are taken from λ and η̂ := η̂

(Importance)
γ is

computed with γ =

√
log(2/δ)

3
∑n
i=1

1
λin

2 1{h(xi) 6=h′(xi)}
then with

probability at least 1− δ

|[ẽrr(h, η̂)− ẽrr(h′, η̂)]− [err(h)− err(h′)]| ≤(√
2
3 + 1

)√
2
∑n
i=1

1
λin21{h(xi) 6= h′(xi)} log( 2

δ )

t
.

The idea behind Theorem 1 is to apply generic chaining to
all h− h′, but to use a different η̂ (specifically, a different
γ) based on the size of h− h′ prescribed by Proposition 4.
Details of the technique can be found in the supplementary
materials.

4.2. Computationally Efficient Experimental Design

In this section, we discuss how to solve (5) efficiently
given access to a weighted empirical risk minimiza-
tion oracle, which we will introduce shortly. First,
note that minimizing (5) is equivalent to minimizing

Eζ∼N(0,I)[maxh∈H f(λ;h; ζ)] with respect to λ where

f(λ;h; ζ) :=

∑
i∈[n](h̃k(xi)−h(xi))

ζi

nλ
1/2
i

2−k+1+ẽrr(h,η̂k−1)−ẽrr(h̃k,η̂k−1)

:=

∑
i∈[n](h̃k(xi)−h(xi))

ζi

nλ
1/2
i

2−k+1+
∑
i∈[n](1−2η̂k−1,i)(h̃k(xi)−h(xi))

.

It is known that Eζ∼N(0,I)[maxh∈H f(λ;h; ζ)] is convex in
λ (Katz-Samuels et al., 2020), hence we perform the mini-
mization over λ via stochastic mirror descent with stochas-
tic gradient g(λ, ζ) = ∇f(λ, h̃; ζ) where ζ ∼ N (0, I) and
h̃ ∈ arg maxh∈H f(λ, h; ζ). To obtain h̃ for a fixed λ and
ζ, first note that the value maxh∈H f(λ;h; ζ) is equal to

min
r∈R+

r subject to ar + b+ max
h∈H

∑
i∈[n]

(cir + di)h(xi) ≤ 0

where a = −2−k+1 −
∑
i∈[n](1 − 2η̂k,i)h̃k(xi), b =∑

i∈[n]
ζ

nλ
1/2
i

h̃k(xi), ci = 1− 2η̂k−1,i and di = − ζ

nλ
1/2
i

.

For any fixed positive value of r it suffices to check the
constraint. We can then use a line search procedure to find
the minimizing value of r (details in Appendix K).

Thus we have reduced to checking the constraint for a
fixed r ∈ R+. Specifically, the difficulty is to solve for
maxh∈H

∑
i∈[n] wi · h(xi) where wi are arbitrary weights.

This can be reduced to weighted 0/1-loss minimization
problem that is solvable by a weighted classification oracle:

oracle({w̃i, x̃i, ỹi}ni=1) :=arg min
h∈H

∑
i∈[n]

w̃i ·1{h(x̃i) 6= ỹi}

for inputs {w̃i, x̃i, ỹi}ni=1. Then,

max
h∈H

∑
i∈[n]

wi · h(xi) = oracle({|wi|, xi,1{wi ≥ 0}}ni=1).

5. Implementation and Experiments
In the previous section we reduced the experimental design
objective of (5) to a weighted 0/1 loss classification problem
using weights that are functions of the estimated vector η̂.
In practice we replace this 0/1 loss with a surrogate convex
loss, namely the logistic loss. However, to implement Al-
gorithm 2 we still have to specify the choice of estimator η̂.
Though the estimator specified in Theorem 1 is theoretically
grounded, it is difficult to implement in practice since it
involves a costly constrained linear optimization problem
over the set of hypothesis inHk. As described in Remark 2,
it is still possible to have a theoretical guarantee for other
estimators such as the IPS estimator. As described precisely
in Appendix K, in our implementation we take the estimate
for η̂k to be[
η̂

(Naive)
k

]
i

= average({y(j)
s : I(j)

s = i, s ∈ [Nj ], j ∈ [k]}),
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i.e. a simple average of the labels we see. Here I(j)
s indexes

the s-th query we made in round j. In our experiments we
only considered the persistent noise setting (i.e., querying
the same image more than once would always return the
same label as before, or formally, ηi ∈ {0, 1}). Thus, if
we sample a point x(j)

Is
(i.e., I(j)

s ) more than once, we set

y
(j)
s to be the previously observed label and we did not

count this observation in our count of total labels taken. To
take advantage of all of the labels observed so far, we also
employ a water-filling technique for sampling in practice
(details in Appendix K).

Baselines. To validate Algorithm 2 we conducted a set of
experiments against the following baselines that are con-
sidered to be state-of-the-art theoretically-justified methods
in disagreement based active learning. Our set of methods
are chosen based on the ones considered in (Huang et al.,
2015), the most recent work of relevance. Details on the
precise implementations of these methods are available in
the supplementary materials in Appendix K.

• Passive: We considered a passive baseline where we uni-
formly at random choose samples from our pool, retrain
our model on our current samples and report the accuracy.

• Importance Weighted Active Learning (IWAL) : IWAL
was originally introduced in Beygelzimer et al. (2009)
and is an active learning algorithm in the streaming set-
ting. Our implementation is based on the algorithm pre-
sented in Beygelzimer et al. (2010) which we refer to as
IWAL0. We also consider variants, IWAL1, and oracular
versions ORA-IWAL0, ORA-IWAL1 detailed in Huang
et al. (2015).

• Online Active Cover (OAC): OAC is described in Huang
et al. (2015). We used the implementation of OAC that is
available in Vowpal Wabbit (Agarwal et al., 2014).

Datasets. We evaluate on the following four real datasets.

• MNIST 0-4 vs 5-9 (LeCun et al., 1998). We considered
the standard MNIST dataset but in a binary setting where
digits 0-4 are labelled as 0, and 5-9 are labelled as 1. Our
pool has 50000 images in total, and we classified based
on the flattened images (784 dimensions).

• SVHN 2 vs 7 (Netzer et al., 2011). We considered the
binary classification problem of determining whether a
digit was a 2 or a 7 (ignoring all other images). To prevent
the logistic classifier from overfitting to arbitrary labels
and to restrict the hypothesis classH, we downsample the
images to 512 dimensional feature vectors through PCA.
There are 16180 images in total.

• CIFAR Bird vs Plane (Netzer et al., 2011). We con-
sidered the binary classification problem of determining
whether a digit was a bird or a plane (ignoring all other
images). To prevent the logistic classifier from overfitting
to arbitrary labels and to restrict the hypothesis class H,

we downsample the images to 576 dimensional feature
vectors through PCA. There are 10000 images in total.

• FashionMNIST T-shirt vs Pants (Xiao et al., 2017). We
considered the binary classification problem of T-shirt
vs Pants. Our pool has 12000 images in total, and we
classified based on the flattened images (784 dimensions).

Implementations. We use two implementations to measure
the performances of the algorithms.

• Implementation from Vowpal Wabbit (Agarwal et al.,
2014) that is used by Huang et al. (2015). The imple-
mentation employs an online learner that only updates
based on the latest queried label, therefore has time com-
plexity that scales linearly in the number of images n.

• For our implementation in a batched setting, we retrain
the entire classifier to convergence every time new labels
become available. We find that the online learner of above
can perform significantly better than our batched learner
during the first few batches of training. However, our
implementation has more stable accuracies during the
course of training and performs slightly superior (< 1%)
in final accuracy. This comes at a cost of an O(n2) time
complexity, which is too expensive in some of the settings.

In particular, we only use the Vowpal Wabbit implementa-
tion for the OAC experiments and the oracular variants of
IWAL algorithms for our MNIST experiement, due to the
high computation cost for running these algorithms with
exhaustive hyperparameter search. However, we think this
is still a fair comparison when evaluating some baselines
using the the two implementations since it is the best one
can achieve for those baselines within a computation budget
(single machine with state-of-art commercialized CPU that
runs for a month).

Hypothesis Class. In our implementation, we took the
hypothesis space to be the set of linear separators in the
underlying feature space. We used the logistic regression
implementation in Scikit-learn (Pedregosa et al., 2011) for
our underlying classification oracle.
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Figure 1. MNIST Performance
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Figure 2. SVHN Performance
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Figure 3. CIFAR Performance
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Figure 4. FashionMNIST

Discussion. For each of the binary classification datasets,
we plot the running maximum accuracy on the unlabelled
pool against the number of queries taken as in Figure 1,2,4,3
(full scale images included in Appendix L). The passive
curves are evaluated based on the averages of 10 runs. In
the CIFAR experiment, ACED is an average over 5 runs. We
find the curve in this setting to be very consistent, and that
the standard deviations are minimal for visualization. All
of the other curves are evaluated based on a single run. For
baselines algorithms proposed in the streaming setting (vari-
ants of IWAL and OAC), in each round we uniformly sample
an example from the pool, and feed a fixed number of passes.
We select the best C0 based on which hyperparameter set-
ting takes the least amount of queries to reach the same
level of accuracy. Detailed hyperparameters considered for
the baselines are included in Appendix M. Furthermore, to
demonstrate active gains in generalization, we include plots
on holdout test sets in Appendix N.

On all four datasets, our algorithm outperforms other base-
lines by taking much fewer queries to reach the passive
accuracy on the entire dataset. Sometimes the active learn-
ing algorithms even beat the passive accuracy on the whole
dataset, which is a known phenomenon of active learning
studied by Mussmann & Liang (2018). For the MNIST
dataset, we do not include performance curves for the orac-
ular variants of IWAL, since the Vowpal Wabbit implemen-
tation turns out to be performing at random chance. We
also notice that OAC stops taking queries very early on (no
longer making queries when given more passes over the
pool). However, when increasing C0, the aggressiveness
to make a query, OAC starts performing worst than pas-
sive pretty easily. We include Figure 9 in the appendix to
demonstrate how sensitive the OAC curves are to the hyper-
parameter C0, which one cannot tune in real applications.

As a special case, on the FashionMNIST dataset, our bi-
nary classification task is linearly separable and the baseline
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methods fail miserably. For all of the IWAL algorithms
on this dataset, we searched in an extended range of hy-
perparameters than the ones used in the other three tasks.
When fixing the random order of the stream, however, all
of the baselines become equivalent, and perform almost
identical to passive. Since in practice, only one set of hy-
perparameters can be deployed, this again demonstrates
the shortcoming of these baseline algorithms, whereas our
method does not rely on any aggressiveness hyperparameter.

6. Related Work and Discussion
Active Classification: Active classification has received
much attention with a large number of theoretical and em-
pirical works (see (Hanneke et al., 2014) and (Settles, 2011)
for excellent surveys). Cohn et al. (1994) initiated research
into the study of disagreement based active classification al-
gorithms, proposing CAL for the realizable setting. Balcan
et al. (2009) extended disagreement-based active classifica-
tion to the agnostic case, introducing the method, A2. Han-
neke (2007) provided a general analysis of A2 in terms of
the disagreement coefficient, with follow-up works improv-
ing on the sample complexity of this approach (Dasgupta
et al., 2007; Hanneke, 2009; Hanneke et al., 2011; Koltchin-
skii, 2010; Hanneke et al., 2014). The results in Section 2.2
show that our sample complexities are never worse than the
ones obtained by this line of work.

An extension of this line of work has aimed to attain simi-
lar sample complexities, while leveraging an empirical risk
minimization oracle to design more practical algorithms
(Dasgupta et al., 2007; Hsu, 2010; Beygelzimer et al., 2010;
Huang et al., 2015). With the exception of Huang et al.
(2015), these methods tend to have a conservative query
policy that samples uniformly in the disagreement region,
leading to an onerous label requirement. While Huang et al.
(2015) has a more aggressive query policy that does not
sample uniformly in the disagreement region, their sam-
ple complexity result could also be obtained by sampling
uniformly in the disagreement region and, therefore, their
theoretical result does not reflect gains from a careful se-
lection of points in the disagreement region. In particular,
the dominant term is still the disagreement coefficient and,
hence, it can be much worse than our sample complexity on
instances such as the one in Proposition 3.

Recently, Jain & Jamieson (2019) showed that active classi-
fication in the pool-based setting is an instance of combina-
torial bandits, an observation that is central to our analysis.
They provided the first analysis that shows the contribution
of each example to the sample complexity providing a more
fine-grained result than the disagreement coefficient. We
improve on this work by optimizing the sampling distri-
bution in the region of disagreement and using improved
estimators such as the one in Theorem 1. Proposition 4 of

Katz-Samuels et al. (2020) implies that our sample com-
plexity is always better than the sample complexity in Jain
& Jamieson (2019).

