
Interpretable Stability Bounds for Spectral Graph Filters

A. Proofs
Proposition 1. Polynomial filters g(λ) =

∑K
k=0 θkλ

k are linearly stable with respect to any GSO where the spectrum lies
in [−1, 1]. The stability constant is given by C =

∑K
k=1 k|θk|.

Proof. The proof technique is the same as in Kenlay et al. (2020a). Note that ‖L‖2 ≤ 1 and ‖Lp‖2 ≤ 1 so by Levie et al.
(2019, Lemma 3) we know that ‖Lk − Lkp‖ ≤ k‖E‖2. Using this and the the triangle inequality we have:

‖g(L)− g(Lp)‖2 = ‖
K∑

k=1

θk(Lk − Lkp)‖2 ≤
K∑

k=1

|θk|‖Lk − Lkp‖2 ≤
K∑

k=1

k|θk|‖E‖2.

Proposition 2. The low-pass filter g(λ) = (1 + αλ)−1 is linearly stable with respect to the normalised Laplacian matrix.
The constant is given by C = α.

Proof. Let X = In + αL and Y = In + αLp where L,Lp are normalised Laplacian matrices. Then we have:

‖f(L)− f(Lp)‖2 = ‖X−1 −Y−1‖2 = ‖X−1(Y −X)Y−1‖2 ≤ ‖X−1‖2‖Y−1‖2‖X−Y‖2. (15)

Note that X has eigenvalues in the interval [1, 1 + 2α], so X−1 has eigenvalues in the interval [(1 + 2α)−1, 1]. This holds
similarly for Y. The matrices X−1 and Y−1 are symmetric and positive definite so their operator norm is the largest
eigenvalue ‖X−1‖2 = ‖Y−1‖2 = 1. Thus,

‖f(L)− f(Lp)‖2 ≤ ‖X−1‖2‖Y−1‖2‖X−Y‖2 ≤ ‖X−Y‖2 = α‖L− Lp‖2.

Lemma 1. Let αu ∈ [0, 1). Then the following holds:

∑

v∈Ru

| 1√
dudv

− 1√
d′ud
′
v

| ≤
∑

v∈Ru

(
αu

1− αu

)
1√
dudv

(16)

≤
(

αu
1− αu

)
du −∆−u√
duδu

. (17)

Proof. The main part of proving this Lemma is proving the following identity:

| 1√
dudv

− 1√
d′ud
′
v

| ≤
(

αu
1− αu

)
1√
dudv

. (18)

To prove Eq. (18), we will maximise the left hand size bearing in mind that the constraint αu ∈ [0, 1) limits the possible
values d′u and d′v can take. To maximise the left hand size we will consider it as a function of ∆u and ∆v and use partial
derivatives to reason where the maxima is.

The left hand side of Eq. (18) can be written as a function of the change in degree of node u and v

f(∆u,∆v) = | 1√
dudv

− 1√
(du + ∆u)(dv + ∆v)

| (19)

on the domain Ω = [−αudu, αudu]× [−αudv, αudv]. Because the domain is such that Ω ⊂ (0, dmax]2, where dmax is the
largest degree of all nodes in graph G, this function has no poles. The function f has zeros in its domain and the function
is non-differentiable at these points but differentiable away from these points. Since the function is non-negative but not
identically zero, the local maximas are strictly positive. Therefore we can consider critical points of the function away from
the zeros. We consider the partial derivative of f with respect to ∆u. The chain rule gives us:

∂f(∆u,∆v)

∂∆u
= sign(f(∆u,∆v))

∂

∂∆u

(
1√
dudv

− 1√
(du + ∆u)(dv + ∆v)

)
(20)

= sign(f(∆u,∆v))
∂

∂∆u

(
−1√

(du + ∆u)(dv + ∆v)

)
. (21)
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Because we only consider the function f away from its zeros, sign(f(∆u,∆v)) will be non-zero. Therefore, the partial
derivative of f with respect to ∆u is zero if and only if the partial derivative on the right hand side of Eq. (21) is zero. By
setting z = (du + ∆u)(dv + ∆v) we use the chain rule again to obtain:

∂

∂∆u

−1√
(du + ∆u)(dv + ∆v)

=
∂

∂z

−1√
z

∂z

∂∆u
=

1

2z3/2
(dv + ∆v) =

dv + ∆v

2
(
(du + ∆u)(dv + ∆v)

)3/2 . (22)

The partial derivative for f with respect to ∆u is zero if and only if the right hand side of Eq. (22) is zero. One can see this
partial derivative is zero if and only if dv + ∆v = 0, but our constraints are such that dv + ∆v ≥ dv −αudv > 0. This holds
by symmetry for the other partial derivative. Since there are no local maximas in the domain of the function and the function
is continuous, the maxima must lie on the boundary of the domain which we write as δΩ (Spivak, 2018, Theorem 2.6).

