
Neural SDEs as Infinite-Dimensional GANs

A. Experimental details
A.1. General notes

Sample code A straightforward pedagogical implemen-
tation has been made available as an example in the
torchsde library (Li, 2020).

Software We used PyTorch (Paszke et al., 2019) as an
autodifferentiable framework. We used the torchsde li-
brary (Li, 2020) to solve SDEs. We used the Signatory
library (Kidger & Lyons, 2021) to calculate the signatures
used in the MMD metric. We used the torchcde library
(Kidger, 2020) for its interpolation schemes, and to solve
the neural CDEs used in the classification and prediction
metrics. We used the torchdiffeq library (Chen, 2018)
to solve the neural ODEs used in the classification and pre-
diction metrics, and for the ODE components of the Latent
ODE and CTFP models.

Computing infrastruture Training was performed on
computers using Ubuntu 18.04 LTS, across a mix of five
GeForce RTX 2080 Ti and two Quadro GP100; each ex-
periment was performed on a single GPU. Training time
varied by problem; none took more than a week per exper-
iment.

SDE solvers The SDEs used the midpoint method. Re-
call that the target time series data was regularly sampled
and linearly interpolated to make a path. We took the SDE
solver to take a single step between each output data point.

ODE solvers All ODEs were solved using the midpoint
method. (For consistency with the solvers used to train the
SDE, for example to ensure that the discriminator’s action
on real data is similar to the discriminator’s action on gen-
erated data.)

CDE solvers The CDEs of the classification and predic-
tion models were solved by reducing to ODEs as in Kidger
et al. (2020).

Normalisation All data was normalised to have zero
mean and unit variance.

Architectures To recap, the neural SDE has generator
initial condition ζθ, generator drift µθ, generator diffusion
σθ, discriminator initial condition ξφ, discriminator drift
fφ, and discriminator diffusion gφ. All of these are pa-
rameterised as neural networks.

Meanwhile Latent ODEs have an ODE-RNN encoder (with
a neural network vector field) and a neural ODE decoder
(with a neural network vector field). The CTFP has an
ODE-RNN encoder (with a neural network vector field)

and a continuous normalising flow (Chen et al., 2018;
Grathwohl et al., 2019) (with a neural network vector field)
Additionally Deng et al. (2020) condition the normalising
flow on the time evolution of a neural ODE of some latent
state, which requires another neural network vector field.

Hyperparameters were selected according to informal hy-
perparameter optimisation across all models.

For the stocks, air quality, and weights datasets (but not the
time-dependent Ornstein–Uhlenbeck process, which was
done separately and is described below), every neural net-
work was parameterised as a feedforward network with 2
hidden layers, width 64, and softplus activations. The drift,
diffusion and vector fields, for every model, all addition-
ally had a tanh nonlinearity as their final operation. As de-
scribed in the main text we found that this improved the
performance of every model.

The neural SDE’s generator has hidden state of size x and
the discriminator has hidden state is of size h. These were
both taken as x = h = 96. Note that this is larger than
the width of each hidden layer within the neural networks,
so that the first operation within each neural network is a
map from R96 → R64. Somewhat anecdotally, we found
that taking the state to be larger than the hidden width was
beneficial for model performance.2

The Latent ODE likewise has evolving hidden state, which
was also taken to be of size 96.

The Latent ODE samples noise from a normally distributed
initial condition, which we took to have 40 dimensions.
The CTFP samples noise from a Brownian motion, which
as a continuous normalising flow has dimension equal to
the number of dimensions of target distribution.

The neural SDE samples noise from both a normally dis-
tributed initial condition and a Brownian motion. For the
stocks, air quality and weights datasets (but not the time-
dependent Ornstein–Uhlenbeck process, which was done
separately and is described below), we took the initial con-
dition to have 40 dimensions. The number of dimensions
of the Brownian motion was dataset dependent, see below.

The CTFP included a latent context vector as described in
Deng et al. (2020). This was taken to have 40 dimensions.

Optimisers The CTFP and Latent ODE were both
trained with Adam (Kingma & Ba, 2015) with a learning
rate of 4 × 10−5. The generator and discriminator of the
neural SDE were trained with Adadelta with a learning rate

2This has some loose theoretical justification: a signature is a
linear differential equation with very large state, and it is a uni-
versal approximator. (See Kidger et al. (2020, Appendix B) and
references within – this is a classical fact within rough analysis.)
That is to say, it is a simple vector field with a large state, rather
than a complicated vector field with a small state.