Finally, we also note that Zhang & Chaudhuri (2014) also
give an algorithm that improves on disagreement-based ac-
tive learning, but the sample complexity of their algorithm
is difficult to interpret and their algorithm is not computa-
tionally efficient.

Linear and Combinatorial Bandits. ρ∗ has been shown to
be the dominant term in a lower bound for pure exploration
linear bandits and combinatorial bandits (Soare et al., 2014;
Chen et al., 2017; Fiez et al., 2019). Recently Katz-Samuels
et al. (2020) introduced the notion of γ∗ for linear and
combinatorial bandits, showing that it is a lower bound
for any non-interactive oracle MLE algorithm. One of our
contributions is making the connection between the active
classification and linear/combinatorial bandit literature, and
showing that we can leverage the results from this work to
obtain improved sample complexities for agnostic active
classification.
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A. Generalization
Proof of Remark 1. Define the event

E := {∀h ∈ H : | err(h)− P(h(x) 6= f(x))| ≤ c[
√

ln(1/δ)

n
+

√
d

n
]}.

where the randomness is over the draw of the pool {x1, . . . , xn} ∼ DX and c is a universal positive constant. Using
the bounded differences inequality and 3.4 in (Boucheron et al., 2005), we have that if c is a sufficiently large universal
positive constant, then by a standard argument P(E) ≥ 1 − δ. Suppose E holds for the remainder of the proof. Let
h̄ = arg minh∈H P(x,y)∼D(h(x) 6= f(x)). Then,

P(ĥ(x) 6= f(x)) ≤ err(ĥ) + c[

√
ln(1/δ)

n
+

√
d

n
]

≤ min
h∈H

err(h) + ε+ c[

√
ln(1/δ)

n
+

√
d

n
]

≤ err(h̄) + ε+ c[

√
ln(1/δ)

n
+

√
d

n
]

≤ P(h̄(x) 6= f(x)) + ε+ 2c[

√
ln(1/δ)

n
+

√
d

n
].

B. Reduction to Combinatorial Bandits
We state and prove our results for active classification in the language of combinatorial bandits, a strictly more general
problem, which we now introduce.

Combinatorial Bandits: There are n distributions ν1, . . . , νn supported on [−1, 1] with mean µi = Eζ∼νiζ. H is a
collection of subsets of [n]. At each round t, the agent queries a distribution (or arm) It and observes yt ∼ νIt . Given
ε > 0, δ ∈ (0, 1), the goal is to identify h ∈ H that satisfies∑

i∈h

µi ≥
∑
i∈h∗

µi − ε

with probability at least 1− δ using as few samples as possible.

We also write µ := (µ1, . . . , µn)>. We interchangely treat each h ∈ H as a set in [n] or as a vector in {0, 1}n with hi = 1
if i ∈ h and hi = 0 otherwise. Using this vector notation, we often write h>µ =

∑
i∈h µi. We use the notation

∆h := h>∗ µ− h>µ

where h∗ ∈ arg maxh∈H h
>µ.

Reduction to combinatorial bandits: We use the reduction of active classification to combinatorial bandits from (Jain &
Jamieson, 2019). Note that

err(h) =
1

n
[

∑
i∈[n]:h(xi)=0

ηi +
∑

i∈[n]:h(xi)=1

(1− ηi)] =
1

n
[
∑
i∈[n]

ηi −
∑

i∈[n]:h(xi)=1

µi]

where µi := 2ηi − 1. Thus, treating each h ∈ H as a set where i ∈ h iff h(xi) = 1, we observe arg minh∈H err(h) =
arg maxh∈H

∑
i∈h µi and that finding a hypothesis h such that

err(h)− min
h′∈H

err(h′) ≤ ε

is equivalent to finding h such that
∑
i∈h µi ≥ maxh′∈H

∑
i∈h′ µi − nε. Thus, active classification can be viewed as

an instance of combinatorial bandits where each νi is a random variable supported on {−1, 1} with mean µi = 2ηi − 1.
Therefore, any algorithm for ε-good arm identification for combinatorial bandits yields an algorithm for active binary
classification in the pool-based setting. Finally, we note that

∆h = n[err(h)− err(h∗)]
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C. Disagreement Coefficient
We now introduce equivalent definitions of ρ∗(ε), γ∗(ε) and the disagreement coefficient in the combinatorial bandit setting.

ρ∗(ε) := inf
λ∈4n

sup
h∈H\{h∗}

∥∥∥h∗ − h∥∥∥2

A(λ)−1

max(µ>(h∗ − h), ε)2

γ∗(ε) := inf
λ∈4n

Eζ∼N(0,I)[ sup
h∈H\{h∗}

(h∗ − h)>A(λ)−1/2ζ

max(µ>(h∗ − h), ε)
]2.

Define the ball of radius r centered at h∗

B(h∗, r) = {h ∈ H :
|h∆h∗|
n

≤ r}

and

DIS(B(h∗, r)) = {i : ∃h, h′ ∈ B(h∗, r) s.t. i ∈ h∆h′}.

The disagreement coefficient is defined as

θ(ε) = sup
r≥ε

|DIS(B(h∗, r))|/n
r

= sup
r≥ε

|{i : i ∈ h∆h′ for some h, h′ ∈ H s.t. max(|h∗∆h|, |h∗∆h′|) ≤ nr}|
nr

.

The proof of Proposition 2 follows by a peeling argument and the application of the following lemma.

Lemma 1. Let ε ∈ [∆min

n , 1].

• Suppose the noiseless case holds, i.e., η ∈ {0, 1}n. If ε ∈ [∆min

n , ν), then

sup
ξ≥ε

min
λ

max
h:∆h≤nξ

∥∥∥h∗ − h∥∥∥2

A(λ)−1

(nξ)2
≤ 9 θ(ε)

ν2

ε2

and if ε ∈ [ν, 1], then

sup
ξ≥ε

min
λ

max
h:∆h≤nξ

∥∥∥h∗ − h∥∥∥2

A(λ)−1

(nξ)2
≤ 9 θ(ε).

• Suppose that the Tsabokov noise condition holds for some a ∈ [1,∞) and α ∈ (0, 1]. Then,

min
λ

max
h:∆h≤nε

∥∥∥h∗ − h∥∥∥2

A(λ)−1

(nε)2
≤ ca2 1

ε2−2α
θ(aεα) log(n∆−1

min ∨ ε
−1)

Proof. Case 1: η ∈ {0, 1}n (Noiseless). We begin by noting that when η ∈ {0, 1}n, we have the following equality that
we will use repeatedly:

err(h) =
1

n
[

∑
i∈[n]:h(xi)=0

ηi +
∑

i∈[n]:h(xi)=1

(1− ηi)] =
1

n
| η∆h|.

Then,

err(h) =
1

n
| η∆h| = 1

n
[
∑
i∈η \h

1 +
∑
i∈h\η

1] =
1

n
[
∑
i∈η

1 +
∑
i∈h\η

1−
∑
i∈η∩h

1] =
1

n
| η | − 1

n

∑
i∈h

µi (7)
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where we used µi = 2ηi − 1.

Recall ν = err(h∗). Fix ξ ≥ ε. Suppose ∆h ≤ nξ. We have by (7) 1
n

∑
i∈h µi = 1

n | η | −
1
n | η∆h| and thus

nξ ≥ ∆h = | η∆h| − | η∆h∗| = | η∆h| − nν

and thus | η∆h| ≤ n(ξ + ν). Thus, if ∆h ≤ nξ, we have that

|h∗∆h| ≤ |h∗∆ η |+ |h∆ η | ≤ n(2ν + ξ) (8)

Furthermore, by (8)

min
λ

max
h:∆h≤nξ

∥∥∥h∗ − h∥∥∥2

A(λ)−1

(nξ)2
= min

λ
max

h:∆h≤nξ

∑
i∈h∗∆h

1
λi

(nξ)2

≤ |{i : i ∈ h∗∆h for some h ∈ H s.t. ∆h ≤ nξ}| ·maxh:∆h≤nξ |h∗∆h|
(nξ)2

≤ |{i : i ∈ h∗∆h for some h ∈ H s.t. |h∗∆h| ≤ n(2ν + ξ)}| · n(2ν + ξ)

(nξ)2
. (9)

where the first inequality takes λ to be the uniform distribution over |{i : i ∈ h∗∆h for some h ∈ H s.t. ∆h ≤ nξ}|.

Case 1.1. Suppose ε ≥ ν. Then, ξ ≥ ε ≥ ν, and we have

|{i : i ∈ h∗∆h for some h ∈ H s.t. |h∗∆h| ≤ n(2ν + ξ)}|n(2ν + ξ)

(nξ)2

≤ 3
|{i : i ∈ h∗∆h for some h ∈ H s.t. |h∗∆h| ≤ 3nξ)}|

nξ

= 9
|{i : i ∈ h∗∆h for some h ∈ H s.t. |h∗∆h| ≤ 3nξ)}|

3nξ

and, using (9) in addition,

sup
ξ≥ε

min
λ

max
h:∆h≤nξ

∥∥∥h∗ − h∥∥∥2

A(λ)−1

(nξ)2
≤ sup

ξ≥ε
9
|{i : i ∈ h∗∆h for some h ∈ H s.t. |h∗∆h| ≤ 3nξ)}|

3nξ

≤ 9 θ(3ε)

≤ 9 θ(ε).

Case 1.2. Now, suppose ε ∈ [∆min

n , ν]. We may suppose wlog that ξ ≥ ε satisfies ξ ∈ [∆min

n , ν] since otherwise it reduces
to case 1.1. Then,

|{i : i ∈ h∗∆h for some h ∈ H s.t. |h∗∆h| ≤ n(2ν + ξ)}|n(2ν + ξ)

(nξ)2

=
|{i : i ∈ h∗∆h for some h ∈ H s.t. |h∗∆h| ≤ n(2ν + ξ)}|n(2ν + ξ)

(nν)2

ν2

ξ2

≤ 3
|{i : i ∈ h∗∆h for some h ∈ H s.t. |h∗∆h| ≤ 3nν)}|

nν

ν2

ξ2

≤ 9
|{i : i ∈ h∗∆h for some h ∈ H s.t. |h∗∆h| ≤ 3nν)}|

3nν

ν2

ξ2

≤ 9 θ(3ν)
ν2

ξ2

≤ 9 θ(ξ)
ν2

ξ2
.
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Combining this with (9), this implies that

sup
ξ≥ε

min
λ

max
h:∆h≤nξ

∥∥∥h∗ − h∥∥∥2

A(λ)−1

(nξ)2
≤ sup

ξ≥ε
min
λ

max
h:∆h≤nξ

∥∥∥h∗ − h∥∥∥2

A(λ)−1

(nξ)2

≤ 9 θ(ε)
ν2

ε2
.

Case 2: Tsabakov Noise. Suppose Tsabokov’s noise condition is satisfied with a ∈ [1,∞) and α ∈ (0, 1]. Fix ξ ≥ ε. If
∆h ≤ nξ, then Tsabokov’s noise condition implies that

|h∗∆h|
n

≤ a(
∆h

n
)α ≤ aξα

Then,

min
λ

max
h:∆h≤nξ

∥∥∥h∗ − h∥∥∥2

A(λ)−1

(nξ)2
= min

λ
max

h:∆h≤nξ

∑
i∈h∗∆h

1
λi

(nξ)2

≤ |{i : i ∈ h∗∆h for some h ∈ H s.t. ∆h ≤ nξ}| ·maxh:∆h≤nξ |h∗∆h|
(nξ)2

≤
|{i : i ∈ h∗∆h for some h ∈ H s.t. |h∗∆h|n ≤ aξα}| ·maxh:∆h≤nξ |h∗∆h|

(nξ)2

≤
|{i : i ∈ h∗∆h for some h ∈ H s.t. |h∗∆h|n ≤ aξα}|anξα

(nξ)2

= a2 |{i : i ∈ h∗∆h for some h ∈ H s.t. |h∗∆h|n ≤ aξα}|
aξαn

1

ξ2−2α

≤ a2 1

ξ2−2α
θ(aξα)

Taking the sup over ξ ≥ ε of both sides implies the result.

Proof of Proposition 2. The argument follows by a peeling argument. Define

λ(k) := arg min
λ

max
h:∆h∈(n2−k−1,n2−k]

∥∥∥h∗ − h∥∥∥2

A(λ)−1

∆2
h

λ̄ :=
1

dlog2(n∆−1
min ∨ ε−1)e

dlog2(n∆−1
min∨ε

−1)e∑
k=0

λ(k).

