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Abstract
Stochastic differential equations (SDEs) are a
staple of mathematical modelling of temporal dy-
namics. However, a fundamental limitation has
been that such models have typically been rela-
tively inflexible, which recent work introducing
Neural SDEs has sought to solve. Here, we show
that the current classical approach to fitting SDEs
may be approached as a special case of (Wasser-
stein) GANs, and in doing so the neural and clas-
sical regimes may be brought together. The in-
put noise is Brownian motion, the output sam-
ples are time-evolving paths produced by a nu-
merical solver, and by parameterising a discrim-
inator as a Neural Controlled Differential Equa-
tion (CDE), we obtain Neural SDEs as (in mod-
ern machine learning parlance) continuous-time
generative time series models. Unlike previous
work on this problem, this is a direct extension of
the classical approach without reference to either
prespecified statistics or density functions. Ar-
bitrary drift and diffusions are admissible, so as
the Wasserstein loss has a unique global minima,
in the infinite data limit any SDE may be learnt.
Example code has been made available as part of
the torchsde repository.

1. Introduction
1.1. Neural differential equations

Since their introduction, neural ordinary differential equa-
tions (Chen et al., 2018) have prompted the creation of
a variety of similarly-inspired models, for example based
around controlled differential equations (Kidger et al.,
2020; Morrill et al., 2020), Lagrangians (Cranmer et al.,
2020), higher-order ODEs (Massaroli et al., 2020; Norcliffe
et al., 2020), and equilibrium points (Bai et al., 2019).

In particular, several authors have introduced neural
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stochastic differential equations (neural SDEs), such as
Tzen & Raginsky (2019a); Li et al. (2020); Hodgkinson
et al. (2020), among others. This is our focus here.

Neural differential equations parameterise the vector
field(s) of a differential equation by neural networks. They
are an elegant concept, bringing together the two dominant
modelling paradigms of neural networks and differential
equations.

The main idea – fitting a parameterised differential equa-
tion to data, often via stochastic gradient descent – has been
a cornerstone of mathematical modelling for a long time
(Giles & Glasserman, 2006). The key benefit of the neural
network hybridisation is its availability of easily-trainable
high-capacity function approximators.

1.2. Stochastic differential equations

Stochastic differential equations have seen widespread use
for modelling real-world random phenomena, such as par-
ticle systems (Coffey et al., 2012; Pavliotis, 2014; Lelièvre
& Stoltz, 2016), financial markets (Black & Scholes, 1973;
Cox et al., 1985; Brigo & Mercurio, 2001), population dy-
namics (Arató, 2003; Soboleva & Pleasants, 2003) and ge-
netics (Huillet, 2007). They are a natural extension of ordi-
nary differential equations (ODEs) for modelling systems
that evolve in continuous time subject to uncertainty.

The dynamics of an SDE consist of a deterministic term
and a stochastic term:

dXt = f(t,Xt) dt+ g(t,Xt) ◦ dWt, (1)

where X = {Xt}t∈[0,T ] is a continuous Rx-valued
stochastic process, f : [0, T ]×Rx → Rx, g : [0, T ]×Rx →
Rx×w are functions andW = {Wt}t≥0 is aw-dimensional
Brownian motion. We refer the reader to Revuz & Yor
(2013) for a rigorous account of stochastic integration.

The notation “◦” in the noise refers to the SDE being un-
derstood using Stratonovich integration. The difference be-
tween Itô and Stratonovich will not be an important choice
here; we happen to prefer the Stratonovich formulation as
the dynamics of (1) may then be informally interpreted as

Xt+∆t ≈ ODESolve
(
Xt , f( · )+g( · )∆W

∆t
, [t, t+∆t]

)
,
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where ∆W ∼ N (0,∆tIw) denotes the increment of the
Brownian motion over the small time interval [t, t+ ∆t].

Historically, workflows for SDE modelling have two steps:

1. A domain expert will formulate an SDE model using
their experience and knowledge. One frequent and
straightforward technique is to add “σ◦dWt” to a pre-
existing ODE model, where σ is a fixed matrix.

2. Once an SDE model is chosen, the model parameters
must be calibrated from real-world data. Since SDEs
produce random sample paths, parameters are often
chosen to capture some desired expected behaviours.
That is, one trains the model to match target statistics:

{
E
[
Fi(X)

]}
1≤i≤n, (2)

where the real-valued functions {Fi} are prespecified.
For example in mathematical finance, the statistics (2)
represent option prices that correspond to the func-
tions Fi, which are termed payoff functions; for the
well-known and analytically tractable Black–Scholes
model, these prices can then be computed explicitly
for call and put options (Black & Scholes, 1973).

The aim of this paper (and neural SDEs more generally) is
to strengthen the capabilities of SDE modelling by hybri-
dising with deep learning.

1.3. Contributions

SDEs are a classical way to understand uncertainty over
paths or over time series. Here, we show that the current
classical approach to fitting SDEs may be generalised, and
approached from the perspective of Wasserstein GANs. In
particular this is done by putting together a neural SDE
and a neural CDE (controlled differential equation) as a
generator–discriminator pair.

