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Abstract

In this paper, we provide finite-sample conver-
gence guarantees for an off-policy variant of the
natural actor-critic (NAC) algorithm based on Im-
portance Sampling. In particular, we show that
the algorithm converges to a global optimal policy
with a sample complexity of O(e~3log®(1/€))
under an appropriate choice of stepsizes. In or-
der to overcome the issue of large variance due
to Importance Sampling, we propose the Q)-trace
algorithm for the critic, which is inspired by the
V-trace algorithm (Espeholt et al., 2018). This
enables us to explicitly control the bias and vari-
ance, and characterize the trade-off between them.
As an advantage of off-policy sampling, a major
feature of our result is that we do not need any
additional assumptions, beyond the ergodicity of
the Markov chain induced by the behavior policy.

1. Introduction

Reinforcement Learning (RL) is a paradigm where an agent
aims at maximizing its cumulative reward by searching for
an optimal policy, in an environment modeled as a Markov
Decision Process (MDP) (Sutton & Barto, 2018). RL algo-
rithms have achieved tremendous successes in a wide range
of applications such as self-driving cars with Deep Deter-
ministic Policy Gradient (DDPG) (Lillicrap et al., 2015),
and AlphaGo in the game of Go (Silver et al., 2016). The al-
gorithms in RL can be categorized into value space methods,
such as @-learning (Watkins & Dayan, 1992), TD-learning
(Sutton, 1988), and policy space methods, such as actor-
critic (AC) (Konda & Tsitsiklis, 2000). Despite great em-
pirical successes (Wang et al., 2016; Bahdanau et al., 2016),
the finite-sample convergence of AC type of algorithms are
not completely characterized theoretically.

“Equal contribution 'School of Industrial and Systems Engi-
neering, Georgia Institute of Technology, Atlanta, GA, 30332,
USA *PhD Program in Machine Learning, Georgia Institute of
Technology, Atlanta, GA, 30332, USA. Correspondence to: Sa-
jad Khodadadian <skhodadadian3 @ gatech.edu>, Zaiwei Chen
<zchen458 @gatech.edu>.

Proceedings of the 38" International Conference on Machine
Learning, PMLR 139, 2021. Copyright 2021 by the author(s).

An AC algorithm can be thought as a generalized policy iter-
ation (Puterman, 1995), and consists of two phases, namely
actor and critic. The objective of the actor is to improve the
policy, while the critic aims at evaluating the performance
of a specific policy. A step of the actor can be thought as a
step of Stochastic Gradient Ascent (Bottou et al., 2018) with
preconditioning. An identity pre-conditioner corresponds
to regular AC, while a pre-conditioning with fisher informa-
tion results in natural actor-critic (NAC) (Peters & Schaal,
2008). As for the critic, to perform a policy evaluation
step, it usually uses the TD-learning method and its variants,
such as TD(0), or more generally, n-step TD (Sutton, 1988).
Moreover, such learning process can be done in an on or
off-policy manner (Degris et al., 2012).

Off-policy Actor-Critic. In on-policy AC, the data sam-
ples are generated in an online manner, always sampling
based on the current policy at hand. In contrast, in this
paper, we focus on the off-policy AC, where the algorithm
updates the policy based on the data collected (possibly
in the past) by a fixed policy, called the behavior policy.
Off-policy learning is inevitable in high-stakes applications
such as healthcare (Dann et al., 2019), education (Mandel
et al., 2014), robotics (Gu et al., 2017) and clinical trials
(Liu et al., 2018; Gottesman et al., 2020). The agent there
may not have direct access to the environment in order to
perform online sampling, and one has to work with limited
historical data that is collected under a fixed behavior pol-
icy. Moreover, off-policy AC enables off-line learning by
decoupling data collection from learning, and is observed to
extract the maximum possible utility out of limited available
data (Levine et al., 2020).

To account for the difference between the behavior policy
and the target policy (Geweke, 1989) in off-policy algo-
rithms, a popular approach is to use Importance Sampling
(IS). The IS ratio, however, can be large in some cases,
which might result in high variance (Glynn & Iglehart, 1989;
Precup, 2000). This phenomenon will be illustrated in detail
in Section 2.3. In order to avoid such high variance, one
idea is to truncate the IS ratio (Ionides, 2008), which leads
to off-policy TD-learning algorithms such as Retrace(\)
(Munos et al., 2016) and V-trace (Espeholt et al., 2018).
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Table 1. Summary of the results in the literature *

Algorithm Reference Sampl'e 2 S'lngle Comments
Complexity trajectory
(Wang et al., 2019) O(e9) X Function A Samol exi
- - — unction Approx: Sample complexity
AC (Qlu et al., 2019) (?(6 ) X to ensure E[”VVT” ||2] S €+ gbias
(Kumar et al., 2019) O(e™) X
(Wang et al., 2019) @(6_14) X Function Approx: Sample complexity
NAC (Agarwal et al., 2019) O(e~°) X to ensure V™ — V7™ < € + Epjag
(Khodadadian et al., 2021) O(e* v
Off-Pol Tabular RL: Convergence to global
1\} A()Clcy Our work O(e™?) v optimum V7™ — V7™ < e

! There are two other related works (Xu et al., 2020a) and (Xu et al., 2020b). (Xu et al., 2020a) claims a sample complexity of (7)(6’2)
for NAC. (Xu et al., 2020b) claims a sample complexity of (;)(6’2‘5) for AC and (;)(6’4) for NAC. In our opinion, the interpretation of
the convergence results in terms of sample complexity in both papers is incorrect. In case one accepts the interpretation in (Xu et al.,

2020a;b), our results imply a sample complexity of @(e’l/ N for an arbitrary N € 7. See Appendix C.1 for a detailed explanation.

2 In this table, O() ignores all the logarithmic terms. See Appendix C.4 for detailed calculations and comments regarding the sample

complexities presented here.

1.1. Main Contributions

In this paper, we study finite-sample convergence guarantees
of an off-policy variant of the NAC algorithm. Our main
contributions are threefold.

Q-Trace for Off-Policy TD-Learning: Algorithm and
Finite-Sample Bounds. To estimate the )-function for
the critic, we propose an off-policy TD-learning algorithm
called @-trace. This is inspired by the V-trace algorithm
(Espeholt et al., 2018) to estimate the V' -function. We estab-
lish the finite-sample convergence bounds of ()-trace, and
show how the truncated IS ratios can be used to explicitly
trade-off the truncation bias and the variance.

Finite-Sample Bounds for Off-Policy NAC. Based on the
Q-trace algorithm for the critic, we propose an off-policy
NAC algorithm, which uses only a single trajectory of sam-
ples. To the best of our knowledge, we establish the first
known finite-sample convergence guarantees of an off-policy
NAC algorithm. Based on that, we show that in order to ob-
tain an e-optimal policy, the amount of samples required is
of the size O(e~3log?(1/¢)). This shows that the off-policy
NAC outperforms even the best known theoretical conver-
gence bounds of on-policy NAC algorithms. See Table 1 for
more details.

Exploration through Off-Policy Sampling. While off-
policy learning is primarily motivated by practical con-
straints, in this paper, we demonstrate that off-policy sam-
pling leads to natural exploration. By exploiting off-policy
sampling, we do not require either hard-to-verify assump-
tions made in the literature to ensure exploration (Xu et al.,

2020a; Wu et al., 2020), or additional exploration steps in
the algorithm that slow down the convergence (Khodadadian
etal., 2021).

1.2. Related Work

Two popular algorithms for finding the optimal policy of an
MDP are value iteration and policy iteration, which corre-
sponds to @-learning and AC in Reinforcement Learning
when the underlying model is unknown.

The -learning algorithm, first proposed in (Watkins &
Dayan, 1992) is one of the most celebrated value space
methods for solving the RL problem (Sutton & Barto, 2018).
Since the proposal, there has been a long line of work to
establish the convergence properties of (Q-learning. In par-
ticular, (Tsitsiklis, 1994; Jaakkola et al., 1994; Bertsekas &
Tsitsiklis, 1996; Borkar & Meyn, 2000; Borkar, 2009) char-
acterize the asymptotic convergence of -learning, (Beck
& Srikant, 2012; 2013; Wainwright, 2019; Chen et al.,
2020; 2021) study the finite-sample convergence bound
in the mean-square sense, and (Even-Dar & Mansour, 2003;
Li et al., 2020; Qu & Wierman, 2020) study the high-
probability convergence bounds.

In AC framework, usually the actor uses Policy Gradient
(PG) to perform policy update, and the critic uses TD-
learning method to perform policy evaluation.

The PG method was shown to converge in (Sutton et al.,
1999; Baxter & Bartlett, 2001; Pirotta et al., 2015; Haarnoja
etal., 2017). Natural PG, which is a PG method with precon-
ditioning, was proposed in (Kakade, 2001). More recently,
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there has been a line of work to establish finite-sample con-
vergence bound of (natural) PG algorithm (Even-Dar et al.,
2009; Azar et al., 2012; Geist et al., 2019; Agarwal et al.,
2019; Wang et al., 2019; Liu et al., 2019; Shani et al., 2020;
Mei et al., 2020; Cen et al., 2020; Bhandari & Russo, 2020).

TD-learning method, originally proposed in (Sutton,
1988), represents a family of policy evaluation algorithms in
RL. The asymptotic convergence of TD-learning has been
established in (Tsitsiklis, 1994; Jaakkola et al., 1994; Borkar
& Meyn, 2000). Furthermore, the finite-sample convergence
bounds of TD-learning have been studied in (Dalal et al.,
2018; Lakshminarayanan & Szepesvari, 2018; Bhandari
et al., 2018; Srikant & Ying, 2019) in the on-policy setting.
Off-policy variants of TD-learning such as Retrace(\), Tree-
backup, and V-trace were studied in (Munos et al., 2016;
Precup, 2000; Espeholt et al., 2018) respectively. Finite-
sample bounds for V-trace are quantified in (Chen et al.,
2020; 2021).

