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Abstract
Deep learning models often raise privacy con-
cerns as they leak information about their train-
ing data. This leakage enables membership in-
ference attacks (MIA) that can identify whether
a data point was in a model’s training set.
Research shows that some data augmentation
mechanisms may reduce the risk by combatting
a key factor increasing the leakage, overfitting.
While many mechanisms exist, their effective-
ness against MIAs and privacy properties have
not been studied systematically. Employing two
recent MIAs, we explore the lower bound on
the risk in the absence of formal upper bounds.
First, we evaluate 7 mechanisms and differen-
tial privacy, on three image classification tasks.
We find that applying augmentation to increase
the model’s utility does not mitigate the risk and
protection comes with a utility penalty. Further,
we also investigate why popular label smooth-
ing mechanism consistently amplifies the risk.
Finally, we propose loss-rank-correlation (LRC)
metric to assess how similar the effects of differ-
ent mechanisms are. This, for example, reveals
the similarity of applying high-intensity augmen-
tation against MIAs to simply reducing the train-
ing time. Our findings emphasize the utility-
privacy trade-off and provide practical guidelines
on using augmentation to manage the trade-off.

1 Introduction

Deep learning has emerged as one of the cornerstones of
large-scale machine learning. However, its fundamental de-
pendence on data forces practitioners to collect and use
private information (Shokri & Shmatikov, 2015). This sit-
uation has given rise to privacy concerns as deep learn-
ing models are shown to leak information about their
data (Fredrikson et al., 2015; Yang et al., 2019; Carlini
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et al., 2018; Shokri et al., 2017). In particular, this enables
membership inference attacks (MIAs) to find out whether
a data point was in a model’s training set or not. MIAs of-
ten represent a serious privacy risk; for example, learning
that an individual was in a hospital’s diagnosis training data
also reveals that this individual was a patient there.

MIAs are possible when the adversary can distinguish be-
tween a model’s predictions on training set and test set
samples. Such leakage allows the adversary to infer which
samples were used for training the model. Although differ-
ential privacy (DP) provides a formal upper bound for this
risk, applying it often hurts the model’s utility (Abadi et al.,
2016), and its guarantees might be too conservative against
known attacks (Jayaraman & Evans, 2019). Searching for
the root causes of this vulnerability, researchers have pro-
posed overfitting as one factor (Yeom et al., 2017).

Overfitting causes a rift between a model’s performance on
the training samples and its generalization performance on
the test samples. On the other hand, data augmentation, i.e.,
generating new training samples from the existing ones, is
known to shrink this generalization gap (Szegedy et al.,
2016; Zhang et al., 2018; 2016). In consequence, prior re-
sults suggest that augmentation, as well as increasing the
utility, may also reduce the risk (Shokri et al., 2017; Sablay-
rolles et al., 2019; Yu et al., 2020). As utility is a key fac-
tor for the adoption of security mechanisms in practice,
this raises the intriguing prospect of a free lunch concern-
ing MIAs in deep learning. The abundance of augmenta-
tion methods (Simonyan & Zisserman, 2014; Xie et al.,
2016; DeVries & Taylor, 2017) and a lack of work studying
whether there really is a free lunch motivate our study.

Our first contribution is to systematically analyze the effec-
tiveness of data augmentation mechanisms against MIAs.
Data augmentation conventionally refers to randomly gen-
erating new training features, such as cropping, however,
we also evaluate techniques that modify the labels, such as
label smoothing (Szegedy et al., 2016). Unlike the theoret-
ical upper bound for leakage provided by DP, we explore
the lower bound that three practical MIAs can achieve.

We evaluate 7 popular data augmentation mechanisms us-
ing modern convolutional neural networks, on three pop-
ular image classification tasks: Fashion-MNIST, CIFAR-
10, and CIFAR-100. We find that (i) when augmentation is



solely applied for boosting the accuracy, with low-intensity,
it fails to achieve substantial protection against MIAs; (ii)
high-intensity augmentation, e.g., cropping 90% of an im-
age, hurts the accuracy but it also reduces the risk; (iii)
the popular label smoothing mechanism often increases the
accuracy and the risk simultaneously. Further, we observe
that the models trained with DP can still thwart MIAs even
when they provide meaningless privacy guarantees. How-
ever, augmentation still seems to be more practical by pro-
viding similar protection while causing less accuracy dam-
age. We believe our findings establish a guideline for prac-
titioners on using augmentation against MIAs.

Our second contribution is to investigate our findings on la-
bel smoothing (LS), which is a popular mechanism in deep
learning domains such as vision (Szegedy et al., 2016) and
language (Vaswani et al., 2017). We find that LS causes
models to overfit on smooth labels and leads to more uni-
form predictions on the training set than on the test set.
While this discrepancy gives more leverage to MIAs, why
LS boosts the accuracy is still under debate (Müller et al.,
2019; Meister et al., 2020). Moreover, we show that com-
bining LS with another mechanism still results in an ampli-
fied risk. These results imply that label smoothing is a hid-
den risk for practitioners as no other mechanism we evalu-
ate consistently amplifies the risk and the accuracy.