Notice that 1
dlog2(n∆−1

min∨ε−1)eA(λ(k)) � A(λ̄), which implies that

A(λ̄)−1 � dlog2(n∆−1
min ∨ ε

−1)eA(λ(k))−1. (10)
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Thus,

ρ∗(nε) = min
λ

max
h∈H\{h∗}

∥∥∥h∗ − h∥∥∥2

A(λ)−1

max(nε,∆h)2

≤ max
h∈H\{h∗}

∥∥∥h∗ − h∥∥∥2

A(λ̄)−1

max(nε,∆h)2

= max
k=0,1,...,dlog2(n∆−1

min∨ε−1)e
max

h:∆h∈(n2−k−1,n2−k]

∥∥∥h∗ − h∥∥∥2

A(λ̄)−1

max(nε,∆h)2

≤ dlog2(n∆−1
min ∨ ε

−1)e max
k=0,1,...,dlog2(n∆−1

min∨ε−1)e
max

h:∆h∈(n2−k−1,n2−k]

∥∥∥h∗ − h∥∥∥2

A(λ(k))−1

max(nε,∆h)2
(11)

= dlog2(n∆−1
min ∨ ε

−1)e max
k=0,1,...,dlog2(n∆−1

min∨ε−1)e
min
λ

max
h:∆h∈(n2−k−1,n2−k]

∥∥∥h∗ − h∥∥∥2

A(λ(k))−1

max(nε,∆h)2
(12)

≤ 2dlog2(n∆−1
min ∨ ε

−1)e sup
ξ≥ε∨∆min

n

min
λ

max
h:∆h≤nξ

∥∥∥h∗ − h∥∥∥2

A(λ)−1

(nξ)2

where inequality (11) follows by (10) and (12) follows by the definition of λ̄(k).

The result now follows by applying Lemma 1 in each case (noiseless η ∈ {0, 1} with ε > ν and ε < ν, and Tsabokov noise
condition).

Proof of Proposition 3. Step 1: Define the instance. Let m ∈ N. Define hi = [m] ∪ {m + i} for i = 1, . . . ,m2 and let
n = m+m2. Define h0 = ∅. Let µi = −1 for all i ∈ [n]. Note that h0 is the best set and that µ>(h0 − hi) = m+ 1 for
all i 6= 0.

Step 2: Compute problem-dependent quantities. We have that

ρ∗ = inf
λ

max
i=1,...,m2

∑
j∈[m]∪{m+i} 1

λj

(m+ 1)2
≤ 2m2 + 2m2

(m+ 1)2
≤ O(1)

where we used

λi =

{
1

2m i ∈ [m]
1

2m2 i ∈ {m+ 1, . . . ,m+m2}
.

Let ξ such that nξ ≤ m+ 1. Letting r = m+ 1, we have that

θ(ξ) ≥ |{i : i ∈ h∗∆h for some h ∈ H s.t. |h∗∆h| ≤ r}|
r

=
m+m2

m+ 1

≥ 1

2
m

≥ 1

2
√

2

√
n.
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D. Ridge IPS Estimator Tail Bound
Now, we introduce the ridge IPS estimator, which we leverage in constructing our generic chaining estimator.

Proposition 5. Fix X = {ei : i ∈ [n]} andH ⊂ {0, 1}n as well as some µ ∈ [−1, 1]n. Let v ∈ Rn. Fix some λ ∈ 4n and
draw {xs}ti=1 ∼ λ and then observe ys with mean x>s µ and |yi| ≤ 1 with probability 1 for s = 1, . . . , t.

For any α ∈ Rn+ define

A(α) :=

n∑
i=1

αieie
>
i

For some s > 0 define

µ̂ = (A(tλ) + sI)−1X>y.

where X , y, ε are the {(xi, yi, εi)}i stacked. For any s > 0 let A(α+ s) := A(α) + sIn. If we take s =

√
log(2/δ)

3‖v‖2
(nA(λ))−1

then

|〈v, µ̂− µ〉| ≤ (
√

2/3 + 1)

√
2‖v‖2A(λ)−1 log(2/δ)

t

Proof of Proposition 5. Fix X = {ei : i ∈ [n]} and H ⊂ {0, 1}n as well as some µ ∈ [−1, 1]n. Note that for any
v ∈ {−1, 0, 1}n we have

|E[〈v, µ̂− µ〉]| =
∣∣〈v, (A(tλ) + sI)−1A(tλ)µ− µ〉

∣∣
=
∣∣〈v, (A(tλ) + sI)−1(A(tλ) + sI − sI)µ− µ〉

∣∣
=
∣∣s〈v, (A(tλ) + sI)−1µ〉

∣∣
≤ s‖v‖2(tA(λ)+sI)−1

using the fact that µ ∈ [−1, 1]n. Define

S = 〈v, µ̂〉

=

n∑
i=1

v>(A(tλ) + sI)−1xiyi

=:

n∑
i=1

Xi

Note that
n∑
i=1

E[X2
i ] =

n∑
i=1

E[〈v, (A(tλ) + sI)−1xiyi〉2]

≤ v>(A(tλ) + sI)−1A(tλ)(A(tλ) + sI)−1v

≤ ‖v‖2(nA(λ)+sI)−1

and

|Xi| ≤ |〈v, (A(tλ) + sI)−1xiyi〉| ≤ 1/s

for all i. We have by Bernstein’s inequality that with probability at least 1− δ
n∑
i=1

Xi − E[Xi] ≤
√

2‖v‖2(nA(λ)+sI)−1 log(1/δ) +
log(1/δ)

3s
.
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Thus,

〈v, µ̂〉 ≤ E[〈v, µ̂〉] +
√

2‖v‖2(nA(λ)+sI)−1 log(1/δ) +
log(1/δ)

3s

= 〈v, µ〉+ E[〈v, µ̂− µ〉] +
√

2‖v‖2(nA(λ)+sI)−1 log(1/δ) +
log(1/δ)

3s

≤ 〈v, µ〉+ s‖v‖2(nA(λ)+sI)−1 +
√

2‖v‖2(nA(λ)+sI)−1 log(1/δ) +
log(1/δ)

3s

from which we conclude, that with probability at least 1− 2δ

|〈v, µ̂− µ〉| ≤ s‖v‖2(nA(λ)+sI)−1 +
log(2/δ)

3s
+
√

2‖v‖2(nA(λ)+sI)−1 log(2/δ)

≤ s‖v‖2(nA(λ))−1 +
log(2/δ)

3s
+
√

2‖v‖2(nA(λ))−1 log(2/δ).

If we take s =

√
log(2/δ)

3‖v‖2
(nA(λ))−1

then

|〈v, µ̂− µ〉| ≤ (
√

2/3 + 1)

√
2‖v‖2A(λ)−1 log(2/δ)

n

E. Looseness of Bernstein’s Bound for Importance Sampling Estimator
A natural approach to combinatorial bandits is to use the importance sampling estimator and apply Bernstein’s bound in an
algorithm like RAGE from (Fiez et al., 2019). Applying the standard analysis would yield a term in the sample complexity
that scales as:

inf
λ

max
h6=h∗

max
j∈h∗∆h

1
λj∑

k∈h∗ µk −
∑
k∈h µk

.

The following proposition shows that there exists instances where such a sample complexity is suboptimal by a polynomial
factor in the dimension.

Proposition 6. There exists a combinatorial bandit problem where ρ∗ = O(1) and

inf
λ

max
h 6=h∗

max
j∈h∗∆h

1
λj∑

k∈h∗ µk −
∑
k∈h µk

≥ Ω(
√
n)

Proof. Step 1: Define the instance. Let m ∈ N. Define hi = [m] ∪ {m + i} for i = 1, . . . ,m2 and let n = m + m2.
Define h0 = ∅. Let µi = −1 for all i ∈ [n]. Note that µ>(h0 − hi) = m+ 1 for all i 6= 0.

Step 2: Compute problem-dependent quantities. Then,

ρ∗ = inf
λ

max
i=1,...,m2

∑
j∈[m]∪{m+i} 1

λj

(m+ 1)2
≤ 2m2 + 2m2

(m+ 1)2
≤ O(1)

where we used

λi =

{
1

2m i ∈ [m]
1

2m2 i ∈ {m+ 1, . . . ,m+m2}
.
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On the other hand,

inf
λ

max
i=1,...,m2

max
j∈[m]∪{m+i}

1
λj

m+ 1
≥ inf

λ
max

i=1,...,m2
max
j=m+i

1
λj

m+ 1

=
m2

m+ 1

≥ 1

2
m

≥ 1

2
√

2

√
n

F. Proof of Theorem 1
Before proving Theorem 1, we introduce some machinery from the theory of generic chaining (see e.g. (Vershynin, 2019)
for more details). Fix a set T ⊂ Rn. Consider a sequence of subset (Tk)∞k=0 such that Tk ⊂ T

|T0| = 1, |Tk| ≤ 22k .

A sequence (Tk)∞k=0 satisfying the above properties is called admissible.

Definition 1. Let d be a metric on Rn. The γ2-functional of T is defined as

γ2(T, d) = inf
(Tk)

sup
t∈T

∞∑
k=0

2k/2d(t, Tk)

where the infimum is taken over all admissible sequences.

Here, we state and prove Theorem 4, the combinatorial bandit counterpart of Theorem 1. The proof uses the technique
of generic chaining to avoid a naive union bound, which would introduce a dependence on log(|G|). Unfortunately, the
IPS estimator has an excessively large sub-Gaussian norm, and the concentration inequality for ridge IPS estimator from
Proposition 5 decays at a suitably fast sub-Gaussian rate for only a subset of pairs h, h′ ∈ G–not all pairs–implying that
neither of these estimators can be used directly. To sidestep this issue, we apply the estimator from Proposition 5 to all pairs
of h, h′ ∈ G to construct a feasibility program that yields the estimator in Theorem 4. The proof has similarities to proof
techniques in the theory of generic chaining (Vershynin, 2019).

Theorem 4. Let G ⊂ H. Fix some λ ∈ 4n and draw {xs}ti=1 ∼ λ and then observe ys with mean x>s µ and |ys| ≤ 1 with
probability 1 for s = 1, . . . , t. There exists an estimator µ̂ ∈ [−1, 1]n such that with probability at least 1− δ,

sup
h,h′∈G

|(h− h′)>(µ̂− µ)| ≤ c[log(1/δ) max
h,h′∈G

∥∥∥h− h′∥∥∥
A(tλ)−1

+ Eζ∼N(0,I)[sup
h∈G

h>A(tλ)−1/2ζ]]

Proof of Theorem 4. Step 1: Pick the admissible sequence. Fix h0 ∈ G. Note that for any µ̃ ∈ Rn

sup
h,h′∈G

|(h− h′)>(µ̃− µ)| ≤ 2 sup
h∈G
|(h− h0)>(µ̃− µ)| (13)

and thus we focus on upper bounding the RHS.

Let (Rk)Kk=0 be an admissible sequence of G whereR0 = {h0} andRK = G andRk ⊂ G such that

sup
h∈G

K∑
k=1

2k/2 inf
h′∈Rk

∥∥∥h− h′∥∥∥
A(tλ)−1

≤ 2γ(G,
∥∥∥ · ∥∥∥

A(tλ)−1
)

Let Tk = ∪kl=1Rl. Note that T1 ⊂ T2 ⊂ . . . ⊂ TK and K = log(log(|G|)) ≤ log(n).
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Step 2: Defining the event. Let X , and y be the {(xs, ys)}ts=1 stacked, respectively. For each h, h′ ∈ G and k ∈ [K] such
that h, h′ ∈ Tk, define the estimator

µ̂h,h′,k = (A(tλ) + sh,h′,kI)−1X>y

where sh,h′,k =
√

1/3 u+2k/2∥∥∥h−h′∥∥∥
A(tλ)−1

where sh,h′,k is chosen based on Proposition 5. Define the events

Eh,h′,k = {|(h− h′)>(µ̂h,h′,k − µ)| ≤ (
√

2/3 + 1)
√

4(u+ 2k/2)
∥∥∥h− h′∥∥∥

A(tλ)−1
} (14)

E = ∩Kk=1 ∩h,h′∈Tk Eh,h′,k (15)

Applying the bound for the Ridge IPS from Proposition 5 and rearranging, for every k ∈ [K] and h, h′ ∈ Tk,

Pr(|(h− h′)>(µ̂h,h′,k − µ)| > (
√

2/3 + 1)
√

4(u+ 2k/2)
∥∥∥h− h′∥∥∥

A(tλ)−1
) ≤ 2 exp(−2(u+ 2k/2)2). (16)

Then, by the union bound, we have that

Pr(Ec) ≤
∑
k≥1

|Tk|2 Pr(Ech,h′,k)

≤ c
∑
k≥1

|Tk|2 exp(−2(2k + u2)) (17)

≤ c
∑
k≥1

22k+1 exp(−2(2k + u2)) (18)

≤ c′ exp(−2u2).

where (17) follows by (16) and where line (18) follows since by construction

|Tk| ≤
k∑
l=1

|Rk| ≤
k∑
l=1

22l ≤ 22k+1.