Actor-critic, as a stochastic variant of policy iteration, was
proposed in (Barto et al., 1983; Borkar & Konda, 1997),
and later it has extended to function approximation setting
(Konda & Tsitsiklis, 2000) and NAC (Peters & Schaal, 2008;
Morimura et al., 2009; Thomas et al., 2013; Bhatnagar et al.,
2009). Asymptotic convergence of AC algorithms was stud-
ied in (Williams & Baird, 1990; Konda & Tsitsiklis, 2000;
Borkar & Konda, 1997; Borkar, 2009; Maei, 2018; Zhang
et al., 2019; 2020). Furthermore, there has been a flurry of
recent work studying the finite-sample convergence of AC
and NAC (Qiu et al., 2019; Kumar et al., 2019; Shani et al.,
2020; Wang et al., 2019; Xu et al., 2020b;a; Wu et al., 2020;
Khodadadian et al., 2021). The results are summarized in
Table 1. Concurrent work (Lan, 2021) studies a variant
of NAC with on-policy sampling and time-varying inverse
temperature, and obtains an @(6_2) sample complexity.

The rest of this paper is organized as follows. In Section
2, we first present the ()-trace algorithm for off-policy TD-
learning. We then use it with the Natural Policy Gradient
to get the off-policy NAC algorithm, and present the finite-
sample convergence bounds and sample complexity analysis.
In Section 3, we present the proof sketch of our main results,
and conclude in Section 4.

2. Off-Policy Natural Actor-Critic: Algorithm
and Finite-Sample Bounds

2.1. Background on Reinforcement Learning

We model our RL problem with an MDP which consists of a
tuple of 5 elements (S, A, R, P,~y). Here S and A are finite
sets of states and actions, R : S x A — [0, 1] is the reward
function, P : S x A — AlS! (where Al is the probability
simplex on RIS!) is the collection of transition probabilities
that are unknown, and v € (0, 1) is the discount factor.

The dynamics of an MDP is as follows. At each time step &,
the system is at some state Sy, of the environment. The agent
chooses an action Ay based on a policy 7 at hand, Ay ~
7(+|Sk), and the system moves to a new state based on the
transition probabilities P(Skt1 = -|Sk, Ak ), and induces a
one-step reward R (S, Ax). The goal of the agent to find
an optimal policy which maximizes the cumulative reward.
Specifically, the value function of a policy = is defined by
V(1) = B[00 Y"R(Sk: Aw)So ~ w1, A ~ 7(-[Sk)],
where p is an initial distribution over states. Then the goal
is to find an optimal policy 7* such that

" € argmax V7 (u), (1)

mell

where II represents the set of all policies.

2.2. Natural Policy Gradient

Policy gradient algorithms aim at solving the optimization
problem (1) by using gradient ascent or its variants in the
policy space. In particular, a Mirror Descent (MD) (Ne-
mirovskij & Yudin, 1983) update of policy with stepsize 3
reads as:

i1 =arg rrl}lax {B(VVT(u), m—m)—B(m,m)}, (2)
S

where B(-,-) is an appropriately chosen Bregman diver-
gence between two policies. If we replace the Bregman
divergence with B(m,m) = > djt(s)KL(m(-[s)|m:(+|s))
in Eq. (2), we get the Natural Policy Gradient (NPG) algo-
rithm for MDPs. Here d7;(s) = (1 — ) ;=P (S; =
s | So ~ w) is the discounted state visitation distribution
(Agarwal et al., 2019), and KL(- | -) stands for the KL-
Divergence (Cover, 1999). It has been shown in (Agarwal
et al., 2019) that the update equation (2) can be equivalently
written as

7i(als) exp(BQ™ (s, a)
o ma(@]s) exp(BQ™ (3, a"))

where Q7 (s,a) = Ex[> 5o Y*R(Sk, Ak)|So = s, Ag =
a] is the Q-function for policy = (Puterman, 1995). The
update rule (3) can be equivalently derived using the precon-
ditioned gradient ascent (with the Moore—Penrose inverse
of the Fisher information matrix as the pre-conditioner)
on the dual space of the policy 7. This interpretation of
(3) was presented in (Kakade, 2001; Agarwal et al., 2019).
Furthermore, an interpretation of (3) in terms of Mirror De-
scent Modified Policy Iteration (MD-MPI) was presented in
(Geist et al., 2019). An important result about the NPG is
that, although the objective function of (1) is not concave, it
has been shown in (Agarwal et al., 2019) that the policies
achieved by the MD update of (3) converges to an optimal
policy with rate O(1/t).

7Tt+1(a|8) = Z ,VS,CL, (3)

Although the convergence result in (Agarwal et al., 2019) is
promising to find the optimal policy in an MDP, since we
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Algorithm 2.1 Q-Trace

1: Input: K, o, Qo, 7, p, and &, {(Sk, Ak) }o<k<k +n (generated by the behavior policy )

:fork=0,1,--- ,K—1do
ozk(s, a) = aﬂ{(s,a):(5k7Ak)} for all (S, CL)

end for
: Output: Qx

AR A o

Akﬂ' = R(Sl, A7) + ’}/pﬂ(SH_l,Ai+1)Qk(Si+1,Ai+;) — Qk(S“Al) for all k S 7 S k} +n — 1
Qr11(s,a) = Qr(s,a) + ax(s,a) Zfigl_l VT g en(S), Aj) Ay for all (s, a)

do not have access to the transition probabilities and so the
Q@-function in RL, we cannot update the policy according to
Eq. (3). Natural Actor-Critic (NAC) algorithm, which is a
sample-based variant of the update (3), proceeds as follows.
In each iteration, first the critic generates an estimate 4
of the @-function Q™¢. Then the actor updates the policy
according to Eq. (3) with Q™ replaced by the estimate Q.

2.3. The Q-Trace Algorithm for Off-Policy Prediction

In this section, we focus on the critic sub-problem, and
develop the @-trace algorithm to estimate Q™*. -trace is
an off-policy variant of TD-learning based on Importance
Sampling. Crucially, we introduce two different truncation
levels for the IS ratios in order to explicitly control the
trade-off between truncation bias and the variance. This is
inspired by the V-trace algorithm in (Espeholt et al., 2018).

We next introduce our notations to describe the Q-trace al-
gorithm. Let 7 be the target policy (i.e., we want to evaluate
Q™) and 7, be the behavior policy (i.e., we use 7, to collect
samples). We assume that the behavior policy 7, satisfies
mp(als) > 0 for any (s, a). This is typically necessary in
off-policy setting. Let p and ¢ be two truncation levels

ce o — min(e Tals)
satisfying p > ¢ > 1. Define ¢, (s,a) = min(c, m,(aIS))

and pr(s,a) = min(p, 7:;(81‘\?)) for all (s, a), which are the

truncated IS ratios.

The off-policy Q-trace algorithm is presented in Algorithm
2.1. To better understand Algorithm 2.1, consider the fol-
lowing special cases. Suppose we use on-policy sampling,
that is, m, = 7. Set p = ¢ = 1. Observe that in this case
we have ¢, (s,a) = pr(s,a) = 1forall (s,a). Then Algo-
rithm 2.1 reduces to the regular n-step TD, which is known
to converge to Q™ (Tsitsiklis, 1994; Sutton & Barto, 2018).

In the off-policy setting (i.e., 7, # ), suppose we choose

" )37(1) 72((“@‘“1)). Then we have c,(s,a) =

pr(s,a) = T (als)” hence there is essentially no truncation.
In this case, Algorithm 2.1 corresponds to the standard n-
step TD using off-policy sampling, and therefore converges
to Q™ (Precup, 2000).

p = € 2 max(

A fundamental problem in off-policy TD is that the variance
in the estimate can be very large or even infinity (Glynn

& Iglehart, 1989; Munos et al., 2016). This is mainly be-
cause of the product of IS ratios H;Z kil %. To have
control on the variance of the estimate, we introduce the
truncation levels p and ¢. However, due to the truncation,
the IS ratios are now biased, and hence the algorithm no
longer converges to the target value function Q™. In fact,
Algorithm 2.1 converges to a biased limit point, denoted by
QP?™, which need not necessarily be the value function of

any policy.

Importantly, the limit point Q7™ depends only on the target
policy 7 and the truncation level p, but not on the truncation
level ¢. Therefore, we can heavily truncate the IS ratio
¢z (s, a) by using small ¢ without affecting the limit point of
the )-trace algorithm. In fact, as we will see in Section 2.5,
this is exactly what we should do. To quantify the truncation
bias of Algorithm 2.1, we have the following result.

Lemma 2.1. For any p > 1 and policy 7, we have

5. e max s o) max(w(al|s)—pmy(als),0
(]) HQp, _Q HOOS (s,a) ((1£’Y|)2) pmp(als),0)
(2) Q7= < 135

1=y

m(als)
N my(als)’
we have Q7™ = Q™. This makes intuitive sense in that

when p is large, there is essentially no truncation in the IS
ratio p (s, a), and we should not expect any truncation bias.

Observe from Lemma 2.1 (1) that when p > max;, ,

Comparison to Related Algorithms. There are two algo-
rithms in the literature that are closely related to our Q-trace
algorithm, namely the Retrace(A) in (Munos et al., 2016)
and the V-trace in (Espeholt et al., 2018). The Retrace(\)
algorithm in (Munos et al., 2016) is proposed to evaluate the
Q@-function, but uses a single truncation level. In contrast,
we have two truncation levels ¢ and p, which enables us to
trade-off the truncation bias and variance.

V-trace, an off-policy variant of TD to estimate the V-
function, first introduced the idea of using two truncation lev-
els. However, there are several differences between Q-trace
and V-trace. First, the product of the IS ratios c,(S;, 4;)
starts from j = k + 1 rather than j = £ in V-trace. This
simple but important modification enables us to get a con-
vergence bound in Theorem 2.1 which does not dependent
on the target policy 7. This is essential for us to use the
Q-trace algorithm in the AC framework, as after each it-
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eration of the actor, the critic receives a different policy
m; to evaluate. Second, as opposed to V-trace, where the
limit point is a value function of some policy, the limit point
QP™ of Q-trace is not necessarily the Q-function of any
policy. Finally, due to the structure of the @)-function, the
IS ratio p,(S;+1, Ai+1) is multiplied with only one of the
three terms in the temporal difference Ay, ; (Algorithm 2.1
line 4), as opposed to all the three terms in V-trace.