Our third contribution is to design a simple black-box met-
ric, loss-rank-correlation (LRC), for studying the similar-
ities between different mechanisms. Building on Spear-
man’s rank correlation coefficient (Spearman, 1904), LRC
quantifies the similarity between two models by correlating
their losses on the same set of samples. Our experiments
suggest that LRC is a reliable tool for capturing similari-
ties. For example, LRC reveals that Mixup (Zhang et al.,
2018) and Gaussian augmentation yield significantly dif-
ferent models than other mechanisms. Moreover, LRC also
shows that applying high-intensity augmentation to mit-
igate MIAs resembles reducing the number of iterations
(epochs) a model is trained for. This brings the benefits
of using augmentation defensively and the prospect of a
free lunch into question. Reducing epochs may offer sim-
ilar protection while being more practical, more computa-
tionally efficient.

For reproducibility and future research, we also re-
lease our source code at https://github.com/
yigitcankaya/augmentation_mia.

2 Related Work

Membership Inference Attacks (MIAs). MIAs have been
proposed to exploit the fundamental privacy flaws in deep
learning. Shokri et al. (2017); Salem et al. (2018) propose
MIAs based on training an inference model to distinguish

between a model’s predictions on training and test set sam-
ples. Yeom et al. (2017) propose a simpler, but equally ef-
fective, attack that infers membership by comparing the
model’s loss on a sample with the average training loss.
Following up on Yeom et al.’s work, Sablayrolles et al.
(2019) design more advanced attacks that compare with
carefully tuned loss thresholds. These studies have also
suggested that decreasing overfitting via data augmentation
may be effective against MIAs. The lack of comprehensive
evaluation on the effectiveness of augmentation, however,
prevents it from being considered as a countermeasure. We
use these attacks to evaluate various augmentation tech-
niques on modern tasks and investigate their effectiveness.

Overfitting in Deep Learning. Arpit et al. (2017) and
Zhang et al. (2016) have shown that deep learning models
can memorize random data and labels with almost perfect
accuracy, which highlights their capability to overfit to their
training data. The divergence between the model’s perfor-
mance on its training set and its test set is called the gener-
alization gap. Several studies have proposed data augmen-
tation techniques for shrinking this gap and improving gen-
eralization, such as label smoothing (Szegedy et al., 2016),
Mixup (Zhang et al., 2018), or random cropping (Simonyan
& Zisserman, 2014). We investigate the ties between aug-
mentation, generalization, and vulnerability to MIAs.

Deep Learning with Differential Privacy (DP). DP offers
a formal framework to measure and limit an algorithm’s
privacy leakage (Dwork, 2008). Building on this frame-
work, Abadi et al. (2016) have proposed the differentially
private stochastic gradient descent (DP-SGD) algorithm for
deep learning. DP-SGD, by clipping and adding noise to
the parameter updates, ensures that the leakage stays within
a privacy budget, ε. However, as DP focuses on the worst-
case leakage, Jayaraman & Evans (2019) have shown that
its guarantees might be too strict against practical MIAs.
We use DP as the gold standard to compare against as its
resilience against MIAs is backed by formal guarantees.

3 Experimental Setup

Datasets. We use three datasets for evaluation: Fashion-
MNIST (Xiao et al., 2017), CIFAR-10 and CIFAR-
100 (Krizhevsky et al., 2009). The Fashion-MNIST con-
sists of 28 × 28 pixels, gray-scale images of fashion items
drawn from 10 classes; containing 60,000 training and
10,000 validation images. The CIFAR-10 and CIFAR-100
consist of 32 × 32 pixels, colored natural images drawn
from 10 and 100 classes, respectively; containing 50,000
training and 10,000 validation images. We scale the pixel
values between 0 and 1 and train our baseline models with-
out any augmentation. These tasks represent different lev-
els of complexity and risk of overfitting; Fashion-MNIST
being the easiest and CIFAR-100 being the most difficult as
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it has a large number of classes and few samples per class.

Architectures and Hyperparameters. We experiment
with simple variants of VGG (Simonyan & Zisserman,
2014), a prototypical convolutional neural network (CNN)
architecture. For Fashion-MNIST, we use 4-layer CNNs
and for CIFAR-10 and CIFAR-100 we use 10-layer CNNs.
We train our models for 35 epochs using the ADAM op-
timizer (Reddi et al., 2019). We set the L2 weight decay
coefficient to 10−6 and the batch size to 128. Finally, we
repeat our experiments multiple times to compensate for
the randomness in training deep learning models.