Suppose E holds for the remainder of the proof with u taking the value of ū =

√
log(c′/δ)

2 .

Step 3: Define the estimator. Define the polyhedron

µ̂ ∈ P = {z ∈ [−1, 1]n : ∀k ∈ [K],∀h, h′ ∈ Tk : |(h− h′)>µ̂h,h′,k − z)| ≤ c[ū+ 2k/2]
∥∥∥h− h′∥∥∥

A(tλ)−1
}.

We define the estimator µ̂ to be any point in P if it is nonempty and, otherwise we let µ̂ be any point in Rn.

Note that on the event E , µ ∈ P and hence P is nonempty. Furthermore, by the triangle inequality, ∀k ∈ [K],∀h, h′ ∈ Tk

|(h− h′)>(µ̂− µ)| ≤ |(h− h′)>(µ̂− µ̂h,h′,k)|+ |(h− h′)>(µ̂h,h′,k − µ)|

≤ 2c(ū+ 2k/2)
∥∥∥h− h′∥∥∥

A(tλ)−1
.

Step 4: Proving the inequality. Fix h̄ ∈ G. Let k(h̄, l) be the smallest integer such that

d(h̄, Tk(h̄,l)) ≤
d(h̄, Tk(h̄,l−1))

2
.

Note that

d(h̄, Tk(h̄,l)) ≤ 2−l max
h,h′∈G

∥∥∥h− h′∥∥∥
A(tλ)−1

.
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Let πl(h̄) ∈ Tk(h̄,l) such that ∥∥∥h̄− πl(h̄)
∥∥∥
A(tλ)−1

= min
h∈Tk(h̄,l)

∥∥∥h̄− h∥∥∥
A(tλ)−1

.

By the triangle inequality

|(h̄− h0)>(µ̂− µ)| ≤
∑
l≥1

|(πl(h̄)− πl−1(h̄))>(µ̂− µ)|

≤ 2c
∑
l≥1

(ū+ 2k/2)
∥∥∥πl(h̄)− πl−1(h̄)

∥∥∥
A(tλ)−1

≤ c′
∑
l≥1

(ū+ 2k/2)
∥∥∥πl(h̄)− h̄

∥∥∥
A(tλ)−1

(19)

where we use event E and the triangle inequality. We have by construction that∑
l≥1

ū
∥∥∥πl(h̄)− h̄

∥∥∥
A(tλ)−1

≤ ū
∑
l≥1

2−l max
h,h′∈G

∥∥∥h− h′∥∥∥
A(tλ)−1

≤ c′ū max
h,h′∈G

∥∥∥h− h′∥∥∥
A(tλ)−1

. (20)

Furthermore, ∑
l≥1

2k/2
∥∥∥πl(h̄)− h̄

∥∥∥
A(tλ)−1

≤ c′γ(G,
∥∥∥ · ∥∥∥

A(tλ)−1
) (21)

≤ c′′Eζ∼N(0,I)[sup
h∈G

h>A(tλ)−1/2ζ] (22)

where (21) follows by the definition of Tk and (22) follows by Talagrand’s majorizing measure theorem (Theorem 8.6.1 in
(Vershynin, 2019)). Putting together (13), (19), (20), and (22), and noting that h̄ is arbitrary, the result follows.

Remark 3. We emphasize that the construction of this estimator does not use any knowledge of µ. The admissible sequence
(Rk)k∈N does not require knowledge of µ to be chosen and the polyhedron P can be defined without knowledge of µ.

G. Fixed Confidence Algorithms
We restate Algorithm 1 in the language of combinatorial bandits.

Algorithm 3 ACED for Combinatorial Bandits.
Input: Confidence level δ ∈ (0, 1).
H1 ←− H, k ←− 1, δk ←− δ/2k2.
while |Hk| > 1 do

Let λk and τk be the solution and value of the following optimization problem

inf
λ∈4n

Eζ∼N(0,I)[ max
h,h′∈Hk

(h− h′)>A(λ)−1/2ζ]2 + 2 log(
1

δk
) max
h,h′∈Hk

∥∥∥h− h′∥∥∥2

A(λ)−1

Set Nk ←− cτk( 2k+1

n
)2 where c is a universal constant.

Query I1, . . . , INk ∼ λk and receive rewards y1, . . . , yNk .
Let µ̂k be the estimator defined in Theorem 4.
Hk+1 ←− Hk \ {h ∈ Hk : ∃h′ such that (h′ − h)>µ̂k − n

2k+1 ≥ 0}.
k ←− k + 1

end while
Return: Hk = {ĥ}.

We now restate Theorem 2 as Theorem 5 in the combinatorial bandits setting.
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Theorem 5. Let δ ∈ (0, 1) and ε > 0. With probability at least 1−δ Algorithm 1 returns ĥ ∈ H such that µ>ĥ+ ε ≥ µ>h∗
and uses at most

c log(1/ε)[log(1/δ)ρ∗(ε) + γ∗(ε)]

samples where c is a positive universal constant.

The proof of Theorem 5 is essentially identical to the proof of Theorem 4 in (Katz-Samuels et al., 2020), and we therefore
omit it. The key technical and conceptual technical hurdle in obtaining Theorem 5 is the estimator given in Theorem 4.

H. Fixed Budget Proof
We restate the fixed budget algorithm, Algorithm 2, and the Theorem 3in the language of combinatorial bandits as Algorithm
4 and Theorem 6, respectively.

Algorithm 4 Fixed Budget ACED for Combinatorial Bandits.
Input: Budget T , tolerance ε > 0.
µ̂1 = 0 ∈ Rn, N ←−

⌊
T/ log2(nε−1)

⌋
.

for k = 1, 2, . . . ,
⌊

log2(nε−1)
⌋

do

h̃k ←− arg maxh∈H µ̂
>
k h

Let λk be the solution of the following optimization problem

inf
λ∈4

Eζ∼N(0,I)[max
h∈H

(h̃k − h)>A(λ)−1/2ζ

2−k+1n+ µ̂>k (h̃k − h)
]2 (23)

Sample {x1, . . . , xN} ∼ λk.
Query x1, . . . , xN and receive rewards y1, . . . , yN .
Let µ̂k+1 be the estimator defined in the proof of Theorem 6.

end for
Return: arg maxh∈H µ̂

>
k+1h.

Theorem 6. Let T ∈ N and ε > 0. Let ĥ denote the h ∈ H returned by Algorithm 2. If T ≥ log(nε−1)[γ∗(ε) +ρ∗(ε)], then

P(µ>ĥ+ ε < µ>h∗) ≤ log(nε−1)2 exp(− T

log(nε−1)[γ∗(ε) + ρ∗(ε)]
)

The key technical challenge in the proof (see Step 1) is constructing an estimator that concentrates rapidly enough. To this
end, we leverage the estimator in Theorem 4, applying it to various subsets ofH based on their estimated gaps and combine
them into a single estimator by defining it to belong to a polyhedron (denoted P in step 1.2.2) characterizing estimators
with the suitable concentration properties. We argue that on a good event, the true mean µ belongs to P , making it feasible
and thus obtaining our estimator. The next challenge is bounding the probability of error of our algorithm. The estimator
constructed at round k + 1 is chosen to have failure probability

δk+1 = exp(−c N

E[suph∈H
(h̃k−h)>A(λ)−1/2ζ

(h̃k−h)>µ̂k+2−k+1n
]2

),

for a suitably large universal constant c > 0, which we note is a function of (23). Thus, this step of the proof (step 3) shows
that δk+1 ≤ exp(− T

log(nε−1)[γ∗(ε)+ρ∗(ε)] ). We note that while this step of the proof and algorithm style are novel to our
knowledge, the mechanics of bounding the various quantities appearing in this step are quite similar to arguments in the
proof of Theorem 5 in (Katz-Samuels et al., 2020).

Proof of Theorem 6. Step 1: Construction of the Estimator. Define the sets

Sk = {h ∈ H : ∆h ≤ n2−k+1}.
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Let µ̂k be some estimator formed from data collected in kth round. Define the event

Ek(µ̂k) = {∀h ∈ Sck, |(h∗ − h)>(µ̂k − µ)| ≤ ∆h

8
}

∩ {∀h ∈ Sk, |(h∗ − h)>(µ̂k − µ)| ≤ 2−k+1n

8
}

We show that at every round k, we can construct an estimator µ̂k ∈ [−1, 1]n such that
Pr(Eck(µ̂k)|Ek−1(µ̂k−1), . . . , E1(µ̂1)) ≤ δk log(nε−1) where δk > 0 will be chosen at the kth round.

Step 1.1: Base Case

Let µ̂1 be the estimator from Theorem 1 applied with δ1 toH (to be chosen later). Then, we have that

sup
h,h′∈H

|(h− h′)>(µ̂1 − µ)| ≤ c[log(2/δ1) max
h,h′∈H

∥∥∥h− h′∥∥∥
A(Nλ)−1

+ Eζ∼N(0,I)[sup
h∈H

h>A(Nλ)−1/2ζ]]

≤ c[π
2

log(2/δ1)E[sup
h∈H

(h− h′)>A(Nλ)−1/2ζ] + Eζ∼N(0,I)[sup
h∈H

h>A(Nλ)−1/2ζ]] (24)

≤ c′
√

log(2/δ1)Eζ∼N(0,I)[sup
h∈H

h>A(Nλ)−1/2ζ].

where in line (24) we used Lemma 2. Now, we have that

suph,h′∈H |(h− h′)>(µ̂− µ)|
n

≤ c
√

log(2/δ1)E[
suph∈H h

>A(Nλ)−1/2ζ]

n
]

≤ 1

8

where we chose

δ1 = 2 exp(−c′′ N

E[
suph∈H h

>A(λ)−1/2ζ]

n ]2
)

for a universal constant c′′ > 0 large enough. This proves the base case for both h ∈ Sc1 and h ∈ S1.

Step 1.2: Inductive Step. Next, we show the inductive step. Suppose that at round k, the hypothesis is satisfied, i.e., the
algorithm has constructed estimators µ̂1, . . . , µ̂k such that Ek(µ̂k) ∩ . . . ∩ E1(µ̂1) holds. Now, we construct an estimator
µ̂k+1 for round k + 1. Define for every l ∈ [k] ∪ {0}, the set

Ŝl = {h : (h̃k − h)>µ̂k ≤ 2−l+1n}.

We will construct an estimator each subset Ŝl and then combine these into a single estimator. Ŝl can be thought of as an
estimate for Sl as suggested by the following claim.

Claim 1. Sl+1 ⊂ Ŝl ⊂ Sl−1 for all l ∈ [k].

Proof of Claim 1. Since Ek holds, by Lemma 3, we have that

1. for all h ∈ Sck,

|(h̃k − h)>µ̂k − (h∗ − h)>µ| ≤ 1

2
∆h. (25)

2. for all h ∈ Sk,

|(h̃k − h)>µ̂k − (h∗ − h)>µ| ≤ 1

2
2−k+1n. (26)
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Suppose h ∈ Ŝl, that is, (h̃k − h)>µ̂k ≤ 2−l+1n. We show that h ∈ Sl−1. If h ∈ Sk, then we automatically have that
h ∈ Sl−1 since l ∈ [k] and Sk ⊂ Sl−1. Thus, suppose h ∈ Sck. Then, (25) implies that ∆h ≤ (h̃k − h)>µ̂k + ∆h

2 ≤
2−l+1n+ ∆h

2 . Rearranging, we have that ∆h ≤ 2−l+2n, implying that h ∈ Sl−1. We conclude that Ŝl ⊂ Sl−1.

Now, suppose that h ∈ Sl+1. If h ∈ Sck, then we have that (h̃k − h)>µ̂k ≤ 3/2∆h ≤ 2−l+1n and hence h ∈ Ŝl. Suppose
h ∈ Sk. (26) implies that

(h̃k − h)>µ̂k ≤ ∆h + 2−kn ≤ 2−k+1n+ 2−kn ≤ 2−k+2n

where the second inequality follows since h ∈ Sk. Thus, h ∈ Ŝk−1. Showing that Sk+1 ⊂ Ŝk follows by a similar argument
and we conclude that Sl+1 ⊂ Ŝl. This shows the claim.