The boundary δΩ describes a closed rectangle. One can parameterise the sides of this rectangle by either fixing ∆u ∈
{−αdu, αdu} or by fixing ∆v ∈ {−αdv, αdv}. Without loss of generality consider fixing ∆u = −αdu to give a 1D
function in ∆v describing a side of the boundary of this rectangle. The derivative of this 1D function is exactly the partial
derivative of f with respect to ∆v . We proved that both partial derivatives are non-zero in Ω, so in particular the derivative
of this 1D function is non-zero and thus the maxima must lie on its boundary (Spivak, 2018, Theorem 2.6). The boundary of
a side are the two corner end points in the rectangle adjacent to the side. By considering all four sides we can deduce that
the maximum of the function must lie on one or more of the four corners. In the following we will prove that the function
has a single maximum and show it takes this value at the corner (−αudu,−αudv).

We first show that the function maps two of the corners to the same value:

f(−αudu, αudv) = | 1√
dudv

− 1√
(du − αudu)(dv + αudv)

| (23)

= | 1√
dudv

− 1√
(1− αu)(1 + αu)

√
dudv

| (24)

= | 1√
dudv

− 1√
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| = f(αudu,−αudv). (25)

Next, we show that f(−αudu,−αudv) ≥ f(−αudu, αudv). We do this by proving that f(−αudu,−αudv) −
f(−αudu, αudv) is non-negative. Writing this out we have that:

f(−αudu,−αudv)− f(−αudu, αudv) = | 1√
dudv

− 1
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√
dudv
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u)dudv
|. (26)

Since (1 − αu) and
√

1− α2
u both lie in the interval (0, 1], we know that both the values inside the absolute values are

non-positive. By negating the values inside and removing the absolute value we get that this is equal to:

f(−αudu,−αudv)− f(−αudu, αudv) =

(
1

(1− αu)
√
dudv

− 1√
dudv

)
−
(

1√
(1− α2

u)dudv
− 1√

dudv

)
(27)
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This quantity is non-negative if and only if (1− αu) ≤
√

(1− α2
u). By squaring both sides and rearranging we get that this

is true if and only if αu ∈ [0, 1] which holds true by our assumption.

Finally, we show that f(−αudu,−αudv) ≥ f(αudu, αudv). Similar to before we show the following is non-negative:
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The above is non-negative for αu ∈ [0, 1). This proves that f(−αudu,−αudv) is a maxima of the four corners hence a
global maxima of the function f . We show that the inequality in Eq. (18) holds and is tight by showing equality holds when
the left hand side takes its largest value among all possible values of d′u and d′v (equivalently ∆u and ∆v):

max
∆u∈[−αdu,αdu]
∆v∈[−αdv,αdv ]

f(∆u,∆v) = f(−αudu,−αudv) =
1

(1− αu)
√
dudv

− 1√
dudv

=

(
αu

1− αu

)
1√
dudv

. (33)

The first inequality (Eq. (16)) in Lemma 1 follows immediately from this. The second inequality (Eq. (17)) comes from
noting that dv ≥ δu =⇒ 1/

√
dudv ≤ 1/

√
duδu and that |Ru| = du −∆−u giving:

∑

v∈Ru
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Theorem 1. Let αu ∈ [0, 1) for all nodes u ∈ V . Then the following holds:

‖E‖2 ≤ max
u∈V

{
∆−u√
duδu

+
∆+
u√
d′uδ
′
u

+

(
αu

1− αu

)
du −∆−u√
duδu

}
.

Proof. If αu ∈ [0, 1) for all nodes then Eq. (10) also holds for all nodes. Substituting Eq. (10) into Eq. (5) gives the desired
result.

B. Random graph models
In this work we consider graphs without isolated nodes for simplicity. Although the bounds do not require graphs to be
connected, we always consider the unperturbed graphs to be connected. To achieve this in practice we use rejection sampling,
i.e., sampling from the random graph models until we sample a connected graph. We describe the random graph models we
use in our experiments in detail below. Where available we use implementations provided by the NetworkX and PyGSP
libraries. Summary statistics describing the degree distribution as well as distance between nodes are given in Table S1.