In summary, we propose the off-policy Q-trace algorithm
to evaluate the (Q-function in the critic. Moreover, the flexi-
bility of choosing the truncation levels in ()-trace enables us
to explicitly trade-off the truncation bias and the variance.

2.4. Off-Policy Natural Actor-Critic Algorithm

We are now ready to present our off-policy NAC algorithm
2.2. In iteration ¢, the critic first estimates the Q-function
Q™ using the Q-trace algorithm, which itself runs over K
iterations. Then the actor uses the estimate (J;;1 in Eq.
(3) to perform a policy update. Thus, we have a two-loop
algorithm.

Algorithm 2.2 Off-Policy Natural Actor-Critic
I: Input: T, K, a, 8, Qo = 0, m, p, ¢ and
{(Sk, Ak) Yo<k<T(K+n) (a single trajectory generated
by the behavior policy )
fort=0,1,---, T —1do
Critic update:
DataSet = {(S;, Ai) }+(K +n)<i<(t+1)(K+n)
Q11 = Q-Trace(K, o, Qo, 7¢, ¢, p, DataSet)
Actor update:

meea(als) = s S S iy V (s,a)

end for
Output: {7 }o<i<r-1

R AR AN A i

In Algorithm 2.2, due to off-policy sampling, the sampling
process and the learning process are decoupled, which al-
lows the agent to learn in an off-line manner (Levine et al.,
2020). Moreover, note that we are using a single trajectory
of samples {(Sk, Ax) }o<k<7T(K+n) to perform the update.
In related literature (Xu et al., 2020b;a; Wang et al., 2019),
sampling needs to be often restarted with an arbitrary initial
state, which is not practical in many real-world applications.
See Appendix C.2 for more details.

2.5. Finite-Sample Convergence Guarantees

In this section, we present our main results about the finite-
sample convergence bounds of the Q-trace algorithm 2.1 for
oft-policy TD-learning, and the off-policy NAC Algorithm
2.2. We begin by stating our one and only assumption.

Assumption 2.1. The Markov chain {S}} induced by the
behavior policy 7 is irreducible and aperiodic.

Assumption 2.1 is commonly made in related work about RL
algorithms with Markovian sampling (Tsitsiklis & Van Roy,
1997; 1999; Maei, 2018; Zhang et al., 2020), and it implies
that the Markov chain {S } has a unique stationary distribu-
tion pup € AlSI, Moreover, since the state space S is finite,
there exist C' > 0 and u € (0, 1) such that

[ P%(s,) — pp(-)lTy < CuF

forany k > 0 and s € S, where || - ||1v is the total variation
distance (Levin & Peres, 2017).

A major issue in the design of AC algorithms is to ensure
enough exploration to all state-action pairs (s, a). It was
demonstrated in (Khodadadian et al., 2021) that the algo-
rithm can get stuck in a local optimum if there is not enough
exploration. Sampling from a fixed policy that leads to an
ergodic Markov chain naturally ensures exploration, and
so we do not need any additional assumptions. In contrast,
prior literature on the analysis of on-policy AC either makes
additional assumptions that are hard to satisfy (Xu et al.,
2020a; Wu et al., 2020) or introduce an additional explo-
ration step in the algorithm (Khodadadian et al., 2021) that
slows the convergence. See Appendix C.3 for more details.

To state our result, we need the following notation. Let 7, =
min{k > 0 : maxes || P*(s, ) — pp(")||1v < a}, where «
is the constant stepsize used in the critic step of Algorithm
2.2. The quantity 7, can be viewed as the mixing time of the
Markov chain {Sy} with accuracy «. Furthermore, under
the geometric mixing property (implied by Assumption 2.1),
the mixing time 7, can be bounded by L(log(1/a) + 1) for
some constant L > 0. Let f(¢,vy) = 11(—7755)" when ¢ # 1,
and = n when v¢ = 1. Suppose the constant stepsize «
within the critic is properly chosen. The explicit condition is
given in Appendix A.3. Then we have the following result.

Theorem 2.1. Consider {Qy} of Algorithm 2.1. Suppose
that (1) Assumption 2.1 is satisfied, (2) Qq is initiated at 0,
and (3) the constant stepsize « is chosen such that o7, +

n+1) < min (12(a+11>f(e,v)’ ST ? logusnA\))’
where 7y, € (0, 1) (defined in Proposition 3.1 (3) (b)) does
not depend on the target policy w, Then we have for all
k>1,+n+1:

) k—(Ta+n+1)

i 1—~,
BlIQ: - Q7] < ot (1415 e

T :Convergence Bias
ez log(|S][|A[)
(1—17.)*(1—~)?

T5:Convergence Variance

(p+1)*f(E7)%alra +n+1),

where c1 and co are numerical constants.

Observe that the whole RHS of the convergence bound does
not depend on the target policy 7. This is important for us to
later use Theorem 2.1 to show the finite-sample guarantees
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of off-policy NAC algorithm 2.2.

This result characterizes the rate of convergence of (Q)-trace
algorithm to its stationary point, Q”™. The error on the
RHS has two terms, which are called bias and variance
respectively in the SA literature (Chen et al., 2020). To
contrast this with the bias due to truncation, we call it the
convergence bias. The second error term is simply called
the variance. Theorem 2.1 implies that under an appropriate
constant stepsize «, while the Q-trace algorithm achieves
exponentially decaying convergence bias, it leads to a con-
stant variance that cannot be eliminated, and is of the size
O(alog(1/e)). The logarithmic factor is due to the mix-
ing time 7,, which arises as a consequence of performing
Markovian sampling of {(Sy, Ax)}.

The following corollary provides the error of the estimate
Q. with respect to the true QQ-function Q™.

Corollary 2.1.1. Under the same assumptions of Theorem
2.1, we have forall k > 7o, +n + 1:

E[HQk _Q-,THOO]S /7T1+ /*TQ_’_max(lfﬁr(riiil;y)azﬂb(ab)ﬁ),

where the terms Ty and Ts are given in Theorem 2.1.

The proof of Corollary 2.1.1 immediately follows by com-
bining Lemma 2.1 with Theorem 2.1 and using Jensen’s
inequality. We next present the finite-sample performance
bound of the off-policy NAC algorithm 2.2.

Theorem 2.2. Consider {7} generated by Algorithm 2.2.
Suppose that Assumption 2.1 is satisfied, and K > T,+n—+1.
Then we have the following performance bound:

VT (k) = max B[V (u)]

L(K—(Ta+n+1))
24 1—7v. \?2
)

=P

E1 :Convergence bias in the Critic
12001og'/2(|S||Al)
(T=7)3(1 =)

FE5:Variance in the Critic
4max(0,1 — pmin, , m(als))
(L=)*
Es:Truncation bias

N log(e| Al)
(1—7)26T ’
————

E4:Convergence error in the Actor

(p+1)f(e,7)[(Ta + 1 + 1)/

The terms E; and Es correspond to the two terms on the
RHS of the convergence bounds in Theorem 2.1, and capture
the convergence bias and the variance in the critic estimate.
We now focus on the terms F3 and E4, and the trade-off
between the variance > and the truncation bias Es.

Error Due to Truncated IS Ratio. The term E5 accounts

for the error due to introducing the truncation level p in
the critic (i.e., the -trace Algorithm 2.1). Recall that be-
cause of p, the limit point of the critic is Q”™ instead of
Q™. Note that when p > B (which implies

1
ming, o 7 (a
p 2 maxXs o

ZZEZB for any t), there is essentially no trun-
cation in the IS ratio pr, (s, a), and hence we have F3 = 0,

which agrees with Lemma 2.1.

Error Bound of the Actor. The term F, is due to the error
in the actor update. That is, £, would be the only error
term we have if we can directly use Q™* in the actor update
of Algorithm 2.2. Observe that 4 = O(7), which agrees
with results in (Agarwal et al., 2019) [Theorem 5.3].

Bias-Variance Trade-Off. Recall that the motivation for
introducing the truncation levels p and c is to control the
variance in the critic estimate. We first consider the im-
pact of p. Observe that the term E5 is in favor of large p
while the term E» grows linearly with respect to p. There-
fore, there is an explicit trade-off between the variance and
the truncation bias in choosing p. As a result, if we want
to have convergence to the global optimal, by choosing

we introduce an additional

_ 1 1
pP= ming,, 7 (als)’ ming o 7 (als)

factor in the variance term FEs.

The truncation level ¢ appears only in the variance term
E5. In view of the expression of f(&,~) (defined before
Theorem 2.1), we should choose ¢ such that ¢y < 1 to
avoid an exponential factor in the variance term. These
observations are similar to (Espeholt et al., 2018; Chen
et al., 2020; 2021), where the V-trace algorithm is studied.

One drawback with Theorem 2.2 is that the perfor-
mance bound is stated in terms of maxg<i<7—1 E[V ™ (1)],
while in practice we do not know which policy among
{m:}o<t<7T—1 has the best performance. To overcome this
problem, using standard techniques in optimization (Lan,
2020), we can obtain the following refined performance
bound of Algorithm 2.2.

Corollary 2.2.1. Let T’ be a random sample uniformly
drawn from {0, 1, ..., T — 1}. Then we have the following
performance guarantee on Ty

Vﬂ*(,u) —E[V™ (u)] < E1 + Es + E3 + Ey,

where the terms { E; }1<i<4 are given in Theorem 2.2.

The convergence guarantee in in Corollary 2.2.1 holds for
the policy attained by Algorithm 2.2 at a random point
between 0 and 7' — 1. However, in practice one usually
takes the last policy achieved by the algorithm as the output.
Numerical experiments of off-policy NAC algorithm 2.2
in Figure 1 shows that in expectation, the algorithm can
converges almost monotonically. Theoretically showing a
performance bound for V™ () — E [V™=1 ()] is a future
direction of this work.
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Figure 1. Convergence of Algorithm 2.2 on a 5 state, 3 action MDP.
Each dashed line is for one sample path of the algorithm, and the
solid line is the average of the 4 sample paths. See Appendix D
for more details.

2.6. Sample Complexity Analysis

With Theorem 2.2 at hand, we now analyze the sample
complexity of off-policy NAC algorithm 2.2.