Step 1.2.1: Constructing the estimator for Ŝl. Let l ∈ [k]∪{0}. We use Theorem 1 to construct an estimator µ̂k+1,l(δk+1)

for each Ŝl such that for all l ∈ [k] ∪ {0}, the event

Ek+1,l = { sup
h,h′∈Ŝl

|(h− h′)>(µ̂k+1,l(δk+1)− µ)| ≤ c[log(2/δk+1) max
h,h′∈Ŝl

∥∥∥h− h′∥∥∥
A(Nλ)−1

+ Eζ∼N(0,I)[ sup
h∈Ŝl

h>A(Nλ)−1/2ζ]]}

holds with probability at least 1− δk+1 (that will be chosen later). We assume that ∩l∈[k]∪{0}Ek+1,l holds for the remainder
of the proof, which by the union bound holds with probability at least 1− δ log(nε−1).

Fix l ∈ [k]. We have that

sup
h,h′∈Sl+1

|(h− h′)>(µ̂k+1,l(δk+1)− µ)| ≤ sup
h,h′∈Ŝl

|(h− h′)>(µ̂k+1,l(δk+1)− µ)| (27)

≤ c[log(2/δk+1) max
h,h′∈Ŝl

∥∥∥h− h′∥∥∥
A(Nλ)−1

+ Eζ∼N(0,I)[ sup
h∈Ŝl

h>A(Nλ)−1/2ζ]

≤ c
√

log(1/δk+1)E[ sup
h∈Ŝl

h>A(Nλ)−1/2ζ]2 (28)

≤ c
√

log(1/δk+1)E[ sup
h∈Sl−1

h>A(Nλ)−1/2ζ]2 (29)

where inequality (27) follows by Sl+1 ⊂ Ŝl from Claim 1, inequality (28) follows by Lemma 2, and the inequality (29)
follows from Ŝl ⊂ Sl−1 from Claim 1.

Now, we have that

suph,h′∈Sl+1
|(h− h′)>(µ̂k+1,l(δk+1)− µ)|

2−ln
≤ c

√
log(1/δk+1)E[ sup

h∈Sl−1

h>A(Nλ)−1/2ζ

2−ln
]2

≤ c′

√
log(1/δk+1)

E[suph∈Sl−1

(h̃k−h)>A(λ)−1/2ζ
2−l+2n

]2

N

≤ c′′

√
log(1/δk+1)

E[suph∈Sl−1

(h̃k−h)>A(λ)−1/2ζ
∆h+2−k+1n

]2

N
(30)

≤ c′′

√
log(1/δk+1)

E[suph∈H
(h̃k−h)>A(λ)−1/2ζ

∆h+2−k+1n
]2

N

≤ c′′′

√√√√
log(1/δk+1)

E[suph∈H
(h̃k−h)>A(λ)−1/2ζ

(h̃k−h)>µ̂k+2−k+1n
]2

N
(31)
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Since h̃k ∈ Sl−1 by Lemma 3 and for all h ∈ Sl−1, 2−l+2n ≥ ∆h + 2−k+1n„ we may apply Lemma 4 to obtain line (30).
(31) follows since we assumed Ek holds and Lemma 3.

Now, we choose

δk+1 = log(nε−1) exp(−c′ N

E[suph∈H
(h̃k−h)>A(λ)−1/2ζ

(h̃k−h)>µ̂k+2−k+1n
]2

)

for a universal constant c′ > 0 large enough to guarantee that with probability at least 1− δk+1,

suph,h′∈Sl+1
|(h− h′)>(µ̂k+1,l(δk+1)− µ)|

2−ln
≤ 1

32
.

Step 1.2.2: Combining the estimators into a single estimator µ̂k+1. Now, define the polyhedron based on the estimators
µ̂k+1,l(δk+1) for l = 0, 1, . . . , k:

P = {y ∈ [−1, 1]n : ∀l ∈ [k] ∪ {0},∀h, h′ ∈ Ŝl :
|(h− h′)>(µ̂k+1,l(δk+1)− y)|

2−ln
≤ 1

32
}.

We define the estimator µ̂k+1 as follows: if P is nonempty, then let µ̂k+1 be any point in P ; otherwise, let µ̂k+1 be any
point in Rn.

On the event ∩l∈[k]∪{0}Ek+1,l , P is nonempty since µ ∈ P and, thus, µ̂k+1 ∈ P .

Let l ∈ [k] ∪ {0} and h, h′ ∈ Ŝl. By the triangle inequality the event ∩l∈[k]∪{0}Ek+1,l, and µ̂k+1 ∈ P , we have that

|(h− h′)>(µ̂k+1 − µ)|
2−ln

≤ |(h− h
′)>(µ̂k+1 − µ̂k+1,l)|

2−ln
+
|(h− h′)>(µ− µ̂k+1,l)|

2−ln
≤ 1

16
.

By the union bound, with probability at least 1− δk+1 log(nε−1), for every l ∈ [k] ∪ {0},

sup
h,h′∈Sl+1

|(h− h′)>(µ̂k+1 − µ)|
2−ln

≤ sup
h,h′∈Ŝl

|(h− h′)>(µ̂k+1 − µ)|
2−ln

≤ 1

16
.

where we used Sl+1 ⊂ Ŝl from Claim 1. Furthermore, since µ̂k ∈ [−1, 1]n note that Ŝ0 = H and so we also have that

sup
h,h′∈H

|(h− h′)>(µ̂k+1 − µ)|
n

≤ 1

16
.

Thus, we have shown that for all l ∈ [k] ∪ {0},

sup
h,h′∈Sl

|(h− h′)>(µ̂k+1 − µ)|
2−ln

≤ 1

16
. (32)

Now, we are ready to finish the inductive step. Let h ∈ Sck+1. Let j be the largest integer such that h ∈ Sj . Then,
2−jn ≤ ∆h ≤ 2−j+1n. Then, the inequality (32) implies that

|(h∗ − h)>(µ̂k+1 − µ)|
∆h

≤ |(h∗ − h)>(µ̂k+1 − µ)|
2−jn

(33)

≤ sup
h,h′∈Sj

|(h′ − h)>(µ̂k+1 − µ)|
2−jn

(34)

≤ 1

16
. (35)

A similar argument shows that if h ∈ Sk+1,

|(h∗ − h)>(µ̂k+1 − µ)| ≤ 2−kn

16
. (36)
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Step 2: Correctness Consider the final round k̄ =
⌊

log(nε−1)
⌋

and let h such that ∆h ≥ ε. Then, by the previous step,
we have that

|(h∗ − h)>(µ̂k − µ)| ≤ ∆h

8
.

Therefore, (h∗ − h)>µ̂k̄ ≥ 7
8∆h > 0. Thus, h cannot be the empirical maximizer in the final round and the algorithm

outputs h̄ ∈ H such that µ>h̄ ≥ µ>h∗ − ε.

Step 3: Bounding the probability of error Now, we need to bound the probability of error. We bound δk for all k. This
argument is quite similar to the one given in the proof of Theorem 5 in (Katz-Samuels et al., 2020). Fix a round k. Lemma 3
yields

Eζ∼N(0,I)[max
h∈H

(h̃k − h)>A(λ)−1/2ζ

2−k+1n+ µ̂>k+1(h̃k − h)
]2 ≤ cEζ∼N(0,I)[max

h∈H

(h̃k − h)>A(λ)−1/2ζ

2−k+1n+ ∆h
]2 (37)

≤ c′[Eζ∼N(0,I)[max
h∈H

(h∗ − h)>A(λ)−1/2ζ

2−k+1n+ ∆h
]2 (38)

+ Eζ∼N(0,I)[max
h∈H

(h∗ − h̃k)>A(λ)−1/2ζ

2−k+1n+ ∆h
]2] (39)

We start by bounding the first term. Fix h0 ∈ H \ {h∗}.

Eζ∼N(0,I)[ max
h∈H

(h∗ − h)>A(λ)−1/2ζ

2−k+1n+ ∆h
]2

≤ Eζ∼N(0,I)[ max
h∈H\{h∗}

| (h∗ − h)>A(λ)−1/2ζ

2−k+1n+ ∆h
|]2

≤ 8Eζ∼N(0,I)[ max
h∈H\{h∗}

(h∗ − h)>A(λ)−1/2ζ

2−k+1n+ ∆h
]2 + 8

∥∥∥h∗ − h0

∥∥∥2

A(λ)−1

(2−k+1n+ ∆h0
)2

(40)

≤ 8[Eζ∼N(0,I)[ max
h∈H\{h∗}

(h∗ − h)>A(λ)−1/2ζ

max(ε,∆h)
]2

+ max
h6=h∗

∥∥∥h∗ − h∥∥∥2

A(λ)−1

max(ε,∆h)2
] (41)

where line (40) is the consequence of exercise 7.6.9 in (Vershynin, 2019).

Now, we turn to the second term. We have that

Eζ∼N(0,I)[max
h∈H

(h∗ − h̃k)>A(λ)−1/2ζ

2−k+1n+ ∆h
]2 ≤ Eζ∼N(0,I)[max(

(h∗ − h̃k)>A(λ)−1/2ζ

2−k+1n
, 0)]2

≤ c

∥∥∥h∗ − h̃k∥∥∥2

A(λ)−1

(2−k+1n)2

≤ c′

∥∥∥h∗ − h̃k∥∥∥2

A(λ)−1

max(ε,∆h̃k
)2

(42)

≤ c′ max
h∈H\{h∗}

∥∥∥h∗ − h∥∥∥2

A(λ)−1

max(ε,∆h)2
(43)

where we obtain line (42) since h̃k ∈ Sk+2 by Lemma 3.
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Plugging in the design used at round k, λk, we have that

Eζ∼N(0,I)[max
h∈H

(h̃k − h)>A(λk)−1/2ζ

2−k+1n+ µ̂>k+1(h̃k − h)
]2 = min

λ
Eζ∼N(0,I)[max

h∈H

(h̃k − h)>A(λ)−1/2ζ

2−k+1n+ µ̂>k+1(h̃k − h)
]2 (44)

≤ cmin
λ

[ρ∗(ε;λ) + γ∗(ε;λ)] (45)

≤ c′[ρ∗(ε) + γ∗(ε)] (46)

where

ρ∗(ε;λ) := sup
h∈H\{h∗}

∥∥∥h∗ − h∥∥∥2

A(λ)−1

max(µ>(h∗ − h), ε)2

γ∗(ε;λ) := Eζ∼N(0,I)[ sup
h∈H\{h∗}

(h∗ − h)>A(λ)−1/2ζ

max(µ>(h∗ − h), ε)
]2.

and (44) follows by definition of λk, (45) follows by (39), (41), and (43), and (46) follows by Lemma 13 of (Katz-Samuels
et al., 2020).

Putting it together, for all k

δk+1 = exp(−c′ N

E[suph∈H
(h̃k−h)>A(λ)−1/2ζ

(h̃k−h)>µ̂k+2−k+1n
]2

)

≤ exp(−c′′ N

[γ∗(ε) + ρ∗(ε)]
)

≤ exp(−c′′′ T

log(nε−1)[γ∗(ε) + ρ∗(ε)]
)

This completes the proof.

Remark 4. We stress that the construction of the estimators in the proof of Theorem 6 is based solely on data observed by
the algorithm andH and at no point is knowledge of µ used.

H.1. Technical Lemmas

The proof of Theorem 6 uses the following Lemmas, which appeared originally as Lemma 11, Lemma 1, and Lemma 13 in
(Katz-Samuels et al., 2020).

Lemma 2. Let G ⊂ H. Then,

Eζ∼N(0,I)[ max
h,h′∈H

[A(λ)−1/2(h− h′)]>ζ]2 ≥ 2

π
max
h,h′∈H

∥∥∥h− h′∥∥∥2

A(λ)−1
.