Metrics. To quantify a model’s utility, we use its top-1 ac-
curacy on the validation set, Acc, as a percentage. Accu-
racy of an MIA, Inf , is the probability that the adversary
can guess correctly whether an input is from the training
set or not. Following the prior work (Shokri et al., 2017),
we apply the MIAs on a total of 10,000 data points—5,000
from the model’s training and test sets, each. Note that, on
this data set, a random guessing strategy will lead to 50%
Inf . To quantify the success of an MIA, we use the adver-
sary advantage metric (Yeom et al., 2017) as a percentage,
i.e., Adv = 2× (Inf − 50%). Finally, to quantify a mech-
anism’s impact on utility, we measure the relative accuracy
drop (RAD) over the baseline model’s accuracy.

4 Effectiveness of Data Augmentation

Setting. We consider the supervised learning setting and
the standard feed-forward deep neural network (DNN)
structure for classification. A DNN model, a classifier, is a
function, F , that maps a feature vector x, e.g., a natural im-
age, to an output vector ŷ, i.e., the vector of probabilities for
x belonging to each class. The model then classifies x into
the most likely class, i.e., argmaxi ŷ

i. The DNN’s parame-
ters are learned on an often private training set, S, contain-
ing multiple (x, y) pairs; where y is the ground-truth label
of sample x. During training, the parameters are updated to
minimize the loss L(ŷ, y), i.e., a measure of how off ŷ is
from y, on the samples in S. After training, F is evaluated
on previously unseen samples in the test set, D. Because of
their high capacity, modern DNNs usually overfit on S and
have a large generalization gap.

Attacks. Membership inference attacks (MIAs) aim to an-
swer whether a target sample, (xt, yt), was in S of Fv ,
the victim model, We use two black-box MIAs that rely
only on knowing Fv’s loss on the target sample, Lt =
L(Fv(xt), yt). These attacks exploit the observation that
overfitting causes Fv to produce a distinct loss distribution
on S. They first find a threshold, τ , then infer the sample’s
membership if Lt < τ . We opt for black-box attacks over
white-box ones for two reasons: (i) they are more realistic
for real-world scenarios and (ii) optimal MIAs only depend

on the loss function, thus black-box attacks are comparable
to white-box attacks (Sablayrolles et al., 2019).

The standard attack by Yeom et al. (2017) estimates Fv’s
average loss usingN training samples the adversary knows
of, i.e., τ = 1

N

∑N
i=1 L(Fv(xi), yi), where (xi, yi) ∈ S.

The more powerful attack by Sablayrolles et al. (2019) es-
timates τ that achieves the highest Adv using N samples
from S and N samples from D. We refer to the standard
attack’s adversary advantage as Advstd and the powerful
attack’s advantage as Advpow. We set N = 100 and, in
Appendix, we also evaluate N = 50 and N = 250 as
well. As expected, increasing N leads to stronger, albeit
less realistic, attacks; however, it does not change the over-
all trends we observe. Although augmentation modifies
training features or the labels, we assume that the adver-
sary only knows the unmodified (xt, yt). In Appendix, we
also evaluate augmentation-aware attacks, which is shown
to be effective against random data augmentation mecha-
nisms (Yu et al., 2020). We observe that these attacks often
perform similarly or worse than the powerful attack, espe-
cially when applying augmentation with high intensities.

4.1 Data Augmentation Mechanisms

We individually apply and evaluate the following mech-
anisms that, either randomly or deterministically, modify
(x, y) ∈ S based on their respective hyper-parameter.

Soft Labels (SL) (Hinton et al., 2015) supply probabilities
of a sample’s class memberships, e.g., (80% cat, 15% dog,
5% frog), compared to conventional hard labels that only
indicate a binary membership, e.g., in the cat class. We use
distillation from Hinton et al. (2015) to augment the given
hard labels as soft labels. We first train a teacher model, Ft,
with no augmentation. We then use the Ft’s output vectors,
ŷ, as the soft labels, i.e., ŷi = Ft(xi, T )|∀xi ∈ S. Here,
the temperature parameter T determines the flatness of the
soft labels; e.g., for T =1, (95% cat, 4% dog, 1% frog); for
T =10, (55% cat, 35% dog, 10% frog). Shokri et al. (2017)
suggest that soft labels may reduce the MIA risk. We train
augmented models with 1 ≤ T ≤ 1000.

Label Smoothing (LS) (Szegedy et al., 2016) also aug-
ments hard labels by attaching probability estimates. How-
ever, unlike soft labels, it simply assigns uniform probabil-
ities to other classes, e.g., (80% cat, 10% dog, 10% frog).
This popular mechanism improves performance on many
tasks (Müller et al., 2019). The parameter α controls the
smoothing intensity, e.g., for α=0.3, (80% cat, 10% dog,
10% frog); for α=0.6, (60% cat, 20% dog, 20% frog). We
train augmented models with 0.01 ≤ α ≤ 0.995