Graph Mean degree Degree standard deviation Average shortest path length Diameter Degree correlation

K-Reg 3.00 0.00 4.83 8.77 N/A
WS 4.00 0.62 5.07 10.58 -0.02

ENZYMES 4.02 1.01 5.35 13.60 0.02
PROTEINS full 3.89 1.03 6.66 17.37 0.06

SBM 4.22 1.87 3.53 7.43 -0.02
Assortative 4.64 2.02 4.21 10.79 0.80

ER 4.66 2.04 3.15 6.41 -0.02
BA 5.82 4.72 2.59 4.43 -0.16

Table S1. Summary statistics averaged across the generated graphs. The first two columns give the average and standard deviation of the
degree sequence. The average shortest path length and diameter (largest shortest path length) measure node connectivity. The degree
correlation measures assortativity.

Erdős-Rényi Erdős-Rényi graphs are constructed by independently including each possible edge between any pair of
nodes with probability p (Gilbert, 1959). For sufficiently large graphs the graph will be connected with high probability if
p > lnn/n and disconnected if p < lnn/n. We thus chose p = lnn/n. The degree distribution of Erdős-Rényi graphs is
approximately a Poisson distribution.

Barabási–Albert Barabási–Albert graphs are randomly generated scale-free (with power-law degree distributions) graphs
which are constructed using a preferential attachment mechanism (Albert & Barabási, 2002). The graphs are constructed
using parameters n, the number of nodes, and m, the number of edges that are preferentially attached. An initial graph is
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given by a star graph on m + 1 nodes. Then, until the graph has n nodes the following step is repeated. A new node is
introduced and connected to m existing nodes with probabilities proportional to their degrees. Barabási–Albert graphs are
connected by construction.

Watts-Strogatz Watts-Strogatz graphs with appropriate parameters exhibit small-world properties such as small average
path lengths and high clustering (Watts & Strogatz, 1998). The graph begins as a ring lattice which is obtained by taking
a cycle of nodes and connecting each node to its K nearest neighbours. Then, each edge is rewired independently with
probability p, which means deleting edge i ∼ j and adding edge i ∼ j′ such that j′ 6∈ {i, j} is selected uniformly at random.
We connected each node to its K = 4 neighbours for the initial configuration and rewire each edge with probability p = 0.1.

K-regular A K-regular graph is one such that the degree of every node is K. We use the algorithm described in Steger &
Wormald (1999) and implemented in NetworkX. For a fixed K, the algorithm samples graphs with n nodes all of degree K
almost uniformly at random in the sense that the distribution approaches uniform in the limit n→∞.

Assortative An assortative graph is one such that there is a high positive correlation between the degree of end points
along edges. To generate assortative graphs we use a variant of the Xulvi-Brunet & Sokolov (XBS) Algorithm (Xulvi-Brunet
& Sokolov, 2004) applied to Erdős-Rényi graphs. The XBS algorithm iteratively rewires edges in the graph to increase
assortativity whilst keeping the degree sequence fixed. At each step two edges, corresponding to four nodes, are chosen
uniformly at random. With probability p, these edges are rewired in a way that increases the assortativity. Otherwise, the
edges are rewired randomly. In our experiments we set this probability to p = 1, meaning the assortativity increases in each
step. In the original algorithm a graph can become disconnected; we discard an iteration if it disconnects the graph. Instead
of running the algorithm for a fixed number of steps we run the algorithm until the degree correlation is at least 0.8. We
describe the algorithm in Algorithm 1.

Algorithm 1 XBS Algorithm

1: Input: An initial graph G, assortative threshold a
2: repeat
3: Initialize Gtemp ← G.
4: Sample edges u ∼ v and u′ ∼ v′ from Gtemp such that u, v, u′, v′ are unique
5: Delete edges u ∼ v and u′ ∼ v′ from Gtemp
6: Connect the two nodes in Gtemp from {u, v, u′, v′} with the highest degree
7: Connect the two nodes in Gtemp from {u, v, u′, v′} with the lowest degree
8: if Gtemp is connected then
9: G ← Gtemp

10: end if
11: until Assortativity of G more than or equal to a
12: Output: Perturbed graph G

C. Perturbation strategies
We make use of four random strategies (Add, Delete, Add/Delete and Rewire), one strategy which gives perturbations
according to an optimisation based search strategy (PGD), and a strategy which is based on the theory described in Section 5
(Robust). All strategies delete or add a fixed number of edges. The rewiring operation is depicted graphically in Fig. S2. We
describe Robust and PGD in more detail.