Lemma 3. Let k ≥ 1. Consider the kth round of Algorithm 4. Suppose that

• if h ∈ Sck,

|(h∗ − h)>(µ̂k − µ)| ≤ ∆h

8
(47)

• if h ∈ Sk,

|(h∗ − h)>(µ̂k − µ)| ≤ 2−k+1n

8
. (48)

Then, the following hold:
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1.

h̃k ∈ Sk+2, (49)

2. if h ∈ Sck

|(h̃k − h)>µ̂k − (h∗ − h)>µ| ≤ 1

2
∆h. (50)

3. if h ∈ Sk,

|(h̃k − h)>µ̂k − (h∗ − h)>µ| ≤ 1

2
2−k+1n. (51)

4. There exist universal constants c, c′ > 0 such that

cE[sup
h∈H

(h̃k − h)>A(λ)−1/2ζ

∆h + 2−k+1n
]2 ≤ E[sup

h∈H

(h̃k − h)>A(λ)−1/2ζ

(h̃k − h)>µ̂k + 2−k+1n
]2

≤ c′E[sup
h∈H

(h̃k − h)>A(λ)−1/2ζ

∆h + 2−k+1n
]2

Lemma 4. Let V = {v1, . . . , vl} ⊂ Rd with 0 ∈ V . Suppose ai ≥ 1 for all i ∈ [l]. Then,

Eζ∼N(0,I)[ sup
vi∈V

v>i ζ] ≤ Eζ∼N(0,I)[ sup
vi∈V

aiv
>
i ζ]

I. Efficient Fixed Budget Algorithm

Algorithm 5 Fixed Budget ACED for Combinatorial Bandits (Computationally Efficient).
Input: Budget T , tolerance ε > 0.
µ̂1 = 0 ∈ Rd, N ←−

⌊
T/ log2(nε−1)

⌋
.

for k = 1, 2, . . . ,
⌊

log2(dε−1)
⌋

do

h̃k ←− arg maxh∈H µ̂
>
k h

Let λ(1)
k be the solution of the following optimization problem

inf
λ∈4

Eζ∼N(0,I)[max
h∈H

(h̃k − h)>A(λ)−1/2ζ

2−k+1n+ µ̂>k (h̃k − h)
]2 (52)

Let λ(2)
k be the solution to

inf
λ∈4

max
h∈H

max
i∈h̃k∆h

1
λi

2−k+1n+ µ̂>k (h̃k − h)
(53)

λk ←− 1
2
(λ

(1)
k + λ

(2)
k )

Sample {x1, . . . , xN} ∼ λk.
Query x1, . . . , xN and receive rewards y1, . . . , yN .
Let µ̂k+1 = 1

N

∑N
s=1 A(λ)−1xsys.

end for
Return arg maxh∈H µ̂

>
k+1h

In this section, we present Algorithm 5, which can be implemented in practice. Algorithm 5 resembles Algorithm 4 with two
differences. First, it uses the IPS estimator instead of the theoretical estimator derived in the proof of Theorem 6. Second, it
mixes the design (given in used in (23)) with the design defined in (53) in order to control the worst-case deviations of the
IPS estimator.
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Now, we briefly discuss why Algorithm 5 can be efficiently implemented. As is standard in combinatorial bandits, we
assume access to a linear maximization oracle: for any v ∈ Rd, we can compute

Oracle(v) = arg max
z∈Z

v>z

efficiently.2 (Katz-Samuels et al., 2020) gave a procedure for efficiently solving (52) up to a constant factor assuming

a linear maximization oracle, and so we focus on (53). Define the function g(λ) = maxi∈h̃k∆h

1
λi

2−k+1n+µ̂>k (h̃k−h)
. g is

convex since it is the maximum of a collection of convex functions. One can compute the subgradient of g using the linear
maximization oracle. For each i ∈ h̃k, one can compute

max
h:i 6∈h

µ̂>k h

by defining

µ̃
(i)
j =

{
µ̃j j 6= i

−∞ j = i

and use the linear maximization oracle to compute maxh h
>µ̃(i). Using a similar technique, for each i 6∈ h̃k, one can

compute

max
h:i∈h

µ̂>k h.

Then, using a standard result about subgradients, we have that ∂g(λ) consists of ∂
∂λ

1
λ
ĩ

µ̂>k (h̃k−h)
where ĩ and h attain the

maximum in

max
h∈H

max
i∈h̃k∆h

1
λi

2−k+1n+ µ̂>k (h̃k − h)
.

Thus, using this trick for computing the subgradient and any optimization procedure for nonsmooth convex optimization, we
can optimize (53). In Theorem 7, for the sake of simplicity and focusing on the key ideas, we suppose that (52) and (53) are
solved exactly, but using the optimization ideas laid out here would only affect the sample complexity up to constant factors.

The following complexity parameter is a key term in Theorem 7:

ψ∗(ε) := min
λ∈4

max
h∈H\{h∗}

max
i∈h∗∆h

1
λi

max(ε, µ>(h∗ − h))
.

Theorem 7. Let T ∈ N and ε > 0. If T ≥ c1 log(nε−1)[γ∗(ε) + ρ∗(ε) + ψ∗(ε) log(|H|) log(log(|H|))] , then Algorithm 5
satisfies

P(µ>ĥ+ ε < µ>h∗) ≤ c2 log(nε−1)2 exp(− T − log(|H|) log(log(|H|))ψ∗(ε)
log(nε−1)[γ∗(ε) + ρ∗(ε) + ψ∗(ε)]

)

where c1, c2 > 0 are universal constants.

Proof of Theorem 7. Let α > 0 be a universal constant that will be specified later. Let δ > 0 such that

T = α log(nε−1)[log(1/δ)(γ∗(ε) + ρ∗(ε) + ψ∗(ε)) + ψ∗(ε) log(|H|) log(log(|H|))],

which exists since by assumption T ≥ c log(nε−1)[γ∗(ε) + ρ∗(ε) + ψ∗(ε) log(|H|) log(log(|H|))]. Note that

N = log(1/δ)α(γ∗(ε) + ρ∗(ε) + ψ∗(ε)) + ψ∗(ε) log(|H|) log(log(|H|)). (54)

2In the setting of active classification, this is equivalent to assuming a weighted 0/1 loss minimization oracle.
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Recall µ̂k = 1
NA(λ)−1

∑N
s=1 xIsys and

Sk = {h ∈ H : ∆h ≤ n2−k+1}.

Note that S0 = H since µ ∈ [−1, 1] by assumption. Define the event at round k for l ∈ [k] ∪ {0},

Ek,l ={ sup
h,h′∈Sl

|(h− h′)>(µ̂k − µ)|) ≤

c[E[ sup
h∈Sl

h>A(Nλ)−1/2ζ] + (log(log(|Sl|)) log(|Sl|) + log(1/δ))
maxh,h′∈Sl maxi∈h∆h′

1
λi

N

+
∥∥∥h− h′∥∥∥

A(Nλ)−1

√
log(1/δ))}

Define Ek = ∩kl=0Ek,l and E = ∩log2(nε−1)
k=1 Ek. Now, using the law of total probability, the independence of samples between

rounds, and Lemma 5

P(Ec) ≤
∑
k≥1

k∑
l=0

P(Eck,l| ∩k−1
j=1 Ej) ≤ log(nε−1)2δ.

Suppose that E occurs for the remainder of the proof. Note that using the same series of inequalities as in (27)-(29), we have
that

sup
h,h′∈Sl

|(h− h′)>(µ̂k − µ)|) ≤

c′[
√

log(1/δ))E[ sup
h∈Sl

h>A(Nλ)−1/2ζ] + (log(log(|Sl|)) log(|Sl|) + log(1/δ))
maxh,h′∈Sl maxi∈h∆h′

1
λi

N
]

We argue inductively that at every round k ≥ 2

1. for all h ∈ Sck,

|(h∗ − h)>(µ̂k − µ)| ≤ ∆h

8

2. for all h ∈ Sk,

|(h∗ − h)>(µ̂k − µ)| ≤ 2−k+1n

8
.

Claim: Base Case. Let k = 2. Then, the event E2,0 implies that

sup
h∈H

|(h∗ − h)>(µ̂k − µ)|)
2−1n

≤ sup
h,h′∈H

|(h− h′)>(µ̂k − µ)|)
2−1n

≤ 1

2−1n
c′[
√

log(1/δ))E[sup
h∈H

h>A(Nλ)−1/2ζ] + (log(|H|) + log(1/δ))
maxh,h′∈Hmaxi∈h∆h′

1
λi

N
]

=
1

2−1n
c′[

√
log(1/δ)E[suph∈H h

>A(λ)−1/2ζ]2

log(1/δ)α[γ∗(ε) + ρ∗(ε)]
+ (log(|H|) + log(1/δ))

maxh,h′∈Hmaxi∈h∆h′
1
λi

αψ∗(ε)(log(log(H)) log(H) + log(1/δ))
].

(55)
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where the last line follows by (54). Recall that λ1 = 1
2 (λ

(1)
1 + λ

(1)
2 ) where λ(1)

1 is the minimizer of (52) and λ(1)
1 is the

minimizer of (53). We have that

E[sup
h∈H

h>A(λ1)−1/2ζ

2−1n
]2 ≤ 4E[sup

h∈H

h>A(λ
(1)
1 )−1/2ζ

2−1n
]2 (56)

= 4 min
λ

E[sup
h∈H

h>A(λ)−1/2ζ

2−1n
]2 (57)

≤ c[γ∗(ε) + ρ∗(ε)] (58)

(56) follows by sudakov-fernique inequality since A(λ1) � 1
2A(λ

(1)
1 ) implies that

√
2A(λ

(1)
1 )−1/2 � A(λ1)−1/2. Line

(57) follows by definition of λ(1)
1 . Finally, (58) follows by the same series of inequalities that established (46).

Fix h, h′ ∈ H. Then, if i ∈ h∆h′, then either i ∈ h∆h∗ or i ∈ h′∆h∗. Thus,

max
h,h′∈H

max
i∈h∆h′

1
λ1,i

2−1n
≤ 2 max

h∈H\{h∗}
max
i∈h∆h∗

1
λ1,i

2−1n

≤ 4 max
h∈H\{h∗}

max
i∈h∆h∗

1

λ
(2)
1,i

2−1n
(59)

= 8 min
λ

max
h∈H\{h∗}

max
i∈h∆h∗

1
λi

2n
(60)

≤ cψ∗(ε) (61)

where (59) follows by definition of λ1, (60) follows by definition of λ(2)
1 , and (61) follows by definition of ψ∗(ε) and since

for all h ∈ H \ {h∗}, ∆h ≤ 2n.

Then, putting together (55), (58), and (61), we have that if the universal constant α is large enough, then

sup
h,h′∈H

|(h− h′)>(µ̂k − µ)|)
2−1n

≤ 1

8

this proves the base case.

Claim: Inductive Step. Suppose that at round k ≥ 2

1. for all h ∈ Sck,

|(h∗ − h)>(µ̂k − µ)| ≤ ∆h

8

2. for all h ∈ Sk,

|(h∗ − h)>(µ̂k − µ)| ≤ 2−k+1n

8
.

Now, we prove the statement for round k + 1. Let l ∈ [k + 1]. Using Ek+1,l, we have that

suph,h′∈Sl |(h− h
′)>(µ̂k+1 − µ)|

2−ln
≤ c

√
log(1/δ)E[ sup

h∈Sl

h>A(Nλk)−1/2ζ

2−ln
]2 (62)

+(log(log(|Sl|)) log(|Sl|) + log(1/δ))
maxh,h′∈Sl maxi∈h∆h′

1/λk,i
2−ln

N
(63)
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Bounding the first term, we have that

√
log(1/δ)E[ sup

h∈Sl

h>A(Nλk)−1/2ζ

2−ln
]2 ≤ c′

√
log(1/δ)

E[suph∈Sl
(h̃k−h)>A(λk)−1/2ζ

2−l+2n
]2

N

≤ c′′

√
log(1/δ)

E[suph∈Sl
(h̃k−h)>A(λk)−1/2ζ

∆h+2−k+1n
]2

N
(64)

≤ c′′

√
log(1/δ)

E[suph∈H
(h̃k−h)>A(λk)−1/2ζ

∆h+2−k+1n
]2

N
(65)

≤ c′′′

√√√√
log(1/δ)

E[suph∈H
(h̃k−h)>A(λk)−1/2ζ

(h̃k−h)>µ̂k+2−k+1n
]2

N
(66)

Since h̃k ∈ Sl by Lemma 3 and for all h ∈ Sl−1, 2−l+2n ≥ ∆h + 2−k+1n„ we may apply Lemma 4 to obtain line (64).
(66) follows since we assumed Ek holds and Lemma 3. Using a similar series of inequalities to Step 3 in the proof of
Theorem 3, we have that

√
log(1/δ)E[ sup

h∈Sl

h>A(Nλk)−1/2ζ

2−ln
]2 ≤ c′′′

√√√√
log(1/δ)

E[suph∈H
(h̃k−h)>A(λk)−1/2ζ

(h̃k−h)>µ̂k+2−k+1n
]2

N

≤ c′′′′

√√√√
log(1/δ)