DisturbLabel (DL) (Xie et al., 2016) randomly replaces a
portion of labels in the training set with incorrect values in
each training iteration. The authors argue that this mecha-



nism prevents overfitting by implicitly averaging over ex-
ponentially many models that are trained with different la-
bel sets. Here, the ratio of the labels replaced is controlled
by the parameter θ, e.g., for θ=0.5, 50% of the training
labels in an iteration will be wrong. We train augmented
models with 0.01 ≤ θ ≤ 0.99

Random Cropping (RC) (Simonyan & Zisserman, 2014)
takes an x ∈ S and pads it with P zeros on each end, e.g., a
32×32 pixel image becomes (32+2P)×(32+2P). Then,
depending on the model’s input size, a random portion of
the padded input is cropped out and used as the training
sample, at each iteration. The parameter P controls how
much of the original x is kept in the augmented x, on aver-
age, e.g., for a 32× 32 image, P=10 crops out ∼30%, and
P=36 crops out∼17%. Especially for visual tasks, random
cropping has become a standard by leading to better fea-
tures and, therefore, increased performance. We train aug-
mented models with 1 ≤ P ≤ 38.

Cutout (CO) (DeVries & Taylor, 2017) occludes random
regions of sizeM×M of the training images, at each iter-
ation. The authors argue that this improves the robustness
and reduces overfitting. The parameterM controls the size
of the masked out region, on average, e.g., for a 32×32 im-
age,M=20 occludes ∼28%, andM=50 occludes ∼93%.
We train augmented models with 4 ≤M ≤ 52.

Gaussian Augmentation (GA) (Cohen et al., 2019) sim-
ply adds noise drawn from N (0, σ2I) to each x, at each
training iteration. Here, σ2, the variance, controls the in-
tensity of the added noise. The authors use Gaussian aug-
mentation to improve robustness against adversarial noise.
We train augmented models with 0.01 ≤ σ2 ≤ 0.35.

Mixup (MU) (Zhang et al., 2018) trains a model on the
convex combination of randomly selected sample pairs,
i.e., x̃ = λxi + (1 − λ)xj and ỹ = λyi + (1 − λ)yj
where (xi, yi), (xj , yj) ∈ S. Here, λ ∈ [0, 1] is a ran-
dom variable drawn from Beta(γ, γ). The parameter γ con-
trols the interpolation between two samples, as γ → 0 then
λ = 0 ∨ λ = 1, i.e., no interpolation; and as γ → ∞ then
λ → 0.5, i.e., simple averaging. The authors show that
Mixup improves the generalization in deep learning, re-
duces the memorization of corrupt labels, and increases ro-
bustness. We train augmented models with 0.1 ≤ γ < 256.

4.2 Higher Accuracy Does Not Mitigate the MIA Risk

In this section, we apply augmentation to boost a model’s
accuracy and to shrink the generalization gap. All baselines
models achieve ∼100% training accuracy, therefore, the
gains on the testing accuracy means a smaller generaliza-
tion gap. For each mechanism, we find the hyper-parameter
that achieves the highest testing accuracy. Table 1 presents
the accuracies (Acc) of these augmented models and the

success rates of the MIAs (Adv) against them. First, MIAs
are less threatening on the simpler task, Fashion-MNIST,
as models already achieve highAcc. This hints that the risk
is even greater for large-scale modern tasks and further mo-
tivates our study.

Further, we observe that augmentation generally increases
the Acc over the baseline models up to 10%. However, no
mechanism is able to reduce Advpow by more than 50%.
As a result, applying augmentation for Acc still leaves
the models vulnerable to MIAs. Moreover, for baseline
models Advstd and Advpow are similar; however, against
augmented models, Advpow is often higher than Advstd.
This indicates that using weaker MIAs gives a false sense
of security and also explains that why prior work, such
as (Shokri et al., 2017), finds that mechanisms such as SL
might reduce the risk.

Finally, we see that LS amplifies the risk: on CIFAR-100 it
boosts theAcc by 10% but also causes 25% higherAdvpow.
In the cases where LS increases the Adv, the models have
∼100% training accuracy and a higher testing accuracy
than the baseline models. This finding that a smaller gen-
eralization gap not translating to a lower risk suggests that
overfitting might be a sufficient but not a necessary con-
dition for MIAs. In Section 5, we further investigate this
behavior of LS.

Table 1: Applying data augmentation for accuracy. In
each cell, the first row presents the model’s Acc and the
second row presents Advstd (left) and Advpow (right). The
segment indicated by ∅ contains the unaugmented baseline
models. We highlight when a mechanism amplifies Adv.