Sample Complexity for Global Optimum. Suppose that
p > 1/mp min, Where mp iy = ming , m(als). In this
case, we have F3 = 0, i.e., the bias due to truncation is
eliminated, and hence we have convergence to a global opti-
mum. Theorem 2.2 implies the following sample complexity
result, whose proof is presented in Appendix B.3.

Corollary 2.2.2. In order to obtain an e-optimal policy, the
total number of samples required (i.e., T K) is of the size

O(e3log?(1/e)O((1 — )~ 1M 3 ”t:rznin)v

min
where in O() we ignore all logarithmic terms, and M, =
ming o s (s)mp(als).

The O(¢~?log?(1/€)) dependence on the accuracy e ad-
vances the state of the art results in on-policy NAC. See
Table 1 for more details. The dependence on the state-
action space is at least |S|3|.A|?, which is achieved when
my(als) = ﬁ for all @ and p(s) = I«%\ for all s (i.e., uni-

form exploration). The O((1 — ~)~'!) dependence on the
discount factor while seemingly loose, agrees with known
results about NPG in (Agarwal et al., 2019) (Corollary 6.3).
See Appendix C.4 for more details about the comparison to
(Agarwal et al., 2019).

Note that in off-policy TD-learning, one set of samples can
be used multiple times to evaluate different policies. There-
fore, it is natural to consider repeatedly using the same set of

samples in the critic (the Q-trace algorithm) in the off-policy
NAC algorithm. In that case, the sample complexity is re-
duced from KT = O(e~3) to only K = O(e~2). Although
this approach seems reasonable, numerical experiments sug-
gest that it may lead to the divergence of Algorithm 2.2. See
Appendix D for more details.

3. Proof Sketch of Our Main Results

In this section, we present the key steps in proving Theorems
2.1 and 2.2.

3.1. Proof Sketch of Theorem 2.1

To prove Theorem 2.1, we begin by introducing some nota-
tions. For any & > 0, let Xy = (Sk, Ak, -, Sktn)-
It is clear that {Xj} is a Markov chain, whose
state-space is denoted by X. Moreover, under
Assumption 2.1, the Markov chain {X;} has a
unique stationary distribution, denoted by px. Let
T : RSIAI T x X — RISIMAI be an operator defined
by [T(Q,m,2)|(s,a) = [T(Q,m, 0,00, ..., 5,)|(s,a) =
Lis.a)=s0.00) Sig 7 Tjm O (55, 05) (R(sivai) —  +
Ypr(Sit1, @it1)Q(Sit1, air1) — Q(si,a:)) + Q(s, a) for
all (s, a). We further define 7, : RIS/ x IT — RISIMI by
Te(Q,m) = Ex~py T(Q,m,X), which can be viewed as
the expected version of the operator 7.

Using the notation given above, the QQ-trace update equation
(Algorithm 2.1 line 5) can be equivalently written by

Qr+1 = Qr + a(T(Qr, m, X)) — Qr) 4
= Qk + a(Te(Qk, ™) — Q)
+a(T(Qr, m, Xi) — Te(Qr, 7)) (%)

The above update equation can be viewed as a stochastic ap-
proximation algorithm for solving the fixed-point equation
Te(Q, ) = @ with Markovian noise. To see this, assume
for the moment that the term (x) is identically zero. Then the
Algorithm is the fixed-point iteration for solving the equa-
tion 7.(Q, 7) = @, and it is known to converge when the
operator 7. (-, ) is a contraction mapping (Banach, 1922).
Now in the presence of the term (x), the algorithm becomes
a Markovian stochastic approximation algorithm for solving

Te(Q,m) = Q.

Intuitively, once we show the desired contraction property
of the operator 7. (-, 7) and have control on the error caused
by the Markovian noise (x), we should be able to establish
the convergence bounds of Algorithm (4). In order to show
such properties, we need the following notation.

(1) Let 7z and 7, be two policies defined by

min(em(als), m(als)) and

me(als) = o min(emy (a’[s), w(a’|s))
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als) = el xlals)

> min(pmy(a’|s), w(a'|s))

(2) Let Cy, D, € RISIAIXISIAI e diagonal matrices
st. Cr((s,a),(s,a)) = >, min(¢my(als), m(als))
and Dr((s,a),(s,a)) = >, min(pmy(als), m(als))
for all (s,a). Let Cppin = ¢min, , m(als). Note that
we have CinI < C < D, < I (component-wise).

(3) Let P, € RISIAIXISIAI pe a stochastic matrix de-
fined by Pr((s,a),(s',a")) = P,(s,s")w(a'|s'), i.e.,
the probability of transition from (s, a) to (s’,a’) un-
der policy 7. Let R be a vector in RI!S!MI such that
R(s,a) =R(s,a) forall (s,a).

4) Let M € RISIAIXISIAl be a diagonal matrix such
that M((s,a), (s,a)) = up(s)ms(als), which is the
steady-state probability of visiting (s, a). Let My, =
ming o 4p(8)mp(als). Note that 0 < My, < 1 under
Assumption 2.1.

, ¥ (s,a).

Now we are ready to establish the desired properties of
Algorithm (4) in the following proposition, whose proof is
presented in Appendix A.1.

Proposition 3.1. The following properties hold regarding
the operators T (+), To(+), and the Markov chain { X} }.

(1) The operator T(-) satisfies ||T(Q1,m,x) —
T(Qa ) oo < 205+ DF(EI|Q1 — Q2 and
IT(0,7,2)[loc < f(&,) for any Q1,Q2 € RISIM,
mell,andzr € X.

(2) Forall k > 0, it holds that

max ||Pk+”+1(ac, D= ux()rv < Cuk,
reX

where || - ||7v is the total variation distance.
(3) The operator T.(-) has the following properties:
(a) Te(-, ) is a linear operator given by T.(Q, ) =
AQ+b, where A = T-"1" ' 4 M(Py,Cr )i (I—
Py, Dy) and b = Y1} v M (Pr,Cr)'R.
(b) Te(-,) is a contraction mapping with respect to
I - lloo, with contraction factor
o= 1 Bl
(c) Te(-, ) has a unique fixed-point QP™, which is
the unique solution to the modified Bellman’s

equation Q = R+ vP; D Q.

Several remarks are in order. First, using Proposition 3.1
(1), we have by triangle inequality that

I7(Q, 7, 2)loe < 2f(€, M) (P + DQlloc +1)

for any @, m and x. This is important to control the
Markovian noise as it implies that the noisy operator
|17 (Qr, 7, Xi)|loo is at most an affine function of || Q|| co-

Proposition 3.1 (2) implies that the Markov chain {X}}
mixes geometrically fast, which is also an important prop-
erty we need to control the Markovian noise.

Proposition 3.1 (3) establishes all the desired properties for

the expected operator 7.(-). First of all, 7.(-,7) is a con-
traction operator, with a contraction factor v, independent
of the target policy 7. This uniform contraction property is
necessary for us to combine the critic with the actor later in
Section 3.2.2, as the policy m; is time-varying.

Note that from Proposition 3.1 (3) (c) we see that when p >
:b((aal ‘52) , such modified Bellman’s equation becomes
the regular Bellman’s equation for Q™, and hence we have

Q"™ = QT, which agrees with Lemma 2.1.

The above proposition enables us to interpret Eq. (4) as
a Markovian Stochastic Approximation involving a con-
traction mapping. Theorem 2.1 then follows from using
finite-sample bounds on Markovian Stochastic Approxima-
tion established in (Chen et al., 2021). See Appendix A.3
for the detailed proof.

maxs q

3.2. Proof Sketch of Theorem 2.2

The high level idea of proving Theorem 2.2 is as follows.
We first analyze the iterates {;} updated by the actor in
Algorithm 2.2. The performance bound of m; would involve
the error in the critic estimate, i.e., the difference between
Qt+1 and Q™. We then use Corollary 2.1.1 of the Q-trace
algorithm 2.1 to control the critic estimation error and finish
the proof of Theorem 2.2.

3.2.1. ANALYSIS OF THE ACTOR

By analyzing the update of the actor, we obtain the perfor-
mance bound of {7;} in the following proposition.

Proposition 3.2. Consider iterates {m:} of Algorithm 2.2.
We have for any T' > 1:

V™ (1) = max E[VT(u)]

0<t<T—1
log(e|Al) N 4
T (1=9)28T  (1-7)
| N S—

Error in the actor

T-1

o7 O EIIQ™ — Qi)

t=

Error in the Critic

The proof of Proposition 3.2 is inspired by that of The-
orem 5.3 in (Agarwal et al., 2019), and is presented in
Appendix B.1. The main difference is that in (Agarwal
et al., 2019) they assume access to the dynamics of the un-
derlying MDP. Hence they can directly use the Q)-function
Q™ in the policy update. Here in the RL setting, we can
only use the noisy estimate @); to perform the policy up-
date. As a consequence, when compared to Theorem 5.3
of (Agarwal et al., 2019), we have the critic error term
7 210 EllQ™ — Qu41|] on the RHS of the re-

1=y
sulting inequality of Proposition 3.2.
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3.2.2. COMBINING THE ACTOR AND THE CRITIC

In view of Proposition 3.2, what remains to do in proving
Theorem 2.2 is to apply Corollary 2.1.1 to control the error
term E[||Q™ — Qu+1]|oo] for any 0 < ¢ < T — 1. How-
ever, there is a challenge in doing this. Corollary 2.1.1 and
Theorem 2.1 are stated for a fixed target policy 7, while in
Algorithm 2.2 the policies 7, are stochastic. We overcome
this challenge by using a conditioning argument and exploit-
ing Markovian nature of the samples. The full details are
presented in Appendix B.2.