E[suph∈H
(h̃k−h)>A(λ

(1)
k )−1/2ζ

(h̃k−h)>µ̂k+2−k+1n
]2

N
(67)

= c′′′′min
λ

√√√√
log(1/δ)

E[suph∈H
(h̃k−h)>A(λ)−1/2ζ

(h̃k−h)>µ̂k+2−k+1n
]2

N
(68)

≤ c′′′′′
√

log(1/δ)
ρ∗(ε) + γ∗(ε)

N
(69)

≤ 1

32
(70)

where (67) follows by Sudakov-Fernique inequality and the definition of λk, (68) follows by the definition of λ(1)
k , (69)

follows by the same series of inequalities used to establish (46), and the last line follows by plugging in (54) and letting α
be a large enough universal constant.
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Now, we bound the second term. We have that

max
h,h′∈Sl

max
i∈h∆h′

1/λk,i
2−ln

≤ 2 max
h∈Sl

max
i∈h̃k∆h

1/λk,i
2−ln

≤ 4 max
h∈Sl

max
i∈h̃k∆h

1/λk,i
2−k+1n+ ∆h

(71)

≤ cmax
h∈Sl

max
i∈h̃k∆h

1/λk,i

2−k+1n+ µ̂>k (h̃k − h)
(72)

≤ cmax
h∈H

max
i∈h̃k∆h

1/λk,i

2−k+1n+ µ̂>k (h̃k − h)

≤ c′max
h∈H

max
i∈h̃k∆h

1/λ
(2)
k,i

2−k+1n+ µ̂>k (h̃k − h)

= c′min
λ

max
h∈H

max
i∈h̃k∆h

1/λi

2−k+1n+ µ̂>k (h̃k − h)
(73)

≤ c′′min
λ

max
h∈H

max
i∈h̃k∆h

1/λi
2−k+1n+ ∆h

(74)

≤ c′′min
λ

max
i∈h̃k∆h∗

1/λi
2−k+1n+ ∆h̃k

+ max
h∈H

max
i∈h∗∆h

1/λi
2−k+1n+ ∆h

(75)

≤ c′′′min
λ

max
h∈H

max
i∈h∗∆h

1/λi
2−k+1n+ ∆h

≤ c′′′ψ∗(ε)
(76)

where in (71) we used that since for all h ∈ Sl, 2−ln ≥ 2−k+1n+∆h

2 and and in (72) we used the inductive hypothesis and
Lemma 3 and in (73), we used the definition of λ(2)

k , and in (74) we used the inductive hypothesis and Lemma 3, and finally
in (75) we used if i ∈ h̃k∆h, then either i ∈ h∗∆h or i ∈ h̃k∆h∗.

Thus,

(log(log(|Sl|)) log(|Sl|) + log(1/δ))
maxh,h′∈Sl maxi∈h∆h′

1/λk,i
2−ln

N
≤ c′′′(log(log(|Sl|)) log(|Sl|) + log(1/δ))

ψ∗(ε)

N
(77)

≤ 1

32
(78)

where the last line follows by plugging in (54) and letting α be a large enough universal constant. Then, putting together
(63), (70), and (78) yields for every l ∈ [k + 1] ∪ {0}

suph,h′∈Sl |(h− h
′)>(µ̂k+1 − µ)|

2−ln
≤ 1

16

Using the same series of inequalities used to establish (35) and (36) completes the inductive step.

Correctness. This argument is the same as in the correctness step in the proof of Theorem 6

I.1. Lemmas

In this Section, we prove the main concentration inequality, Lemma 5, that is used in the proof of Theorem 7. We need the
following definition for the proof of Lemma 5.
Definition 2. Fix a set T ⊂ Rn. Let d be a metric on Rn. The γ1-functional of T is defined as

γ1(T, d) = inf
(Tk)

sup
t∈T

∞∑
k=0

2kd(t, Tk)
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where the infimum is taken over all admissible sequences of T .

Lemma 5. Let G ⊂ H. Fix some λ ∈ 4n and draw {xs}ti=1 ∼ λ and then observe ys with mean x>s µ and |yi| ≤ 1 with
probability 1 for s = 1, . . . , t. Then, there exists a universal constant c > 0 such that for any u > 0 with probability at most
exp(−u)

sup
h,h′∈G

|(h− h′)>(
1

t
A(λ)−1

t∑
s=1

xIsys − µ)| ≤

c[E[sup
h∈G

h>A(tλ)−1/2ζ] + (log(log(|G|)) log(|G|) + u)
maxh,h′∈G maxi∈h∆h′

1
λi

t

+
∥∥∥h− h′∥∥∥

A(tλ)−1

√
u]

Proof. Using Corollary 7.9 of (Ledoux, 2001), we have that with probability at least 1− exp(−u),

sup
h,h′∈G

|(h− h′)>(
1

t
A(λ)−1

t∑
s=1

xIsys − µ)| ≤

c[E[ sup
h,h′∈G

|(h− h′)>(
1

t
A(λ)−1

t∑
s=1

xIsys − µ)|] + u
maxh,h′∈G maxi∈h∆h′

1
λi

t

+
∥∥∥h− h′∥∥∥

A(tλ)−1

√
u). (79)

Using the standard technique of symmetrization, we have that

E[ sup
h,h′∈G

|(h− h′)>(
1

t
A(λ)−1

t∑
s=1

xIsys − µ)|] ≤ 2Eε1,...,εt [ sup
h,h′∈G

|(h− h′)>(
1

t
A(λ)−1

t∑
s=1

xIsεs|] (80)

where ε1, . . . , εt are Rademacher random variables. By Bernstein’s inequality, we have that

P(|(h− h′)>(
1

t
A(λ)−1

t∑
s=1

xIsεs| ≥ u) ≤ 2 exp(−c u2∥∥∥h− h′∥∥∥2

A(tλ)−1

,
u

maxi∈h∆h′
1
tλi

). (81)

Define the set G̃ = {A(λ)−1h : h ∈ G}. Then, using (81) and applying Theorem 2.2.23 of (Talagrand, 2014), we have that

E[ sup
h,h′∈G

|(h− h′)>(
1

t
A(λ)−1

t∑
s=1

xIsεs|] ≤ c[γ2(G̃, d2) + γ1(G̃, d1)] (82)

where d2 is the metric induced by
∥∥∥ · ∥∥∥

2
and d1 is the metric induced

∥∥∥ · ∥∥∥
∞

. Using Talagrand’s majorizing measure theorem
(Theorem 8.6.1 in (Vershynin, 2019)), we have that

γ2(G̃, d2) ≤ cEζ∼N(0,I)[sup
h∈H

h>A(λ)−1ζ]. (83)

From the definition of γ1, it follows trivially that

γ1(G̃, d1) ≤ log(log(|G|)) log(|G|)
maxh,h′∈G maxi∈h∆h′

1
λi

t
. (84)

Finally, putting together (79), (80), (82), (83), and (84), we obtain the result.
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J. Thresholds
Let n be a power of 2. Let H = {e[k] : k ∈ [n]} where [eA]i = 1{i ∈ A}. Assume that µ∗ ∈ ε(2e[k?] − 1) for some
k? ∈ [n]. Then

γ∗ := inf
λ

E
[

sup
h∈H

〈h− h?, µ̂− µ∗〉
〈h− h?, µ∗〉

]2

= inf
λ

E
[

sup
h∈H

〈h− h?, A(λ)−1/2ζ〉
〈h− h?, µ∗〉

]2

= inf
λ

E

 sup
k>k?

∑k
i=k?+1

ζi√
λi

(k − k?)h
∨ sup
k<k?

∑k?
i=k+1

ζi√
λi

(k? − k)h

2

≤ inf
λ

4

ε2
E

[
max

k=1,...,n

1

k

k∑
i=1

ζi√
λi

]2

.

and

max
k=1,...,n

1

k

k∑
i=1

ζi√
λi

= max
j=0,...,log2(n)

max
k=[2j ,2j+1)

1

k

k∑
i=1

ζi√
λi

≤ max
j=0,...,log2(n)

max
k=[2j ,2j+1)

1

2j

k∑
i=1

ζi√
λi

= max
j=0,...,log2(n)

 1

2j

2j−1∑
i=1

ζi√
λi

+ max
k=[2j ,2j+1)

1

2j

k∑
i=2j

ζi√
λi


≤ max
j=0,...,log2(n)

 1

2j

2j−1∑
i=1

ζi√
λi

+ max
j=0,...,log2(n)

(
max

k=[2j ,2j+1)

1

2j

k∑
i=2j

ζi√
λi

)
.

We now take λi = 1
i log2(n) . Note that

∑n
i=1 λi ≥ 1/2 and for any k > 1 we have

∑k−1
i=1

1
λi
≤ k2 log2(n)/2.

For any ν we have

E

exp

ν 1

2j

2j−1∑
i=1

ζi√
λi

 = exp

ν2 1

22j

2j−1∑
i=1

1

λi

 ≤ exp
(
ν2 log2(n)/2

)
so we apply Proposition 1 with σ2

t = log2(n) and T = {0, 1, . . . , log2(n)} to obtain

E

 max
j=0,...,log2(n)

 1

2j

2j−1∑
i=1

ζi√
λi

 ≤√2 log2(n) log(log2(2n)).

The second term deserves a bit more care. First, note that

max
j=0,...,log2(n)

(
max

k=[2j ,2j+1)

1

2j

k∑
i=2j

ζi√
λi

)
≤ max
j=0,...,log2(n)

(
max

k=[2j ,2j+1)

√
2 log2(n)

2j

k∑
i=2j

ζi

)

= max
j=0,...,log2(n)

(
max

k=1,...,2j

√
2 log2(n)

2j

k∑
i=1

ζ
(j)
i

)
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where each {ζ(j)
i }2

j

i=1 are i.i.d. sequences of N(0, 1). Now

P

(
max

j=0,...,log2(n)

(
max

k=1,...,2j

√
2 log2(n)

2j

k∑
i=1

ζ
(j)
i

)
> t

)

≤
∑

j=0,...,log2(n)

P

(
max

k=1,...,2j

√
2 log2(n)

2j

k∑
i=1

ζ
(j)
i > t

)

≤
∑

j=0,...,log2(n)

exp(−t2/4 log2(n))

= log2(2n) exp(−t2/4 log2(n))

where the last inequality follows from Doob’s maximal inequality. Thus,

E

[
max

j=0,...,log2(n)

(
max

k=1,...,2j

√
2 log2(n)

2j

k∑
i=1

ζ
(j)
i

)]

≤
∫ ∞
t=0

P

(
max

j=0,...,log2(n)

(
max

k=1,...,2j

√
2 log2(n)

2j

k∑
i=1

ζ
(j)
i

)
> t

)
dt

≤
∫ ∞
t=0

min{1, log2(2n) exp(−t2/4 log2(n))}dt

≤ a+ log2(2n)
√

4π log2(n)

∫ ∞
t=a

1√
4π log2(n)

exp(−t2/4 log2(n))}dt

≤ a+ log2(2n)
√

4π log2(n) exp(−a2/4 log2(n))}

≤
√

4 log2(n) log(log2(2n)) +
√

4π log2(n)

for a =
√

4 log2(n) log(log2(2n)).

Putting it all together we have

γ∗ ≤ 4

ε2

(√
2 log2(n) log(log2(2n)) +

√
4 log2(n) log(log2(2n)) +

√
4π log2(n)

)2

≤ 194 log2(n) log(log2(2n))

ε2

K. Implementation Details
In this section we discuss the modifications and implementation details of Algorithm 2. We consider the slightly modified
version present in Algorithm 9.

K.1. Optimization

First, we reiterate the following definition from Section 4.2:

f(λ;h; ζ) :=

∑
i∈[n](h̃k(xi)− h(xi))

ζi

nλ
1/2
i

2−k+1 + ẽrr(h, η̂k−1)− ẽrr(h̃k, η̂k−1)
.

K.1.1. MIRROR DESCENT

In Algorithm 2, we need to solve the optimization problem in (5), namely,

inf
λ∈∆n

Eζ∼N(0,I)[max
h∈H

f(λ;h; ζ)].



Improved Algorithms for Agnostic Pool-based Active Classification

We use stochastic mirror descent method. Specifically, given a current iterate λ̂ and an i.i.d. sample ζ1, · · · , ζB we computed
an unbiased estimate of the sub-gradient

g(λ̂) =
1

B

B∑
i=1

∇λ max
h∈H

f(λ;h; ζi)
∣∣∣
λ=λ̂

,

and then move to λ̂+ = Π(exp(log(λ̂)− ηg(λ̂))) where Π(x) = x/‖x‖1 and log, exp are applied element-wise. The step
size η is chosen by back-tracking line search where two step sizes are equivalent if the difference in estimated function
values is dominated by the the square root of the empirical variance, with respect to the finite batch size estimates.