Neural SDEs as Infinite-Dimensional GANs

of 4× 10−5. The learning rates were chosen by starting at
4×10−4 (arbitrarily) and reducing until good performance
was achieved. (In particular seeking to avoid oscillatory
behaviour in training of the neural SDE.)

Training For the stocks, air quality and weights datasets
(but not the time-dependent Ornstein–Uhlenbeck process,
which was done separately and is described below), every
model was trained for 100 epochs. The discriminator of
the neural SDE received five training steps for every step
with which the generator was trained, as is usual; the num-
ber of epochs given at 100 is for the generator, for a fair
comparison to the other models.

Batch sizes were picked based on what was the largest pos-
sible batch size that GPU memory allowed for; these vary
by problem and are given below.

Classifier and predictor The classifier was taken to be a
neural CDE with hidden state of size 32, and whose vector
field was parameterised as a feedforward neural network
with 2 hidden layers of width 32, with softplus activations
and final tanh activation.

The predictor was taken to be a neural CDE/neural ODE
encoder/decoder pair. Both had a hidden state of size 32,
and vector fields parameterised as feedforward neural net-
work with 2 hidden layers of width 32, with softplus acti-
vations and final tanh activation. 32 dimensions were used
at the encoder/decoder interface.

The learning rate used was 10−4 for both models, for ev-
ery dataset and generative model considered, with the one
exception of CTFP on Beijing Air Quality, where we ob-
served divergent training of the classifier; the learning rate
was reduced to 10−5 for this case only.

In all cases they were trained for 50 epochs using Adam,
with early stopping if the model failed to improve its train-
ing loss over 20 epochs.

The classifier took an 80%/20% train/test split of the
dataset given by combining the underlying dataset and
model-generated samples of equal size.

A.2. Time-dependent Ornstein–Uhlenbeck process

Each sample is of length 64. The batch size was 1024.
The learning rate was 10−3 The neural SDE was trained for
6000 steps. (Not epochs.) L2 weight decay with scaling
0.01 was applied. Weight averaging (over both generator
and discriminator) was performed over the final 5500 steps.

The Brownian motion from which noise was sampled has
3 dimensions. The initial noise was sampled over 5 dimen-
sions. The evolving hidden states were taken to have size
32; the the width of each MLP was taken to be 16; each

such MLP had a single hidden layer.

A.3. Stocks

Each sample is of length 100.

The batch size was 2048 for every model.

For the neural SDE, the discriminator received 1 epoch of
training before the main training (of both generator and dis-
criminator simultaneously) commenced. The weight aver-
aging (over both generator and discriminator) was over ev-
ery training epoch. The Brownian motion from which noise
was sampled had 3 dimensions.

The prediction metric was based on using the first 80% of
the input to predict the last 20%.

A.4. Beijing Air Quality

Each sample is of length 24.

The data was normalised to have zero mean and unit vari-
ance.

The batch size was 1024 for every model.

For the neural SDE, the discriminator received 10 epochs
of training before the main training (of both generator and
discriminator simultaneously) commenced. The weight av-
eraging (over both generator and discriminator) was over
the final 40 epochs of training. (We realised that this was
an obvious improvement over averaging every epoch, as
was done for the previous two experiments.) The Brownian
motion from which noise was sampled had 10 dimensions.

The prediction metric was based on using the first 50% of
the input to predict the last 50%. (An accidental change
from the 80%/20% split used in the other experiments; this
was kept as it is fair, as it is the same for all models on this
dataset.)

A.5. Weights

Each sample is of length 100. Each sample corresponds
to the trajectory of a single scalar weight, epoch-by-epoch,
as a small convolutional model is trained on MNIST for
50 epochs. Every weight from the network is used, and
treated as a separate sample. This is repeated 10 times. If P
is the number of parameters in the convolutional network,
then the overall size of the dataset is now (samples =
10P, length = 100, channels = 1).

The batch size was 4096 for the neural SDE and latent
ODE. This was reduced to 1024 for the CTFP, which we
found to be a very memory intensive model on this prob-
lem.

For the neural SDE, the discriminator received 10 epochs



Neural SDEs as Infinite-Dimensional GANs

of training before the main training (of both generator and
discriminator simultaneously) commenced. The weight av-
eraging (over both generator and discriminator) was over
every training epoch. The Brownian motion from which
noise was sampled had 3 dimensions.

The prediction metric was based on using the first 80% of
the input to predict the last 20%.