4. Conclusion and Future Work

In this work, we study the convergence bounds of NAC,
where the critic uses the @-trace algorithm to perform off-
policy learning. Such off-policy NAC algorithm enables
us to overcome the difficulty of exploration in on-policy
NAC, and establish the convergence bounds under minimal
assumptions. A future direction is to extend our results to
the case where function approximation is used. Note that
off-policy TD with function approximation can be unstable
in general (Sutton & Barto, 2018). The first step in this
direction is to modify the algorithm to achieve convergence.
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Appendices

A. The Q-Trace Algorithm
A.1. Proof of Proposition 3.1

(1) Using the definition of the operator 7 (-), we have for any Q1, Q> € RISIMAl 7 € TI, = (s, ag, ..., 5p, an) € X, and
state-action pairs (s, a):

HT(Qla T, x)](sv a‘) - [T(Q27 e LE)](S, a)|

= ‘H{(s’a)(swo)} §7i lillcw(sjaaj) (Vox (Sit1, ait1)[@1 — Q2](Si41, aiv1) — [Q1 — Q2](si, ai))
i= =
+ Q1 — @2](s.a)
< nZ:’yi lillc,r(sj,aj) (Vo (841, @iv1) +1) |Q1 — Q20 + [|Q1 — Q2|
im pal
< S(WO)i(p+ D@1 — Qzlloc + [|Q1 — Q2] (cx(s,a) < cand pr(s,a) < p forany (s,a))
) ZZ;)”(ﬁJrl)HQl — Q2| e, ve=1,

2(ﬁ+ 11)(_:[,;0(’76)”) ||Q1 _ Q2||oov e 75 1.

It follows that || 7(Q1,m,z) — T(Q2, 7, %) || < 2f(¢,7)(p + 1)||Q1 — Q2|lco- Similarly, for any 7 € II and
= (80,00, -y Sn, an) € X, we have for any (s, a):

n—1 A
70,7, 2)](s,0)| = Tj(sa)=(sona)y DV | [] ex(s50a5) | Risi, ai)
i=0 j=1
n—1 ] i
< Z ~* H cr(sj,a;) (R(s,a) € [0,1] for any (s, a))
i=0 j=1
n—1
< 2(76)1 (cx(s,a) < ¢ forany (s,a))
i=0
n, ve =1,
= 1 _ =\n
7(70_) , ye# L
1—~c

Hence we have ||7(0, 7, 2)||c < f(E,7).

(2) Since the Markov chain { S} induced by the behavior policy 7, is irreducible and aperiodic, there exists C' > 0 and
u € (0, 1) such that max,es | P*(s, ) — pup(-)||rv < CuF for all k > 0 (Levin & Peres, 2017), where P* represents
the k-step transition probability matrix. Now consider the Markov chain { X}, }. We have for all k£ > 0:

hex HPHnH(m’ ) - ”X(')HTV

1 n—1
=somax ST P (s s)PR(s, ) — ()| m(aplsh) [T Pagll st )molal i lstin)
0,@0;5:+-y5n,Un s/o a/o ..... o a s i=0

Omor%n

(P, is the transition probability matrix under action a)

ZPan(sna S)Pk(sv 56) - Mb<56)

A
DN | =
¥ 8
L}~
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1
= 5 37 Py (50 5) 3 [P (o) = (s
S 56

1
< §m3XZ | P* (s, 50) — 1 (s0)]
S0
= max HP ) = ”b(')HTv
< Cub.

(3) (a) We first compute 7 (Q, 7) in the following. For any Q € RISl and 7 € TI, we have for any (s, a):

[7e(Q, m)](s, a)

I
wn
o
b
o
=
\'M\
L

=Esymops lﬂ{(s,a) 7t (H e (S5, Aj)) (R(Si, Ai) + 7= (Sit1, Aig1)Q(Sit1, Ait1)
i=1

= Q(Si, Ai))| +Q(s,a).

For any 0 <7 < n — 1, we have

ESONHb H{(sa =(S0,40)} (H Cr S]vA ) (SiaAi)""’Vpﬂ(Si-HvAi-H)Q(SH-lvAi+1)_Q(Si7Ai))

= Eso~us |Li(s,0)=(50,40)}7" (ch Sj, Aj ) R(Si, As)

+’YE[,OW(SiH,Ai+1)Q(Si+1,Az‘+1) \ So ~ ,ub,AO, ~-,Si,Ai] - Q(SiaAi))

= ESONMb |}L{(s,a) (So, Ag)}fy (H Cfr ) (S%AZ)

! !
7 Z P4, (S, s")my(a’]s") min (ﬁ m(a’|s")

o "o (a’]s’)

) Qs a') — Q(Si, A1)

= Esomus [H{(s,a) (S0,A0)}7Y" (ch Sj, Aj ) R(Si, As)

+7 Y Pa(Sis) min (pmy(d'|s'), m(d']s") Q(s', a) = Q(Sy, Ai))

s’,a’

= Esy~p, []I«s,a):(su,AU)wi (H c,T(Sj,Aj)) (R(Ss, Ai)
j=1

+ Z PAi (Si,s/)Dﬂ(sl,a/) min .(ﬁmi(a’|s’),7r(a’|s’)) Q(s’,a') _ Q(Si7Ai))

o min (pmy (@] s'), 7(@'| 7))

= ESONMb |}L{(s,a) (So, Ag)}fy (H CTr ) (S“AZ)

+7 Z PAi (Si7 SI)DW(SIa a/)wﬁ(a/|8,)Q(5/’ CL/) - Q(S'L'a Az))

s’,a’
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= ESONH}; |}h(s,a) (So, AO)}’Y (H Cﬂ' ) (SHAZ)

+'YZP SuA ))D.,T(S,,U,I)Q(Sl,a/) _Q(StaAz))

s’,a’

=Esgymp, [H{(s a)=(S0,40)} (H cr (S5, Aj ) R(Ss, Ai) + v[Pr, D Q](Si, Ai) — Q(Si, Az))]

= Esou, []I{(s,a) (So,A0)}7Y" (H e (S5, A; )

E [Cﬂ-(SiyAi)(R(Sia Ai) + ’Y[PwﬁDwQ](SivAi) - Q(Sz', Az)) | So ~ ﬂb,Am ey S, Ai—l}

= ESONMb

L (s,0)=(S0,40)}7" (ch )

(Z Pa, (Si—1,5")m(a’|s") min (c, ;((C;Ji,))) [R+~Pr,DzQ — Q](s, a')) ]

= ESONHh

L (s,0)=(S0,40)37" (H cn(S )
(Z PA 1 Z 1,5 mln(Cﬂb(a/|Sl)7ﬂ—(a’l|s/)) [R+P)/P7FPD7FQ_Q](S/7G/)) ‘|

= ESONHb

1—1
L (s,a)=(S0,40)}7" (H cr (S5, Aj)) x
j=1

s’,a’

(Z PA 1 Si—1,8 C (s’a) C(a/8/)[R+’7P7TPD7TQ_Q](3/7@/))]

i—1
= Espmpus []I{(s,a)—(SO,Ao)}'yi (H cx (S5, Aj)) [Pr.Cr(R +vPr, Dz Q — Q)](Si-1, Ail)]
j=1

= Esopmpm [I{(s,0)=(50,40)}7 [(Pr.Cx)' (R 4+ vPr, Dz Q — Q)](S0, Ao)]
= v up(s)mp(als) [(Pr.Cx) (R+ vPr,D=Q — Q)] (s, a)

=" [M(Pr.Cr)'(R + 7P, DxQ — Q)] (5,a).

It follows that

n—1
Te(Q,m) = > M(yPr,Cr) (R +vPr,DxQ — Q) + Q )
=0
n—1 n—1
- (I =Y M(yPr, Cr) (I - WP,TPD,T)> Q+ Y M(yP.Cr)'R. (6)
=0 =0

A b
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(b) We now show the desired contraction property. For any )1, Q)2 and 7, we have

[7e(Q1, ™) = Te(Q2, ™) [loo < [[Alloo/|@Q1 — Q2 co-

Consider the matrix A, we can rewrite it by
n n—1
A= A M(PrCr) " H(Pr,Dr) = > V' M(Pr,Cr)' +1
i=1 i=0
n—1 )
="M (Pr,Cr)" ' (Pr,Dy) + Z Y M(Pr,Cr) "N (Pr, Dy — Pr,Cr) + (I — M). (7)
i=1

Since
[Pr,Dr — Pr.Cr] ((s,a),(s',a)) = Pu(s, s") (min(pmy(a’ls"), m(a’|s")) — min(emy(a’|s"), w(a']s"))) =0

for any (s,a) and (s’, a’), the matrix A has non-negative entries. Therefore, we have

| Alloo = |41l 1=(1,1,.,1)")
n—1
=|1- Z M(’V‘P‘ITEC’TT)i(I - ’V-Pﬂ',gDﬂ')l
1=0 00
n—1 )
S 1-— Mmin Z(’Yomln)z(l - ’Y)
i=0
—1— Mumin(1 — 7)1 = (7Cmin)")
1- ’ycmin ’
where in the first inequality we used Cpinl < C1 < D;1 < 1 (component-wise). It follows that 7.(-, 7) is a
contraction mapping with respect to || - ||oo, With contraction factor
-1 Mipin (1 =) (1 = (YCmin)")
Ye = - .
1- ’chin

(c) The existence and uniqueness of the fixed-point of 7. (-, ) follows from Banach fixed-point theorem (Banach,
1922). To characterize the fixed-point, it is enough to show the modified Bellman’s equation

R+vP:,D:Q—Q =0
has a unique solution, i.e., the matrix I — ’yPWE D, is invertible. This is followed from

||P775D77||Oo = ||PTr5DTr1||oo < ||P7r51||oc =1

A.2. Proof of Lemma 2.1

(1) We begin with the Bellman’s equation for Q™: Q™ = R + vP,Q™, and the modified Bellman’s equation for Q”'™:
QP™ =R+ fyPﬂﬁDﬂQﬁ’”. Take the difference between these two equations and we obtain:
Qﬁ’ﬂ - Qﬂ = rYP'rr,sD'erﬁ’w - ’-YPﬂ'Qﬂ
= ’}/PﬂﬁDﬂQpﬂr - ’YP‘n'pD‘n'Qﬂ- + WPwﬁDwQﬂ - ’}/Pﬂ'Qﬂ
= '}’P‘ffﬁ‘D‘ff(Qp’Tr - Qﬂ) + 'V(PTFEDTF - PTF)QW-

Therefore, we have
lQ7™ = Q7| = It = ¥Pr, Dx) ' (Pr, D = Pr)Q7|
<[ = vPr, D) | [P, D = P[], 1Q7 |
< 7= 0 =P, D)7 )| Pry D = Pl
Since
[Pr, D = Prl((s,0), (s, ")) = Pu(s, s') (min(pmy (a’|s"), w(a'|s")) — w(a'|s"))
= Pa(s, s") min(pms(a’|s’) — m(a'|s"), 0)



Finite-Sample Analysis of Off-Policy Natural Actor-Critic Algorithm

= —P,(s,s")max(w(a'|s") — pmp(a’|s’),0)
<0,
we have

| Pr, D — P”Hoo = [|(Pr — PﬂﬁDW)lHoo < I(na)fmax(ﬂ(a|s) — pmp(als),0).