Robust The robust strategy works by iteratively building the perturbed graph. Consider two unique nodes u and v, then
we say an edge is flipped between them if an edge u ∼ v exists and is deleted, or if the edge does not exist and is added. A
single iteration consists of finding nodes u and v that have not been flipped in previous iterations such that ‖E‖1 is minimal.
The steps of the algorithm are described in Algorithm 2.

PGD Projected gradient descent is a variant of gradient descent where after each gradient update a projection operation is
applied. This strategy aims to find adversarial examples and follows closely the strategy described in Xu et al. (2019), with
three modifications. The first modification is that during the sampling procedure (Xu et al., 2019, Algorithm 1 (step 5)), we
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Figure S1. In the rewiring operation the red edges are deleted and the blue edges are added. The degree of each node remains the same.

Algorithm 2 Robust Algorithm

1: Input: An initial graph G, a budget B
2: Initialize set of flipped edges F ← ∅.
3: while |F| < B do
4: Initialize candidate edge e
5: Initialize candidate edge norm f ←∞
6: for Potential edge e′ ∈ {1, . . . , n}2 \ F do
7: Initialize Gtemp ← G
8: Flip edge e′ in Gtemp
9: Calculate normalised Laplacian matrix Ltemp of Gtemp

10: if ‖Ltemp‖1 < f ′ then
11: e← e′

12: f ← ‖Ltemp‖1
13: end if
14: end for
15: Flip edge e in G
16: F ← F ∪ {e}
17: end while
18: Output: Perturbed graph G

not only discard perturbed graphs that are over budget, but also those containing isolated nodes.. The second modification is
that we perform gradient ascent on the relative error between the original signal (before noise is added) and the denoised
signal (estimate). This is different from the negative cross-entropy or Carlili-Wagner loss functions used in Xu et al. (2019)
which are better suited for classification problems. Finally, our filter involves the inverse of a matrix which can become
singular making it not possible to propagate gradients. We describe how we calculate the gradient used in Xu et al. (2019,
Algorithm 2 (step 3)) in Algorithm 3. The variables A′, s and S are described further in Xu et al. (2019). We include
additional steps 3 and 4 to improve the stability of the filtering operation (step 6). Step 4 projects negative values to 0 and
values above 1 to 1. Step 6 makes use of the lower–upper (LU) decomposition for solving linear systems. We use a learning
rate of ηt = 200/

√
t, and implement T = 200 iterations and K = 250 random trials.

Algorithm 3 Numerically stable gradient calculation

1: Input: Adjacency matrix A, probability vector s, target signal y, noisy signal x.
2: A′ = A + (Ā−A) ◦ S (Xu et al., 2019, Eq. 4) where S is the matrix form of s
3: A′ = A′ + diag(N (0n, 10−3 × In))
4: A′ = clamp(A′)
5: Calculate Laplacian L′ of A′

6: Calculate denoised signal ŷ = (In + L′)−1x
7: Calculate relative error loss L = ‖y − ŷ‖/‖y‖
8: Calculate gradient∇sL
9: Output: ∇sL
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Figure S2. Further results for varying experimental conditions

D. Additional results
D.1. Experimental setup

We experiment with changing the size of the random graphs, the size of the perturbation and the SNR ratio, whilst keeping
other experimental variables fixed. We present the bound given by Theorem 1 for n = 500 in Fig. S2a. As expected, we
find our bounds to be looser for large graphs. Furthermore, a larger proportion of experiments are invalid more often due
a larger number of edge edits and more opportunities for the assumption of Theorem 1 to be violated. Nevertheless, our
bounds are still valuable in practice as in the graph classification setting graphs with 100 or less nodes are common. For
larger graphs, we approximate the Robust strategy with a sampling scheme as exhaustively searching for an edge at each
step became computationally prohibitive. The sampling scheme alters step 6 in Algorithm 2 such that instead of considering
every possible edge flip, we randomly sample 50 edges present in the graph, and 50 pairs of nodes which are not present as
edges in the graph.