MECH. FMNIST CIFAR10 CIFAR100

∅ 93.5% 85.5% 54.3%
8.6 / 8.5 27.7 / 28.1 58.2 / 60.2

SL
93.8% 86.5% 57.6%

4.9 / 8.3 16.8 / 24.4 20.8 / 39.8

LS
94.1% 86.3% 59.8%

10.0 / 17.9 13.3 / 27.7 61.4 / 75.6

DL
94.0% 86.6% 57.0%

6.7 / 6.5 20.5 / 25.5 49.7 / 64.0

RC
94.2% 88.7% 59.7%

4.7 / 4.5 18.4 / 18.4 32.7 / 32.0

CO
94.1% 87.7% 59.1%

8.3 / 8.3 25.6 / 26.1 34.9 / 33.9

GA
93.5% 85.1% 54.7%

8.7 / 9.9 27.7 / 28.6 58.8 / 62.5

MU
94.2% 86.9% 57.8%

6.9 / 8.7 16.1 / 23.7 45.1 / 57.0



4.3 Applying Augmentation to Reduce the MIA Risk

The previous section shows that low-intensity augmenta-
tion to boost Acc still leaves the models vulnerable. In
this section, we evaluate how high-intensity augmentation,
i.e., hyper-parameters are tuned higher, fares against MIAs.
As this might hurt Acc, we evaluate our results under
two utility scenarios: <10% and <25% relative accuracy
drop (RAD) over the baseline models. In these scenarios,
we select the hyper-parameters that achieve the smallest
max(Advstd, Advpow), within the respective RAD limit.
We focus on limiting the utility drop as this is a top con-
cern for most practitioners for applying security measures.

Table 2 presents the results of applying augmentation de-
fensively against MIAs. First, between two RAD settings,
we see an overall drop in Advstd and Advpow, which sug-
gests that mitigating MIAs requires high-intensity aug-
mentation and comes with a utility penalty. Further, de-
feating MIAs is significantly easier on Fashion-MNIST
than on more complex tasks. In RAD<10% setting, MIAs
have negligible success against Fashion-MNIST models;
whereas against most CIFAR-100 models, they still have
moderate success. In RAD<25% setting, on the other hand,
mechanisms such as RC, DL, and CO reduce Advpow by
more than 80% over the baseline. Moreover, there is only a
minor difference between Advstd and Advpow, suggesting
that the mechanisms provide real benefits in these settings.
Overall, our findings highlight that augmentation, on com-
plex tasks, cannot provide a free lunch of defeating MIAs
while preserving Acc.

Turning our attention to individual mechanisms, we see RC
and CO standing out as the most effective mechanisms.
Even in RAD<10% setting, these mechanisms reduce Adv
by 85%-100% when tuned to randomly keep only∼50% of
the original xi ∈ S , in each training iteration. As a result,
it takes more than ∼7 training iterations for the model to
see the whole xi. Similarly, when θ>0.5, DL is also effec-
tive, especially in RAD<25% setting, i.e., only in less than
50% of the iterations a sample’s label is not corrupted. This
leads us to hypothesize that such disruptive augmentations
are similar to reducing the number of training iterations,
which we investigate in Section 6.

In Figure 1, we show the effect of increasing the inten-
sity of RC on the losses a model produces on training and
testing samples. Low-intensity augmentation (left) results
in two distinct loss distributions, which is easily exploited
by black-box MIAs for inferring the membership of sam-
ples. However, increasing the intensity (middle and right)
brings two distributions closer and, consequently, leaves
less leverage to MIAs for inference.

Finally, we see that MU and SL are moderately success-
ful. MU reduces Adv 55-85% when it is tuned to almost

maximum intensity (γ ∈ {128, 256}). SL reduces Adv
65-100%, with very high temperature values (T >100) that
prior work has not experimented with. As the least effective
mechanisms against MIAs, we identify GA, which hurts
Acc, and LS, which has a limited impact on Acc.

Figure 1: The effect of increasing the cropping augmen-
tation intensity (P) on S and D loss distributions. Dist
refers to Jensen-Shannon distance between training and
testing histograms represented as probability densities. All
models are trained on CIFAR-100.

Comparison With Differential Privacy (DP). By provid-
ing information-theoretic privacy guarantees, DP has be-
come a de-facto privacy standard. As the gold standard,
we evaluate models trained using Differentially-Private
Stochastic Gradient Descent (DP-SGD) by Abadi et al.
(2016). Essentially, DP-SGD clips and adds noise to the
gradients computed on S during training to limit the in-
fluence of a single sample on the model. The variance of
this noise determines the privacy budget, ε, which defines
an upper bound on the leakage. In general, decreasing ε in-
creases privacy, and, although there is no consensus, ε<1 is
usually acceptable for privacy (Jayaraman & Evans, 2019).

We present the results for DP in Table 3 under different pri-
vacy budgets. We see even formally meaningless budgets
(ε>100) reduce Adv by 65-90% and decreasing ε reduces
Adv further, as expected. This aligns with the findings
of Jayaraman & Evans (2019) that thwarting MIAs might
not require strong formal guarantees. For ε<1, we see neg-
ligible Adv success; however, the Acc penalty for CIFAR-
100 is more than 85%. Overall, until a breakthrough in
research on applying DP to complex tasks, augmentation
might be more practical against known MIAs by causing
less Acc penalty in exchange for reducing Adv.