As for the term H (I =P, D)t HOO, note that for any invertible matrix GG we have

1 |G~ ]
) = map T Tl
e20  z]loo
= max 19100 (Change of variable)
v#0 || Gylloo
1
= max
villyllo=1 [|GY|l 0
B 1
miny, ) =1 [GYllec”
Therefore, we obtain
1
(1 *fYowDW)71||oo =
’ ming, |y =1 [(Z = ¥Pr, Dr)yl
1
<
1 = ymaxy, |y =1 [|Pr; Dryllo
1
< .
=15
It follows that
p,T T 1 _
Q7" — Q7o < ﬁll(f —YPr, D) loo | Pry D = Prlloo
1
< — maxmax(w(als) — pmp(als),0).
e e max(r(als) — pm(als), 0)
(2) Similarly, we have
P, — _ 1
1Q% oo = (I = ¥Pr, D) " Rlloo < (I = 7P, D)™ ool Rl oo < T

A.3. Proof of Theorem 2.1

We begin by restating Theorem 2.1 in full details:

Theorem A.1. Consider Q. of Algorithm 2.1. Suppose Assumption 2.1 is satisfied and the constant stepsize o is chosen

2
such that a(7o +n + 1) < min (12(ﬁ+11)f(5w)’ SR (o 1og<\$||A\>>' Then we have for all k 2 7o +n +1:

E[|Qx — Q™"

) B B 9 1— Ve k—(Ta+n+1)
2023100~ @7 + 10 + 1) (1 15 %)

8208e log(|S||A|)
(1 —)?

P+ 12 fEN*(1Q7 oo + 1?7 + 1+ 1).

Proof of Theorem A.1. To prove Theorem A.1, we will apply the results in (Chen et al., 2021). For self-containedness, we
here restate Theorem 2.1 of (Chen et al., 2021) in the following.

Theorem A.2 (Theorem 2.1 in (Chen et al., 2021)). Consider {x}} generated by the following stochastic approximation
algorithm: x+1 = x) + €(F(x, Yi) — x1). Suppose that

(1) The random process {Y;} is a Markov chain with finite state-space ). Moreover, {Y}} has a unique stationary

distribution j1y and there exist C1 > 0 and uy € (0, 1) such that max,ey | P*(y, ) — py (-)|l7v < C1uf for all k > 0.
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(2) The operator F : R? x Y+ R? satisfies |F(x1,y) — F(22,9)|lco < A1]|21 — 22|00 and || F(0,y)||cc < Bi for any
x1, 29 € RY andy € ).

(3) The expected operator F' : RY — R? defined by F(z) = Ey .y [F(2,Y))] is a 7. — contraction mapping with respect
10 || - ||oo- Denote the unique fixed-point of F(-) by z*.

7\2
(4) The constant stepsize € is chosen such that et. < min (4(141“), 912(/8;?)“2) log(d)>, where t. = min{k > 0

maxyey [|P*(y, ) — py (-)[lrv < e}
Then the following inequality holds for all k > t.:

. . B\’ 11—+, \* " 912elog(d) .

Proposition 3.1 enables us to apply Theorem A.2 to the Q)-trace algorithm. Therefore, when the constant stepsize «

—_ 2 . . . .
is chosen such that a(7, +n + 1) < min (12(ﬁ+11)f(677)’ 8208(/7-&-1)2(;(57’;))2 1og(|SHAD> (which is always possible since

a(te +n+1) = O(alog(l/a)) — 0 as a — 0), we have forall k > 7, +n + 1:

_ P = 1_ C
ElIQs — @712 <3 (100~ @7l + 1077 + 1) (1- 150

8208e log(|S]|A|)
(1 =)

) k—(Ta+n+1)

P+ D272 QP oo + 1)2(Ta +n + 1).

To go from Theorem A.1 to Theorem 2.1, notice that Qo = 0 in the Q-trace algorithm 2.1, and [|Q”™ || < ﬁ for any
p > 1and 7 € II (Lemma 2.1). Therefore, we have from Theorem A.1 that for all k > 7, +n + 1:

_ . . 1—7e
ElIQx - @71 <3 (1Q0 - @l + 1077 +1)* (1- 150

8208e log(|S||.A|)
(1- '76)2

=310 o +1)* (1-

8208elog(|S||A]) , _ _ 5
T Pt 12 f(e, (1

k—(Ta+n+1)

2 — e

< (1ol
(e 2

32832elog(|S||Al) , _ _ .
A=y PV e et tnt) (10 < ££5)

1—y
1 1—7, k—(Ta+n+1)
(1) ( R O‘)
c2 log(|S||A[)
(1 =) =)
where ¢; = 27 and ¢ = 32832¢ are numerical constants.

> k—(Ta+n+1)

P+12fEN* (17| + 1)*a(ta + n+ 1)

1— 7, k—(Ta+n+1)
(0%
2

loo + 1)?(7q +n 4 1) (Qo = 0)

5(p+ D2f(E7)%a(te +n+1),

A 4. Proof of Corollary 2.1.1
Under the same condition of Theorem 2.1, we have for all k > 7, +n + 1:
El|Qr — Q" [lco] < E[Qr — Q7" [loo] + Q7" = Q7|0 (Triangle inequality)

E _ p . maX(O, 1-— ﬁmins,a 7Tb(a|5))
< B[|Qu - Q4] + L Pty

(Lemma 2.1)
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max(0,1 — pmin, , m,(als))

< (Eka - Qﬁﬂr”io])l/2 + (Jensen’s inequality)

1
1 — 5mi
< (Ty + To)Y/? + max(0, (1p m“;‘;“ mo(als)) (Theorem 2.1)
-
max (0,1 — pming , 7 (als)) 5 5 5
< Ty ++/T5 + a )2’ , (a* + b* < (a+ b)? for any a,b > 0)
-7

where 77 and 75 are given in Theorem 2.1.

B. Off-Policy Natural Actor-Critic Algorithm
B.1. Proof of Proposition 3.2

To prove this proposition, it is more convenient to write the update equation for 7 in Algorithm 2.2 as

exp(B(Qi+1(s,a) — V™ (s)))
areamt(a]s) exp(B(Qir1(s, a’) = V7i(s)))
for all (s, a). Denote Z;(s) = ), 4 mt(als) exp(B(Qi11(s,a) — V7 (s))). We first present a sequence of lemmas. The

proofs are presented in Appendices B.4.1, B.4.2, and B.4.3. Throughout the paper, given an initial distribution x, we denote
dt = dzt and d* = dz*, where we omit p for the ease of notation.

miv1(als) = Wt(a|8)2

Lemma B.1. The following inequality holds for allt > 0 and s € S:
log(Zi(s)) = By mi(als)(Qs1(s,a) — Q™ (s, a)).
acA
Lemma B.2. Consider the iterates {m;} in Algorithm 2.2. The following inequality holds for any starting distribution p:

VI (p) = VT (p) = ﬁEdel > (milals) = mer1(al9)(Qer(s, a) — Q™ (s, a))
acA

oy S milals)(@Qesa (5,0) — Q7 (5,0)) + %ESNM log Zi(s).
acA

Lemma B.3. For any starting distribution u, we have for any t > 0:

VT () = V7 () = %Esw* Z 7" (als)(Q™ (s, a) — Qiy1(s, a)) + ﬁﬂﬂsw* log(Zi(s))
acA
1 . .
oy B LG Cls) [ () = KL (1) [ e (1)

Now we proceed to prove Proposition 3.2. Letting u = d*, we have by Lemma B.2 that

VI @) = V) 2 B 3 (mlals) = miaa (als) Qe (5.0) = Q7 (5,)

acA
. 1
— Esna- Z m(als)(Qur1(s,a) — Q™ (s,a)) + BEsNd* log Zi(s).
acA
It follows that
1 * T * 3 s
BES”d* log Zi(s) < V™Hi(d") — V7™ (d") + ﬁ”@tﬂ — Q™| oc- ®)
Now for any 7' > 1, we have
T—1
S (VT (1) = V™ ()
t=0
= 1 T—1
= S Eerr Y7 (@ls) Q7 (5,0) = Quan(,0) + = > Eyua- log(Zi(s))
1—y t=0 acA (1-=7)5 t=0
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1 T-1 . .
=B D B BOLE (1) | muC1s) = KL (1) | s (19))
1 T-1 1 T-1 3
S ; 1Q™ = Qitalloo + i t;) [V’Tf+1(d ) = V() + ﬁ”Qﬁ - Qt+1||m} (Eq. (8))
1 T-1 . )
Ty 2 B L (o) [ muCls)) = KL (ls) [ mera (1)
1 = 1 3 Il
= T—5 ; Q™ — Qit1llc + G(V”T(d )= VTd)) + e ; Q™ — Qry1llo
1 ) .
Ty e LT () [ mo(ls)) = KL(x(1s) [ mr(15))]

1 log(.A)
-2 " -7

Therefore, we have from the previous inequality:

4 T-1
S E ||Q7H - Qt+1||oo +
_ ~)2
(I—7)? =

T-1
VT )~ max BV <V () 5 3 BV ()
- t=0
L dos(A) 4

T-1
e T E U A (e 7 ; E[|Q™ — Qes1lloc]

log(e|Al) 4 =
< + E[|Q™ — Qup1loc]
(1=7)?BT  (1—7)°T ; i

B.2. Proof of Theorem 2.2

Our goal is to combine Proposition 3.2 with Corollary 2.1.1. The only challenge remains is that Corollary 2.1.1 is
stated for a fixed target policy 7 while 7, is stochastic. To overcome this difficulty, observe that 7; is determined by
{(Sk, Ak) Yo<k<t(k+n) While Q;11 is determined by m; and {(Sk, Ak) }+(k4n)<k<(t+1)(k+n)- Therefore, by the Markov
property and the tower property of conditional expectation, we have forany 0 < ¢ <7 — 1:

E[|Qur1 — Q7™ loc]
=E [E[HQt—i—l - Qﬁ’ﬂpt ”OO ‘ SOa A07 ey St(K+TL)'At(K+7L)”
T+ T + max(0,1 — pmin, , m,(als))

IN

(1—7)?
V(| Lo O g PsiAY e
Sl—'y 1 5 @ + A0 - (p+1)f(E,7)[a(ra +n+1)]
max(0,1 — pming 4 m(als))
(1—7)?
3 [K—(tatn+1)] 1/2
S (1-1x 300108 2(SIIAD ) »
= L=~ <1 2 a) * (1 — ) (1—7) (p+1)f(e,v)[era +n+1)]
max(0,1 — pming q 7s(als))
(1—9)? 9)

where in the last line we used ¢; = 27 and ¢y = 32832e¢.