The bound in Theorem 1 tends to be tighter for a smaller perturbation level of b2% · |E|c edge edits (Fig.S2b). 3. Our
approach to generating synthetic signals for the random graphs are entangled with the graph structure. This is reasonable
since an implicit assumption behind using graph filters is that the signal and graph are related. Nevertheless, by varying
SNR we can control the degree of such entanglement, and we show how the relative output distance changes for a lower
SNR of -10dB (Fig. S2c, patterns are similar for a higher SNR of 10dB). We consider the relative output distance here rather
than the bound in Theorem 1. This is because all perturbation strategies apart from PGD are invariant to the level of noise.

D.2. How close are the relative output distance to the filter distance?

In Section 4 we have established a relationship between the relative output distance in Eq. (2) and the filter distance in
Eq. (3). The looseness of the bound given in Eq. (3) in shown in Fig. S3. As we can see the PGD strategy gives rise to a
tighter inequality compares to other strategies.

D.3. How tight is the linear stability bound?

Linearly stable filters have the property that there exists an upper bound on the filter distance which is linearly proportional to
the error norm. In the previous works of Levie et al. (2019) and Kenlay et al. (2020a) it has also been shown experimentally
that the relationship is linear in practice. The low-pass filter we use in experiments has a stability constant of one meaning
‖f(L) − f(Lp)‖2 ≤ ‖E‖2. Our experiments (Fig. S4) show the looseness of this bound to be at least 1.5 in all our
experiments.

D.4. Validity of experiments

As mentioned in Section 6, some experiments give αu > 1 for some node u in the graph meaning that strictly speaking
the bound of Theorem 1 cannot be applied. Therefore, we discard the results of these experiments from our experimental
analysis for figures relating to the bound. Explicitly we drop invalid experiments for the following figures: Fig. 1, Fig. 2,
the bottom right pane of Fig. 3, Fig. S2b, Fig. S2c and the right pane of Fig. S7. Table S2 shows the proportion out of 100

3With the smaller perturbation level, we have that for some graphs in the real-world data sets b2% · |E|c < 4, meaning a rewire
operations cannot take place within the budget of perturbation, hence the abscene of the bars in the plot.
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Figure S3. Looseness of the bound relating the relative output distance to the filter distance.
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Figure S4. Looseness of the linear stability bound.

experiments we run which are valid (in the sense that the assumption on αu is satisfied) for all combinations of random
graph model and perturbation strategy. As noted in Section 5, for the assumption on αu to be violated the degree of at least
one node must at least double after perturbation. Since Delete only decreases the degree of nodes, and Rewire preserves the
degree of all nodes, experiments with these perturbation strategies are always valid as expected. The graph models with
high-variance degree distributions (ER, BA, Assortative) tend to have the assumption violated more often. This is possibly
due to a large number of leaf nodes, to which if a single edge is added the assumption on αu would be violated.

D.5. How tight is the bound ||E||2 ≤ ||E||1?

In Section 6.2 we consider the tightness of the inequality ||E||2 ≤ ||E||1 for various random graph models and perturbation
strategies. For each strategy we plot the absolute value of ||E||2 and ||E||1 for all random graph models in Fig. S5. We plot
just 5 repeats for clarity. In Fig. S6 we plot the looseness of the bound.

D.6. How tight are the bounds on ||E||1 and ||E||2?

In Section 6.3 we consider the looseness of Eq. 10. We can consider the looseness for each component seperately which is
shown in Fig. S7. It can be seen that the bound on the third term is the loosest.
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Figure S6. Looseness of the inequality ‖E‖1 ≤ ‖E‖2 under different perturbation strategies and random graph models.
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Figure S7. Looseness of the bound for the three terms in Eq. (6). The first term, as well as the bound for the first term, evaluate to zero for
the Add strategy and thus looseness is undefined. The same applies to the second term for the Delete strategy, and the third term for the
Rewire strategy.



Interpretable Stability Bounds for Spectral Graph Filters

Graph Add Delete Add/Delete Rewire Robust PGD

K-Reg 0.73 1.00 0.98 1.00 1.00 0.65
WS 0.85 1.00 0.95 1.00 1.00 0.69

PROTEINS full 0.70 1.00 0.90 1.00 1.00 0.68
ENZYMES 0.80 1.00 0.92 1.00 1.00 0.80

SBM 0.03 1.00 0.23 1.00 1.00 0.02
Assortative 0.04 1.00 0.28 1.00 1.00 0.09

ER 0.07 1.00 0.33 1.00 1.00 0.14
BA 0.38 1.00 0.91 1.00 1.00 0.35

Table S2. Proportion of experiments which are valid (αu ∈ [0, 1) for all nodes u ∈ V) across all graph types and perturbation strategies.