5 Why Label Smoothing Amplifies the Risk

The previous section shows that label smoothing (LS) can
simultaneously increase Acc and Advpow. In Figure 2, we
present the trend between Acc and Advpow for models
trained with LS on CIFAR-100. We see that LS can boost
Acc by up to 10% over the baseline; however, it can also
cause up to 40% increase in Advpow. This adverse effect
makes LS a hidden privacy risk for practitioners who use
it to increase model utility. In this section, we aim to shed
light on this phenomenon and how LS affects a model.



Table 2: Applying augmentation against MIAs in RAD
< 10% and < 25% settings. (Same format as Table 1))

MECH. FMNIST CIFAR10 CIFAR100

∅ 93.5% 85.5% 54.3%
8.6 / 8.5 27.7 / 28.1 58.2 / 60.2

SL (10)
88.8% 77.4% 49.7%

0.0 / 0.0 5.5 / 8.1 14.1 / 21.1

SL (25)
88.8% 65.6% 46.2%

0.0 / 0.0 2.3 / 2.2 10.7 / 12.9

LS (10)
84.6% 77.8% 55.1%

0.0 / 0.8 12.5 / 13.6 44.1 / 45.0

LS (25)
84.6% 77.8% 55.1%

0.0 / 0.8 12.5 / 13.6 44.1 / 45.0

DL (10)
90.3% 78.1% 52.2%

0.7 / 0.7 4.7 / 4.2 28.2 / 32.0

DL (25)
90.3% 78.1% 42.4%

0.7 / 0.7 4.7 / 4.2 9.1 / 7.0

RC (10)
86.1% 78.4% 52.8%

0.0 / 0.0 3.2 / 3.1 8.9 / 7.1

RC (25)
86.1% 67.3% 42.6%

0.0 / 0.0 1.2 / 0.6 4.1 / 2.9

CO (10)
84.6% 80.4% 49.3%

0.4 / 0.5 6.0 / 5.1 8.7 / 8.2

CO (25)
84.6% 66.5% 45.8%

0.4 / 0.5 2.1 / 2.1 7.5 / 5.0

GA (10)
89.9% 78.9% 48.9%

2.2 / 2.2 24.1 / 26.4 50.6 / 49.9

GA (25)
89.9% 75.8% 41.2%

2.2 / 2.2 23.2 / 24.2 44.2 / 42.3

MU (10)
92.4% 84.2% 49.8%

3.4 / 3.4 11.9 / 9.7 14.1 / 13.7

MU (25)
92.4% 84.2% 48.4%

3.4 / 3.4 11.9 / 9.7 13.1 / 11.9

Table 3: DP-SGD against MIAs. (Same format as Table 1)

BUDGET FMNIST CIFAR10 CIFAR100

ε ∈ (100, 1000]
90.0% 69.2% 32.6%

2.7 / 2.9 5.1 / 5.4 6.0 / 5.1

ε ∈ (10, 100]
88.7% 64.0% 24.0%

1.6 / 1.6 2.2 / 2.7 3.9 / 2.9

ε ∈ [10, 1)
87.1% 55.6% 16.1%

0.0 / 0.0 1.6 / 1.6 14.2 / 11.2

ε ∈ (0, 1]
83.2% 43.3% 6.8%

0.3 / 0.0 0.2 / 0.0 1.3 / 1.1

Figure 2: The effect of LS on Acc and Advpow. The num-
bers are relative to the CIFAR-100 baseline in Table 1.

LS Leads to Smoother Predictions on S Than on D.
Given a training sample, LS pushes the model to output
smooth, uniform, probabilities for the classes other than the
one the sample belongs to. For example, on CIFAR-100
with 100 classes, when α=0.1, LS assigns 0.001 proba-
bility to each other class during training. In Figure 3, we
visualize how LS statistically changes the non-maximum
prediction probabilities on CIFAR-100. Given ŷ, the pre-
diction vector, the non-maximum probabilities are {ŷi|i ∈
K \ {argmax ŷ}}, where K is the set of all classes.

The top plot shows that the average non-maximum proba-
bility exactly follows α on S, which is not the case on D.
Further, because LS assigns uniform probabilities, it also
forces the standard deviation of the non-maximum proba-
bilities to be zero. The bottom plot shows that, regardless
of α, this is the case on S and, again, not the case on D.
Our findings show that LS causes the models to overfit on
smooth labels and leads to discernible statistics on S. This
gives MIAs more leverage to infer whether (xt, yt) ∈ S
and, therefore, amplifies the risk.

Figure 3: The effect of LS on output smoothness.

LS Erases Less Information on D Than on S. Knowl-
edge distillation (Hinton et al., 2015) relies on the informa-
tion a teacher model encodes into its non-maximum predic-
tions. However, by forcing them to be uniform, LS hinders



a model’s ability to be distilled (Müller et al., 2019). Prior
work calls this information erasure and shows that student
models perform worse when they are distilled from teach-
ers trained with LS. The previous section shows that LS
causes less uniform non-maximum predictions on D than
on S. As a result, we conjecture that information erasure is
also less severe on D than on S .

