
Functional Space Analysis of Local GAN Convergence

A. Proofs

A.1. Proof of Theorem 1

Theorem 1. Let D = D⇤ + �D = �D,G = G⇤ + �G.

Let us denote u(x) = �D(x), v(x) = (�G)(G�1
⇤ (x)). We

assume u 2 H2(µ) and v 2 H1(µ). Then, (2) can be

approximated as

f(D,G) = f0 + g(u, v) +R3(u, v),

where

g(u, v) = ↵hu, uiµ + �hrxu, viµ,
and

R3(u, v) = O
⇣�

kukH2(µ) + kvkH1(µ)

�3⌘

Proof. The proof is straightforward: we use Taylor expan-
sion (Dieudonné, 1969, Theorem 8.14.3) in Banach spaces
to approximate both terms in the objective up to second
order. In order to obtain the statement of the theorem, we
need the target functional to be differentiable up to the third
order. Thus, we need to impose a certain restriction on our
functional space. Namely, we require r2

x
u and rxv to exist.

I.e., we need u 2 H2(µ) and v 2 H1(µ). The derivation
of the approximation is then straightforward using standard
calculus of variations arguments. We also use the fact that
in the Nash equilibrium the first–order terms sum up to 0.

f(D⇤ + �D,G⇤ + �G) = f(�D,G⇤ + �G) =

= Ex⇠µ �1(�D(x)) + Ez⇠µz �2(�D(G⇤(z) + �G(z)))

= f0 + ↵Ex⇠µ �D
2 + � Ez⇠µz hrx�D(G⇤(z)), �G(z)i+

+ higher order terms,

Since the functional variation (u, v) belongs to the product
space H2(µ) ⇥ H1(µ), we obtain the remainder form in
the required form by (Dieudonné, 1969, Theorem 8.14.3).
Finally, the statement follows from the definitions of h·, ·iµ,
u and v.

A.2. Proof of Corollary 1

Corollary 1. Let (u0, v0) be an eigenfunction with � = 0.

Then,

u0 = C, hrxû, v0iµ = 0, 8û 2 H2(µ), (10)

or in the strong form:

u0 = C,rx · (⇢v0) = 0. (11)

Here C is a constant such that C↵ = 0. I.e., for ↵ 6= 0 we

get C = 0, and C 2 R otherwise.

Proof. From (8) we observe that the element (u0, v0) of the
kernel satisfies the following equations 8û 2 H2(µ).

u0 = C,�↵hC, ûiµ � �hrxû, v0iµ = 0. (35)

Let us choose û = 1. From the second equation it follows
that ↵C = 0 as desired.

A.3. Proof of Theorem 3

Theorem 2. The non-zero spectrum of (8) is described as

follows.

• The eigenvalues are given by {�±
i
}1
i=1 where �±

i
are

roots of the quadratic equation:

�2 + ↵�+ �2⇠i = 0. (16)

• The corresponding eigenfunctions are written in terms

eigenfunctions of ��µ as follows.

(u
�
±
i
, v

�
±
i
) = (w⇠i ,

�

�±
i

rxw⇠i). (17)

Proof. By putting v̂ = rxû into the second equation of (8),
we get

�(u�, û)µ = �↵(u�, û)µ � �2

�
(rxû,rxu�)µ,

which can be rewritten as

(rxû,rxu�)µ =
1

�2

�
(�↵�� �2)(u�, û)µ

�
= ⇠(u�, û)µ,

which means that ⇠ is an eigenvalue of ��µ, and u� is
its eigenfunction. The eigenvalue � can be found from the
solution of the quadratic equation (19)

� =
�↵±

p
↵2 � 4�2⇠

2
. (36)

A.4. Proof of Theorem 4

Theorem 4. Let u0 2 H2(µ), v0 2 H1(µ) andR
u0dµ = c0. Then, these functions can be written as

u0 = c0 +
1X

k=1

(c+
k
+ c�

k
)w⇠k ,

v0 = ev0 +rxV0, V0 =
1X

k=1

⇣
c+
k

�

�+
i

+ c�
k

�

��
i

⌘
w⇠k ,

and ev0 is divergence-free, i.e. hrxû, ev0iµ = 0. The coef-

ficients c+
k

and c�
k

can be obtained as the solution of the

linear systems:

 
1 1
�

�
+
i

�

�
�
i

!✓
c+
k

c�
k

◆
=

✓
hu0, w⇠kiµ
hV0, w⇠kiµ

◆
(20)
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With this expansion, the solution to (6) is

u(t) = c0e
�↵t +

1X

k=1

w⇠k

⇣
c+
k
e�

+
k t + c�

k
e�

�
k t

⌘
,

v(t) = ev0 +rxV (t),

V (t) =
1X

k=1

w⇠k

✓
c+
k

�

�+
i

e�
+
k t + c�

k

�

��
i

e�
�
k t

◆
.

(21)

For ↵ > 0 the norms of u(t) and V (t) can be estimated as

ku(t)kµ  2ku0kµe⌘t, kV (t)kµ  CkV0kµe⌘t,

where ⌘ = Re
⇣

�↵+
p

↵2�4�2⇠min

2

⌘
< 0 is the maximal real

part of the eigenvalues.

Proof. The decomposition of v0 into a potential part and
divergence-free part is a direct generalization of the classical
result for the ordinary divergence and gradient, known as the
Helmholtz decomposition (Griffiths, 2005). The divergence-
free part ev0 belongs to the kernel of the operator, thus it
stays constant. The dynamics of u and v follows from the
completeness of the eigenbasis of �µ and the assumption
that its spectrum is discrete, thus we can expand them in
this basis. From Theorem 3 each component in the sum is
an eigenfunction, thus its time dynamics is just e�

±
k t. For

the constant term in u(t), by substituting û = 1 in (6),
we obtain the following ODE hut, 1iµ = �↵hu, 1iµ, from
which the statement follows.

B. Example with known eigenfunctions

Consider a model example of the normal distribution, µ ⇠
N (0, 1). Then, µ has the density ⇢(x) = 1p

2⇡
e�x

2
/2. The

eigenfunctions and eigenvalues of ��µ can be computed
explicitly. The strong form of the eigenproblem is

d

dx
⇢
dw⇠

dx
= �⇠⇢w⇠,

i.e. w⇠ satisfies

d2w⇠

dx2
� x

dw⇠

dx
= �⇠w⇠. (37)

The solution of (37) exists for ⇠k 2 Z�0 and the correspond-
ing eigenfunction is the Hermite polynomial:

w⇠k = Hk(x) = (�1)ne
x2

2
dn

dxn
e�

x2

2 .

The smallest non-zero eigenvalue is 1. Therefore, for the
LSGAN model, we will have the discriminant in (19) always
non-positive, and the convergence u and v will be exponen-
tial with the rate e�

t
2 . The solution also will oscillate due

to the presence of complex eigenvalues.

C. Examples of learned eigenfunctions.

Here we visualize the lowest eigenfunctions (corresponding
to ⇠min) obtained for two 2D distributions induced by im-
ages. See Figure 6. We observe that these eigenfunctions
roughly perform a very basic ‘clustering’ of the data.
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Figure 6. Examples of learned lowest eigenfunctions of ��µ for sample 2D distributions. Coloring is given by the norm of the function
gradient.