Using Eq. (9) in Proposition 3.2, we have for all 7' > 1:

VT (k) = max B[V ()
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. 1 T-1
SV () = ) B[V ()
t=0
log(e|A|) 4 &
S TRy g Z:; E[|Q™ ~ Qes1ll]
log(e|.Al) 4max(0, (1 — pmin, , m(als))) 24 . 1— e LK —(Tatn+1)]

1200 log'/2(|S||.A])
(1 =721 =)
This proves Theorem 2.2.

(p+ 1) f@y)a(ra +n+ D)2

B.3. Proof of Corollary 2.2.2

We begin with the result of Theorem 2.2 when p = 3 (which ensures F3 = 0):

[
ming o 7 (al

VT (k) - max B[V (u)]

oA ( ~ Mypin(1 =) — (vain)")a> $H—Catntl))
= (1—~)3 2(1 — vClhin)

E
1200(1 — 7Cluin) log"/2(|S||.A])
Mepin(1 = 7)1 = (Crain)")

(p+1)f(e,M)a(ra +n+ 1)/

E,
log(elA])
(1 —7)2BT’
——
Ey
where we used the explicit expression of 7, in Proposition 3.1 (3) (b). Our goal is to obtain an e-optimal policy, i.e.,
VT (1) —maxo<i<r1 B[V ()] < e

We begin with the term Ej. It is clear that in order for F; < €, we need to have T = O(e~!(1 — ) ~2). Now consider the
term Es. Since 7, < L(log(1/a) + 1) for some L > 0, the inequality E5 < e implies

a0 ()

Finally, using « in the term F; and the inequality that e* > 1 + z for all z € R, then we have E; < e when
K =0(c?log*(1/€))O((1 =)~ M,37%)
It follows that the sample complexity is
TK = O(e 2 1og?(1/€))O((1 — y)THME p?)

To determine the dependence on the size of the state-action space, observe that

1
and p=——-+"->|A|
ming , m(als)

1
S -
|SI|Al

1

where the equalities are attained when 1, (s) = \?ll for all s and m,(als) = ray for all a. Therefore, we have at least

Min = Iléllan wp(8)mp(als)

O(|S|3|-AJ°) dependence on the state and action space.
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B.4. Proof of All Technical Lemmas
B.4.1. PROOF OF LEMMA B.1

Using the update rule of 7, in Algorithm 2.2 and we have forany ¢t > 0 and s € S:

log(Zy(s)) =log | > mi(als) exp(B(Qus1(s,a) — V™ (s))

acA
> B Z me(als)(Qry1(s,a) — V™(s)) (Jensen’s inequality)
acA
= BZ m(a]8)(Qu1(s,a) — Q™ (s, a)).
acA
B.4.2. PROOF OF LEMMA B.2
For any starting distribution p, we have
Vit () — V™ () = TES,\,dﬂrl Z met1(als)A™ (s, a) (Performance Difference Lemma)
acA
= Bt Y 11 (al) Q7 (5,0) — Qura(s,) + Quyr(s.a) — V™ (s))
acA
= 7Es~d‘+1 > malals) (@ (s,a) — Qi (s, )
acA
1 Ti+1(als) ) ~
+ ——FE g m als) log (Z S (Algorithm 2.2)
g 2 menlale)los  TGETAA)
— B Y maa(als) Q7 (510) = Qrias,)
acA
1 1
—FE,a . . —— K, gt+1 log Z,
+ (1 B sttt KL(mep1 (4] 8) | me(e]s)) + (1—)8 sqt+1 10g Zi(s)
1
> 7E8th+1 Z me11(als)(Q™ (s, a) — Qiy1(s,a)) + ————=E ge+1 log Zi(s)
= (1=)8
= —Eoaen Y mra(als)(Q7 (s,0) — Quya(s, @)
acA
1
+———Fyqrr |log Zi(s) — B> mi(als)(Qeya(s,a) — Q™ (s,a))
(1-=7)8 =
1
+ T Eanartr > mi(als)(Qea(s,a) — Q™ (s,a))
-
acA
1 .
2 T Bonarn Z(Wt(a\s) — mi41(al$))(Qer1(s, @) — Q™ (s, a))
-
acA
1
+ B o |10g Ze(s) — B milals)(Qera(s,a) — Q’”(s,a))]
acA
(d'** > (1 — v)p and Lemma B.1)
1
— B X (mlals) ~ 7 (@19) Qs (5:0) ~ Q7 (5,)
acA

1
Bop 3 7(0l3)(Qur1(5,0) = Q7 (5,)) + 5Eonplog Zu(s).
a€eA
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B.4.3. PROOF OF LEMMA B.3

Using the update rule of 7 in Algorithm 2.2 and we have forany t > 0 and s € S:

- 1
VT () = V™ () = ——Fgugr Z 7 (al|s)A™ (s, a) (Performance Difference Lemma)

I=n acA
= %W]EM* > (als)(@Q(s,a) = Quaa(s,a) + Qeyr(s,a) = V()

1 acA

= e Y Q7 (5,0) ~ Qunas:0)

acA
1 ; Tiy1(als) ,
+ WEM* ;ﬂ (als)log (%&(s)) (Algorithm 2.2)
1 . - 1
= T et gﬂ (als)(Q™ (s, a) — Qet1(s,a)) + TR log(Z(s))
1 . .
+ WEM* KL (s) [ me(-]s)) = KL (|s) | mev1(t]s))]

C. Related Literature

C.1. Interpretation of Convergence Rate in terms of Sample Complexity

Suppose we have a stochastic approximation algorithm that arises in RL, which has the following convergence bound:
1
Error < T + Ey, (10)

where 7' is the number of iterations, and Ej represents certain error that cannot be eliminated asymptotically. For example,
when studying TD-learning with function approximation, Ey represents the approximation error, i.e., the gap between the
true value function and the best value function offered by the approximating function space.

C.1.1. GLOBAL CONVERGENCE

Consider the case where /g = 0. In this case, sample complexity is well-defined, and it stands for the number of samples
required to make the appropriately defined error €. In the TD-learning example, this corresponds to using a tabular
representation. Specifically, in view of Eq. (10), the convergence rate is O(1/T'). Moreover, suppose every iteration requires
one sample. Then to obtain € accuracy, the amount of sample required is O(e~1).

C.1.2. CONVERGENCE IN THE PRESENCE OF A BIAS

Now consider the case where £y # 0. We argue that the definition of sample complexity in unclear, and needs careful
consideration. In the TD-learning example, this corresponds to using function approximation, which induces an unbeatable
error due to the limitation of the approximating function space. A similar situation arises in off-policy NAC algorithm
studied in this paper if the IS ratios are truncated to a certain level.

Suppose we apply the AM-GM inequality +- Zf\; T > (Hf\il x;)YN (x; > 0foralliand N € Z%) to the RHS of Eq.
(10). Then we obtain for any @ > 0 and N > 1:
1

E <=+FE
rror_T+ 0
1 1/N
:(WXCLN_l) +E0
1 1
SN W+CL+(Z+"'+G + Ey
~—_————

N—-1

1 1 1
:]\W]W+(1_N>G+EO' (11)
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Now if we choose a = Ej, then the previous inequality can be written as

1 1 1
1
=0 (TN) +O(Ep). (13)

While the derivation in (12) is correct, it leads to the following misleading interpretation:
We have a sample complexity of(’)(e_l/N) with an asymprotic error of size O(Ey) for any N > 1.

Clearly, this interpretation is incorrect. By using the AM-GM trick, we obtained a better rate of convergence, but with a
worse asymptotic error. Therefore, as long as one does not have global convergence (i.e., Fy # 0), it is not entirely clear
how to define sample complexity. One possible way out of this confusion is to define sample complexity only when the
asymptotic error is exactly Ey (instead of the weakened O(Ej)). An alternate way is to define sample complexity in terms
of convergence to the exact solution of a modified problem, and then separately characterize the error between the solution
of the original problem and the modified problem. This was the approach taken in the classic paper on TD with linear
function approximation (Tsitsiklis & Van Roy, 1997).

C.1.3. THE RESULTS IN (XU ET AL., 2020A) AND (XU ET AL., 2020B)

Convergence of AC type algorithms was studied in (Xu et al., 2020a) and (Xu et al., 2020b) under linear function
approximation. A special case of linear function approximation is the tabular setting, where the feature vectors are chosen to
be the canonical basis vectors. However, in this case, the results in (Xu et al., 2020a) and (Xu et al., 2020b) do not guarantee
global convergence because of the presence of additive constants in the error (for any choice of A as defined in (Xu et al.,
2020a;b)).

Now, consider the case of linear function approximation. We believe that the sample complexity of @(6_2'5) for AC and
O(e~*) sample complexity for NAC claimed in (Xu et al., 2020b) and O(¢~2) sample complexity for NAC claimed in (Xu
et al., 2020a) are misleading because they were essentially obtained in the manner described in Section C.1.2. We present
more details below.

However, if one agrees with the interpretation of the sample complexity results in (Xu et al., 2020a;b), then our sample
complexity results can also be “improved” in the same sense as those in (Xu et al., 2020a;b) to O(e_l/ N forany N > 0
by doubling the asymptotic error from Fs5 to 2F5 (where the term Fj5 is the truncation error given in Theorem 2.2). This
can be done by applying the AM-GM inequality described in Section C.1.2 to the result of Theorem 2.2. In fact, for any
convergence bounds of the form (10) in the literature, one can use the same technique to obtain arbitrarily good convergence
rate and sample complexity.