To test our hypothesis, we follow the experiment
from Müller et al. with one addition: we distill the teach-
ers trained with LS using the samples outside their S. We
first randomly split the original S of CIFAR-100 into two
equal parts and train teachers with LS on the second part.
We then use either the samples in the first part (unseen) or
the second part (seen) to distill a teacher into smaller stu-
dent models. To compensate for the randomness, we repeat
this multiple times and report the average results.

In Figure 4, we plot the average Acc differences between
the first and the second students for different teacher α and
distillation T values. Across the board, we see that the
first students achieve up to 15% higher Acc than second
students. This confirms our hypothesis and also provides
more insight into why LS increases the MIA success, i.e., it
erases more information on S than on D.

Figure 4: The effect of LS on distillation performance.

Using LS Together With Other Mechanisms. In this
work, we evaluate each augmentation mechanism in iso-
lation to study their individual effects. However, applying
them in conjunction is often beneficial for boosting the ac-
curacy (He et al., 2019). On the other hand, we find that LS
amplifies the MIA risk; whereas, mechanisms such as RC
mitigate it. As a result, a natural question to ask is whether
using them together would amplify or mitigate the risk.

Table 4 presents the results of combining LS with RC to ei-
ther maximize Acc (second segment) or to minimize Adv
(third segment). Here, we use the same P values as in Ta-
bles 1 and 2. First, we see that combining can further boost
Acc by up to 8%, over only using RC. However, these com-
binations also inadvertently amplifyAdv by up to 45%. On
the other hand, we see that combining to minimize Adv
fails to provide any major benefits. These combinations
have more or less the same Acc and Adv as only using RC.
Our results imply that it might not be feasible to combine
LS with other mechanisms for avoiding its privacy risks

while still reaping its utility benefits.

Table 4: Training with both LS and RC on CIFAR-100.

COMBINATION Acc Advstd Advpow

Baselines (Only RC)
P = 4, α = 0.00 59.7% 32.7% 32.0%
P = 14, α = 0.00 52.8% 8.9% 7.1%
P = 20, α = 0.00 42.5% 4.1% 2.9%

Combine to Maximize Acc
P = 4, α = 0.90 64.7% 37.6% 38.4%
P = 14, α = 0.70 56.4% 9.3% 10.4%
P = 20, α = 0.60 45.2% 2.8% 4.3%

Combine to Minimize Adv
P = 4, α = 0.01 60.2% 33.5% 34.8%
P = 14, α = 0.10 53.9% 6.6% 9.8%
P = 20, α = 0.90 39.9% 1.9% 3.4%

Impact of LS on Non-Image Tasks. Our experiments fo-
cus on image classification as data augmentation is ubiqui-
tous in this domain. Here, we ask whether LS amplifies the
MIA risk on non-image tasks too. Specifically, we evalu-
ate Purchase-100 and Texas-100 tasks1, which are common
benchmarks in the MIA literature (Jayaraman & Evans,
2019; Shokri et al., 2017). Table 5 shows that, on Texas-
100, LS has its detrimental effect as it amplifies both Acc
and Adv simultaneously. On the other hand, on Purchase-
100, we cannot conclusively claim LS amplifies the MIA
risk as it causes a drop in Acc. The higher Adv in this task
might also stem from a larger generalization gap. Overall,
these experiments show that LS can be a privacy risk on
other domains as well, depending on the task.

Table 5: Impact of LS on non-image tasks. All models are
trained till they reach ∼100% training accuracy on a basic
fully connected architecture.

α 0.00 0.01 0.05 0.10 0.20 0.30

Purchase-100
Adv 14.6% 17.4% 19.6% 20.5% 18.9% 18.4%
Acc 89.5% 87.8% 86.4% 84.9% 84.9% 83.8%

Texas-100
Adv 55.0% 58.4% 63.2% 64.6% 64.6% 63.5%
Acc 59.1% 60.2% 61.3% 62.0% 62.4% 62.1%

6 Measuring the Mechanism Similarities

In Section 4, we evaluated 7 different mechanisms against
MIAs. Although they augment S in different ways, we ob-

1https://github.com/privacytrustlab/datasets



served that mechanisms such as RC, CO, or DL have a sim-
ilar impact on Acc and Adv. In this section, we aim to de-
velop a simple black-box metric to quantify how similar the
overfitting patterns of the two models are. We then use this
metric to investigate whether different augmentation mech-
anisms change the models in distinct ways.

Loss-Rank-Correlation (LRC) Metric. In Figure 5, we
present how augmentation affects a model’s cross-entropy
(CE) loss distribution on 5,000 samples from S. The model
trained with no augmentation produces∼ 0 loss on all sam-
ples, which indicates overfitting. Both RC and CO, on the
other hand, prevent the model from producing ∼ 0 loss on
approximately 1,250 samples. This observation leads us to
ask whether these mechanisms prevent overfitting on dif-
ferent sets of samples. Preventing overfitting on different
sets of samples would imply that these mechanisms affect
models in distinct ways.