The batch size was grown adaptively. Let f̄(λ) = Eζ∼N(0,I)[maxh∈H f(λ;h; ζ)], λ∗ ∈ arg minλ f̄(λ) and suppose the
algorithm is at some current configuration λ̂. By convexity of f̄ we have

f̄(λ̂)− f̄(λ∗) ≤ 〈∇f̄(λ̂), λ̂− λ∗〉

= 〈∇f̄(λ̂)− g(λ̂), λ̂− λ∗〉+ 〈g(λ̂), λ̂− λ∗〉

≤ 2 max
k

∣∣[∇f̄(λ̂)− g(λ̂)]k
∣∣+ max

k
〈g(λ̂), λ̂− ek〉

≈ 2 max
k

σ̂k + max
k
〈g(λ̂), λ̂− ek〉

where σ̂2
k is the empirical variance of [g(λ̂)]k, namely, the sample variance of {[∇λ maxh∈H f(λ;h; ζi)

∣∣∣
λ=λ̂

]k}Bi=1 divided

by B. Note that σ̂k = O(1/
√
B). Thus, we double the batch size B 7→ 2B whenever 2 maxk σ̂k ≥ maxk〈g(λ̂), λ̂− ek〉.

This also motivates our stopping condition: for input ε, terminate when 2 maxk σ̂k + maxk〈g(λ̂), λ̂− ek〉 ≤ ε. Because B
is increasing over time, this stopping condition will always, eventually, be met.

For a fixed ζi, to compute the corresponding gradient, we computed h̄ = arg maxh∈H f(λ;h; ζ) and used the fact that
∇λ maxh∈H f(λ;h; ζ) = ∇λf(λ; h̄; ζi). As described in the next section, finding h̃ is difficult due to the use of surrogate
loss functions. We provide a line search method, LineSearch(λ, ζ), that finds an approximate value for it. Together, the full
optimization is as follows:

Algorithm 6 SMD(h̃k, η̂k−1).

Goal: Solve for maxλ Eζ∼N(0,I)[f(λ;h; ζ)], where f inherently depends on h̃k and η̂k−1.
Input: Tolerance ε for stopping criteria.
Initialize: λ̂←− 1

d
1.

repeat
Sample ζ1, ..., ζB ∼ N(0, I).
Compute h̄i = LineSearch(λ̂, ζi) for all i ∈ [B] and their corresponding gradient estimates∇λf(λ̂; h̄i, ζi).
g(λ̂)←− 1

B

∑B
i=1∇λf(λ̂; h̄i, ζi).

λ̂←− Π(exp(log(λ̂)− ηg(λ̂))) where η is chosen as described above.
if 2 maxk σ̂k ≥ maxk〈g(λ̂), λ̂− ek〉 then
B ←− 2B.

end if
until 2 maxk σ̂k + maxk〈g(λ̂), λ̂− ek〉 ≤ ε

K.1.2. LINE SEARCH

Then, computing maxh∈H f(λ;h; ζ) is equivalent to

min
r∈R+

r subject to g(r) ≤ 0

where a = −2−k+1 −
∑
i∈[n](1− 2η̂k,i)h̃k(xi), b =

∑
i∈[n]

ζ

nλ
1/2
i

h̃k(xi), ci = 1− 2η̂k−1,i, di = − ζ

nλ
1/2
i

and

g(r) = ar + b+ max
h∈H

∑
i∈[n]

(cir + di)h(xi).
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In particular at the optimal value of r, called r∗, arg maxh∈H f(λ;h; ζ) = arg maxh∈H g(r∗).

As shown in Section 4.2, given access to a weighted classification oracle, computing maxh∈H
∑
i∈[n](cir + di)h(xi) is

equivalent to a 0/1-loss minimization problem that is solvable using a weighted classification oracle. If we had such an oracle
then since g(r) is monotonically decreasing as a function of r we can use a binary search procedure to solve this optimization
problem. Indeed, for any given range [rmin, rmax] where the optimal r lies in, we are checking if g( rmin+rmax

2 ) ≤ 0. If that
is the case, we just set rmin ← rmin+rmax

2 , otherwise, we set rmax ← rmin+rmax

2 . We then check the sign of g( rmin+rmax

2 )
again and repeat this procedure until a sufficient tolerance is met.

However, in practice, we do not have access to a weighted 0/1 loss oracle and must employ a convex surrogate loss that may
not correctly solve the weighted classification problem. To be concrete, in all of our experiments we used Scikit-learn’s
LogisticRegression classifier. Given such a surrogate, which we denote as m̃axh∈H to acknowledge that it may not
find the optimal h, the resulting function

g̃(r) = ar + b+ m̃ax
h∈H

∑
i∈[n]

(cir + di)h(xi)

may no longer be monotonically decreasing in r hence a binary search procedure would fail. However intuitively it suffices
to look at a large enough set of r’s near a zero g̃(r). To overcome this issue, we used the procedure in Algorithm 8.

Algorithm 8 overcomes this issue by considering a large set of potential r values and for each value computing the
corresponding hr = arg max g̃(r) and stores these in the array S. It then returns arg maxh∈S f(λ;h; ζ). The set of r values
considered is chosen by a multi-scale procedure that looks at r values on a finer and finer geometric grid given a budget
Nmax.

Algorithm 7 Oracle(r, S).
Goal: Solve for m̃axh∈Har + b+

∑
i∈[n](cir + di)h(xi).

Compute h̄ = m̃axh∈H
∑
i∈[n](cir + di)h(xi) by the relaxed weighted classification oracle.

Set ĝ ← ar + b+
∑
i∈[n](cir + di)h̄(xi).

S ← S ∪ {h̄}.
Return: ĝ, S.

Algorithm 8 LineSearch(λ, ζ).
Goal: Solve for maxh∈H f(λ;h; ζ).
Input: fixed λ and ζ; maximum number of iterations Nmax; tolerance ε.
Initialize: S ← {}, r ← 100, γ ← 10, δ ←

√
2, and t← 0.

ĝ, S ← Oracle(r, S).
while ĝ < 0 and t < Nmax do
r ← r/2. {r is too large}
ĝ, S ← Oracle(r, S).
t← t+ 1.

end while
for j = t, ..., Nmax − 1 do
ĝ, S ← Oracle(r, S).
if ĝ > 0 then
r ← γ · r. {r is too small, need to increase r so that ĝ decreases.}

else
r ← r/γ2. {Reaches a point where r is too large, scale back.}
γ ← γ/δ. {Start searching with a finer grid scale.}

end if
end for
Return: arg maxh∈S f(λ;h; ζ).

K.2. Sampling

The last portion of our algorithm is the sampling scheme. The algorithm described in Algorithm 2 does not reuse samples
between rounds to compute an estimate for η̂k. In practice, this can be very wasteful and we instead want an estimator
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based on all samples up to and including those taken in round k. In each round the algorithm computes λk with the goal of
λk ≈ λ∗ for large enough values of k to ensure that we are sampling from the optimal distribution in that round. Hence,
since we are recycling samples, we need to ensure that the distribution of all samples taken by the end of round k, including
those in previous rounds, match λk.

To ensure those, we use a waterfulling technique. We set p1 = λ1 and then for each k ≥ 1 we set

pk = arg min
q∈∆n

max
j≤n

max{0, k · λk,j − (

k−1∑
i=1

pi,j)− qj}. (85)

Our algorithm being implemented is shown below:

Algorithm 9 Fixed Budget ACED with Waterfilling.
Input: Budget T , tolerance ε > 0, batch size N (default 250).
η̂0 ←− 0

for k = 1, 2, . . . ,
⌊

log2(ε−1)
⌋

do

h̃k ←− arg minh∈H ẽrr(h, η̂k−1).
Optimization
λk ←− SMD(h̃k, η̂k−1).
Sampling
Sample till observing N unique {x(k)

1 , . . . , x
(k)
N } ∼ pk that has not been queried before (from rounds 1, ..., k − 1).

Query x1, . . . , xN and observe y1, . . . , yN .
Compute an estimate η̂k with the naive estimator η̂(Naive)

k as defined in Section 5.
end for
Return: arg minh∈H ẽrr(k)

(h)

K.3. Batched IWAL

In this section we explain our implementation of the IWAL algorithm(Beygelzimer et al., 2010) (and variants such as
IWAL1 and oracular variants) for streaming active algorithms. In round k we assume access to a (labeled) dataset
Sk−1 = {(xi, yi, pi)nki=1} ⊂ X × {±1} × [0, 1], with nk ≤ k. Given a new point from a stream, xk, the decision to label
xk is made by computing two hypothesis. Firstly we compute

hk = arg min
h∈H

nk∑
i=1

1{h(xi) 6= yi}
pi

and second we compute

h′k = arg min
h∈H

hk(xk)6=h′k(xk)

nk∑
i=1

1{h(xi) 6= yi}
pi

.

Thus to compute h′k we need access to a weighted classification oracle for 0/1 loss that can handle a single constraint.

In general including the constraint hk(xk) 6= h′k(xk) is not easy for arbitrary classes and past methods have considered the
optimization

arg min
h∈H

nk∑
i=1

1{h(xi) 6= yi}
pi

+ q1{h(xk) 6= hk(xk)}

for a sufficiently large weight q ∈ R to ensure the constraint(Karampatziakis & Langford, 2010) .

However in the case of linear classes under the surrogate convex logistic loss, the main focus of experiments in this paper,
we take a different approach. Assume that X ⊂ Rp and that H = {h(x) = w>x+ b : w ∈ Rp, b ∈ R}. W.l.o.g. assume
that hk(xk) = −1. Under this convex relaxation, we seek a classifier where w>xk + b = ε, where ε ≥ 0 i.e. the linear
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predictor flips the predicted sign of xk and has margin ε. Thus we learn (an approximate) h′k by solving

min
w∈Rp,b∈R
w>x+b=ε

nk∑
i=1

1

pi
log(1 + exp(−yi(w>x+ b))) = min

w∈Rp

nk∑
i=1

1

pi
log(1 + exp(−yi(w>xi − w>xk + ε)))

= min
w∈Rp

nk∑
i=1

1

pi
log(1 + exp(−yi(w>(xi − xk) + ε)))

This is a convex optimization problem with no constraints that is easily solvable using a procedure for logistic regression
where we assume that the intercept is some ε with really small magnitude.

L. Full Scale Plots for Performances on the Pool
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Figure 5. Full scale of Figure 1
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Figure 6. Full scale of Figure 2
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Figure 7. Full scale of Figure 4
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Figure 8. Full scale of Figure 3

M. Hyperparameters for Baselines
We searched in the following C0 that uses the same grid fineness as (Huang et al., 2015):

Baseline MNIST SVHN FashionMNIST CIFAR
IWAL-0&1 10−7, 10−6, ..., 1 10−7, 10−6, ..., 1 10−8, 10−7, ..., 1 10−7, 10−6, ..., 1

ORA-IWAL-0&1 N/A 10−4, 10−3, ..., 10−1 10−8, 10−7, ..., 1 10−4, 10−3, ..., 10−1

OAC .001, .003, .01, .03 .01, .03, .1, .3 .001, .003, ..., 1 .001, .003, .01, .03

Table 1. Ranges of C0 searched for different experiments.
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Figure 9. Sensitivity of OAC to C0 on the CIFAR 2 vs 7 dataset (training accuracy).

We used the following amount of passes over dataset for the following baselines. For OAC, we made sure the number of
passes is sufficient enough so that the algorithm is no longer taking more queries.

Baseline MNIST SVHN FashionMNIST CIFAR
IWAL-0&1 and ORA-IWAL-0&1 1 (N/A for ORA variants) 2 2 2

OAC 5 10 10 10

Table 2. Ranges of C0 searched for different experiments.

For Vowpal Wabbit, we used an initial learning rate of 0.5 for CIFAR, and 1 for every other experiments.

N. Generalization Performance on Holdout Set
In the following figures, we show performances of the algorithms on a holdout test set. We note that there’s no algorithm
that is consistently the best among all four experiments, but ACED is consistently among the top two algorithms, and is the
best in two of the four experiments. We also reiterate that the OAC curves have stopped taking more queries at the end, so
their final accuracies are inferior than other algorithms in most cases.
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Figure 10. MNIST performance on test set
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Figure 11. SVHN performance on test set
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Figure 12. FashionMNIST performance on test set
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Figure 13. CIFAR performance on test set