The paper (Xu et al., 2020a): Now we illustrate how (Xu et al., 2020a) uses the AM-GM trick described above implicitly.
In Algorithm 1 (Actor-critic (AC) and natural actor-critic (NAC) online algorithms), the parameter A (line 19 of Algorithm
1) is introduced. In the statement of their main result (Eq. (31) of Theorem 6 in Appendix G), the parameter A appears both
in the denominator of the 1/7" terms (which is nof revealed in Theorem 3 of their main paper) and the numerator of the
constant terms. We see that the role of the parameter A is essentially equivalent to the tunable constant a introduced in Eq.

(11) of our above derivation. Later the parameter ) is set to be equal to , /(Sritic  (where ¢ g;g,fgw is the unbeatable error

due to function approximation in TD-learning) so that the additive constant terms are absorbed into the O( /(57is ) term,

which eventually leads to their claim of obtaining @(672) sample complexity of NAC. This is analogous to going from Eq.
(11) to Eq. (13) of our derivation in Section C.1.2 by setting a = Ej.

The paper (Xu et al., 2020b): Now we illustrate how the proof in (Xu et al., 2020b) is essentially equivalent to using the
AM-GM trick described above. In Algorithm 1 (Two Time-scale AC and NAC), the parameter A is introduced to perform
the critic update. Later in the third bullet point on the same page of Algorithm 1, the parameter Ry is set to be O(A™1).

Consider the resulting bounds in all 5 cases in step 3 of the proof of Theorem 2 (Appendix C). The parameter A\ appears in
the numerator of the constant term while the parameter Ry = O(A~!) appears quadratically in the 1/¢'~¢ term (which is
not revealed in the statement of Theorem 2 in the main paper). This leads to the claim of O(e~2®) sample complexity for
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AC with asymptotic error O(\). We believe this is analogous to Eq. (11) of our above derivation.

Consider the resulting bounds in all 5 cases in step 2 of the proof of Theorem 3 (Appendix D). The parameter A appears in
the numerator of the constant term while the parameter Ry = O(A~!) appears quadratically in the 1/¢'~7 term (which is
not revealed in the statement of Theorem 3 in the main paper). In Theorem 3, the parameter \ is set to be O(1/&/,,,0u )
which eventually leads the claim of O(¢~*) sample complexity for NAC with asymptotic accuracy O(y/€/,,,,0.). We
believe this is analogous to Eqs. (12) and (13) of our above derivation.

C.2. Single Trajectory

The AC and NAC algorithms presented in (Xu et al., 2020b) and (Xu et al., 2020a) appear to be based on a single trajectory,
at first glance. The single sample path is not from the original transition matrix P, but is from a modified transition matrix,
P(-|s,a) = vP(- | s,a) + (1 — v)&(-), where £(-) is the initial distribution. Now, in order to sample from the modified
transition matrix P, one has to sample from the original matrix P with probability v and reset to a state sampled from &(-)
with probability (1 — +). Thus, in reality, the algorithms in (Xu et al., 2020b;a) are not based on a single trajectory. This is
made explicitly clear in (Wang et al., 2019) (Section 3.2.1. Actor Update: Sampling From Visitation Measure), where the

same modified transition matrix P was used.

C.3. The Issue of Exploration

A major issue with on-policy AC and NAC is exploration. In related literature, to establish convergence bounds, usually
it requires either hard-to-satisfy assumptions to ensure exploration, or additional exploration steps which slow down the
convergence rate.

C.3.1. HARD-TO-SATISFY ASSUMPTIONS

The convergence of AC type methods have been established in several previous work. Each of these results require some
regularity assumptions on the underlying system. However, in the simple tabular setting, one can show that these assumptions
fail to hold. In particular, Assumption 4.1 in (Wu et al., 2020), Assumption 1 in (Xu et al., 2020a;b; Kumar et al., 2019), and
Assumption 3.3 in (Qiu et al., 2019) in the tabular setting imply the sequence of policies {7} generated by the algorithm
satisfy m¢(a|s) > 6 > 0, for all s,a and ¢. This assumption in conjunction with the irreducibility assumption of of the
underlying Markov chain under all the policies, one can show that all the state and actions will be visited infinitely often as
the AC algorithm proceeds.

The above mentioned assumption means that all the elements of the policy table must attain at least positive value § uniformly
over time. However, a well known result shows that, for every MDP there always exist an optimal deterministic policy
(Puterman, 1995). In particular, one can construct MDPs with a unique deterministic optimal policy. In such examples,
some of the elements of 7; should converge to zero as the AC algorithm proceeds, and this violates the aforementioned
assumptions. For more information, look at Section 4 in (Khodadadian et al., 2021) where an experimental implementation
of NAC shows that 7, indeed converges to a deterministic policy.

C.3.2. ADDITIONAL EXPLORATION STEPS

One way of avoiding the assumption mentioned in the previous subsection is to artificially introduce additional exploration.
This was done in (Khodadadian et al., 2021) where e-greedy NAC was proposed under which, at each time, actions are
sampled from e-greedy policy #; = (1 — e;)ms + ﬁ. Sampling from this policy ensures that all actions will be visited with
probability at least \%I’ which ensures exploration of all state-action pairs. However, this sampling policy will result in a
slower rate of convergence as stated in (Khodadadian et al., 2021).

C.4. Sample Complexity Calculation in Related Literature

In this section, we compute the sample complexity of each related work listed in Table 1, based on the convergence bounds
provided in the corresponding paper. We will use the same notation as was used in the corresponding paper.
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C.4.1. (WANG ET AL., 2019)

AC, Theorem 4.7: In order the obtain an e-optimal stationary point, we need T = O(e~2/3), which implies m =
O(e716/3), Since Trp = Q(m), the total sample complexity 7' x Trp is at least O(e~6).

NAC, Corollary 4.14: In order to obtain an e-optimal policy, we need T = O(e~2), which implies m = Q(e~1*). Since
Trp = Q(m), the total sample complexity 7' x Trp is at least O(e~14).

C.4.2. (KUMAR ET AL., 2019)

AC, Theorem 1: The result in this paper assumes a convergence rate of O(1/k®) for the critic. It was shown in (Srikant
& Ying, 2019) that a rate of O(1/v/k) is achievable, and so we use this to evaluate sample complexity. In order to obtain
e-close stationary point, we need O(1 + 2 + -+ + ¢ 2) = O(e~*) number of samples, which implies O(¢~*) sample
complexity.

C.4.3. (AGARWAL ET AL., 2019)

NAC, Corollary 6.2: In order to obtain an e-optimal policy, we need to have ﬁﬁ < O(e) and =37 s < Oe).
2T N

This is equivalent to 7' > O((1 —7)~?¢ %) and N > O((1 — )~ ®¢~*). Hence, the total sample complexity is -7 =

O((1 — v)~e=%). Note that although (Agarwal et al., 2019, Corollary 6.2) is stated for the function approximation setting,
the result would be the same even in the tabular setting.

C.4.4. (KHODADADIAN ET AL., 2021)

NAC, Corollary 1.1: As stated in Corollary 1.1 of this paper, to obtain an € optimal policy, we have T' > O(e~*) sample
complexity.

C.4.5. (QIUET AL., 2019)

AC, Theorem 4.6: As stated in Theorem 4.6 of this paper, in order to an e-optimal stationary point, we need 7' > €2 number
of outer loops, and in each outer loop we need O(T') inner loops. Hence, the total sample complexity is T x T' = O(e~*).

D. Experimental Results
D.1. Details of the Experimental Results

Figure 1 shows the convergence behavior of off-policy NAC 2.2. The underlying process is a MDP with 5 states and 3
actions {a1, as,as} and v = 0.9. The state transition probabilities over the states are

01000 10000 0000 1
00100 01000 1000 0
P,=1000 10/, P,=|00100l, P,=|0100 0f,
0000 1 00010 00100
10000 0000 1 00010

and the reward functions are
R(s,a1) =1, R(s,a2) =05, R(s,a3)=0, VseS.

In this setting, clearly the optimal policy is to take action a; in all states. In addition, the behavior policy has uniform
distribution, i.e. m(als) = 1/3 Va, s. The parametters of the algorithm are chosen as follows: n = 6,7 = 100, K =
1000, « = 0.05,8 =0.1,p = 3,¢ = 1,mo(als) = %Va, s. In addition, for ()¢ input of the )-trace, we use the previously
learned () table as the input to enhance the convergence. An implementation of the code is available at https://github.com/gt-

coar/off_policy-NAC/blob/main/off-policy NAC.py. It is clear that algorithm converges in Figure 1.

D.2. Using Repeated Samples in the Critic

Using the same setup as above, we executed Algorithm 2.2 with repeated samples used for each iteration of the ()-trace.
Figure 2 shows the result. It is clear that we do not have convergence in this case.
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Figure 2. behavior of off-policy NAC when the critic updates are performed using a fixed number of samples. The straight lines are
V™ () — V™ () values for 5 different sample paths, and the dashed lines are the corresponding critic errors ||Q™" — Q™ || of each
sample path. It is clear that the algorithm does not converge.

D.3. The Effect of the Truncation Levels

In order to evaluate the effect of the truncation of the importance sampling in the behavior of the off-policy NAC, we run
Algorithm 2.2 for different levels of p and ¢ for an MDP with the same setting as in section D.1. The result is shown in
Figure 3. In this figure, for each choice of the p and ¢ we run the Algorithm 2.2 for 6 number of times. The dashed lines
represent the average of these 6 sample paths, and the area around the dashed lines represent the standard deviation of these
6 trajectories. It is clear that the choice of p = 3, ¢ = 1 results in the best convergence with the lowest standard deviation.
Reducing p = 3 to p = 2.5 is worsening the convergence bahaviour, and further increasing ¢ = 1 to ¢ = 1.5 increases the
standard deviation.
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Figure 3. The convergence behavior of off-policy NAC with different levels of truncation. For each choice of the truncation level, we run
Algorithm 2.2 6 times, and we plot the mean with the dashed line, and the standard deviation with the colored area.