To answer this question, we design the loss-rank-
correlation (LRC) metric. To our best knowledge, there
is not an established efficient and model agnostic metric
to quantify model similarity. We aim to fill this gap using
LRC. Further, by only requiring query access, LRC is suit-
able for reasoning about practical MIAs.

To compute the LRC between two models trained on
the same S, we first draw a set of 5,000 samples from
S. We then compute Spearman’s rank correlation coeffi-
cient (Spearman, 1904) between the loss values of two
models on this set, which gives us the LRC score. We opt
for ranking correlation as it takes the order of elements into
account. For example, if two models have similar overfit-
ting patterns and produce ∼ 0 loss on the same samples,
then the LRC between them will be close to one. Note that
a model’s LRC score with itself is always one.

LRC aims to answer whether different augmentation mech-
anisms have distinct effects on the model.

Figure 5: The effect of augmentation on loss distribution
for x ∈ S. All models are trained on CIFAR-10.

LRC Captures Model Similarity. In this section, we
measure the LRC scores between CIFAR-10 models
trained with different RC intensities, controlled by hyper-
parameter P . Intuitively, when the intensities are closer, we
would expect the resulting models to be more similar. The

scores in Figure 6 reflect this intuition, e.g., LRC is greater
between P=14 and P=20 (0.83) than between P=14 and
P=26 (0.71). Because we train multiple models for each
P and report the averages, the scores on the main diagonal
are less than one. This experiment supports that LRC is a
reliable tool to capture how similar the two models are.

Figure 6: LRC scores between models trained with RC.

Identifying Similar Mechanisms. In Figure 7, we present
the LRC scores between CIFAR-10 models trained with
different mechanisms, and differential privacy. We select
the models in RAD<10% settings where we apply high-
intensity augmentation to mitigate MIAs. First, we see that
GA and MU result in models significantly dissimilar from
the rest with lower LRC scores across the board. Turning
our attention to similar mechanisms, we see {SL, LS} and
{RC, CO} pairs standing out. This is expected considering
that these pairs augment the training samples similarly, i.e.,
changing the hard labels or removing random portions of
samples. This also further highlights the ability of LRC to
capture similarities. We believe quantifying the similarities
between mechanisms and finding diverse combinations for
combatting overfitting is an important research direction.

High-Intensity Augmentation Behaves Like Short
Training. In the initial training epochs, deep learning mod-
els learn simple, almost linear, classifiers that are less prone
to overfitting (Nakkiran et al., 2019). However, as the iter-
ations progress, the model’s complexity goes up as well as
its tendency to overfit. To evaluate how simple models fare
against MIAs, we train CIFAR-10 models for fewer, i.e.,
I∈{3, 4, 7}, epochs. Compared to the baseline model, i.e.,
I=35, these models have 17%, 9%, 5% lower Acc, respec-
tively. However, they are also much more resilient to MIAs
with 90%, 85%, 65% less Adv. Our results show that high-
intensity augmentation that defeats MIAs also harms Acc,
similar to reducing I. As a result, we hypothesize that the
models resulting from high-intensity augmentation might
be similar to the models trained for fewer epochs.



Figure 7: LRC scores between different mechanisms.

In Figure 8, we present the LRC scores between the simple
models and the models with increasing augmentation in-
tensities. For example, the LRC score between P=16 and
I=7 is 0.79; whereas between P=16 and I=3 is it 0.64.
On the other hand, the LRC score between P=32 and I=7
is 0.70; whereas between P = 32 and I=3 is it 0.79. This
suggests that increasing the intensity resembles training for
fewer epochs and vice versa. Further, the high LRC scores
across the board further supports our hypothesis that high-
intensity augmentation is similar to short training. Overall,
these findings pose an intriguing dilemma: low-intensity
augmentation boosts the accuracy but leaves the models
vulnerable; whereas, high-intensity augmentation hurts the
accuracy and alleviates MIAs but it might not be different
than simply training the models for fewer epochs.

7 Conclusions

We conduct a systematical study on the effectiveness of
data augmentation in mitigating membership inference at-
tacks (MIAs) against deep learning models. We first find
that applying augmentation only for accuracy cannot defeat
MIAs and applying for mitigation cannot avoid hurting the
accuracy. We then identify the effective, e.g., random crop-
ping, and ineffective, e.g., Gaussian augmentation, mecha-
nisms and propose practical guidelines. Further, we reveal
and investigate the tendency of label smoothing mechanism
to improve both the generalization and the attack perfor-
mance. Finally, we propose a simple methodology to quan-
tify how similar two models are, which shows that augmen-
tation that mitigates MIAs might not be different than sim-
ply training for fewer iterations. We hope that our work will
be as a bridge between the practical and formal solutions to
the privacy leakage problem.

Figure 8: Comparing augmentation with short training.
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