Arbitrary drift and diffusions are admissible, which from
the point of view of the classical SDE literature offers un-
precedented modelling capacity. As the Wasserstein loss
has a unique global minima, then in the infinite data limit
arbitrary SDEs may be learnt.

Unlike much previous work on neural SDEs, this operates
as a direct extension of the classical tried-and-tested ap-
proach. Moreover and to the best of our knowledge, this is
the first approach to SDE modelling that involves neither
prespecified statistics nor the use of density functions.

In modern machine learning parlance, neural SDEs become
continuous-time generative models. We anticipate applica-
tions in the main settings for which SDEs are already used
– now with enhanced modelling power. For example later
we will consider an application to financial time series.

2. Related work
We begin by discussing previous formulations, and appli-
cations, of neural SDEs. Broadly speaking these may be
categorised in two groups. The first use SDEs as a way
to gradually insert noise into a system, so that the termi-
nal state of the SDE is the quantity of interest. The second
instead consider the full time-evolution of the SDE as the
quantity of interest.

Tzen & Raginsky (2019a;b) obtain Neural SDEs as a con-
tinuous limit of deep latent Gaussian models. They train by
optimising a variational bound, using forward-mode autod-
ifferentiation. They consider only theoretical applications,
for modelling distributions as the terminal value of an SDE.

Li et al. (2020) give arguably the closest analogue to the
neural ODEs of Chen et al. (2018). They introduce neu-
ral SDEs via a subtle argument involving two-sided fil-
trations and backward Stratonovich integrals, but in doing
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Figure 1. Pictorial summary of just the high level ideas: Brownian motion is continuously injected as noise into an SDE. The classical
approach fits the SDE to prespecified statistics. Generalising to (Wasserstein) GANs, which instead introduce a learnt statistic (the
discriminator), we may fit much more complicated models.
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H0 = ξφ(Y0)

X0 = ζθ(V )

V ∼ N (0, Iv) Wt = Brownian motion

dXt = µθ(t,Xt) dt+ σθ(t,Xt) ◦ dWt

dHt = fφ(t,Ht) dt+ gφ(t,Ht) ◦ dYt D = mφ ·HT

Yt = αθXt + βθ

Noise

Generator

Discriminator

Initial Hidden state Output

Figure 2. Summary of equations.

so are able to introduce a backward-in-time adjoint equa-
tion, using only efficient-to-compute vector-Jacobian prod-
ucts. In applications, they use neural SDEs in a latent vari-
able modelling framework, using the stochasticity to model
Bayesian uncertainty.

Hodgkinson et al. (2020) introduce neural SDEs as a limit
of random ODEs. The limit is made meaningful via rough
path theory. In applications, they use the limiting random
ODEs, and treat stochasticity as a regulariser within a nor-
malising flow. However, they remark that in this setting
the optimal diffusion is zero. This is a recurring problem:
Innes et al. (2019) also train neural SDEs for which the op-
timal diffusion is zero.

Rackauckas et al. (2020) treat neural SDEs in classical
Feynman–Kac fashion, and like Hodgkinson et al. (2020);
Tzen & Raginsky (2019a;b), optimise a loss on just the ter-
minal value of the SDE.

Briol et al. (2020); Gierjatowicz et al. (2020); Cuchiero
et al. (2020) instead consider the more general case of us-
ing a neural SDE to model a time-varying quantity, that
is to say not just considering the terminal value of the
SDE. Letting µ, ν denote the learnt and true distributions on
path space, they all train by minimising

∣∣∫ fdµ−
∫
fdν

∣∣
for functions of interest f (such as derivative payoffs).
This corresponds to training with a non-characteristic
MMD (Gretton et al., 2013).

Several authors, such as Oganesyan et al. (2020); Hodgkin-
son et al. (2020); Liu et al. (2019), seek to use stochasticity
as a way to enhance or regularise a neural ODE model.

Song et al. (2021), building on the discrete time counter-
parts Song & Ermon (2019); Ho et al. (2020), consider
an SDE that is fixed (and prespecified) rather than learnt.
However by approximating one of its terms with a neu-
ral network trained with score matching, then the SDE be-
comes a controlled way to inject noise so as to sample from
complex high-dimensional distributions such as images.

Our approach is most similar to Li et al. (2020), in that we
treat neural SDEs as learnt continuous-time model com-
ponents of a differentiable computation graph. Like both

Rackauckas et al. (2020) and Gierjatowicz et al. (2020)
we emphasise the connection of our approach to standard
mathematical formalisms. In terms of the two groups men-
tioned at the start of this section, we fall into the second:
we use stochasticity to model distributions on path space.
The resulting neural SDE is not an improvement to a simi-
lar neural ODE, but a standalone concept in its own right.

3. Method
3.1. SDEs as GANs

Consider some (Stratonovich) integral equation of the form

X0 ∼ µ, dXt = f(t,Xt) dt+ g(t,Xt) ◦ dWt,

for initial probability distribution µ, (Lipschitz continuous)
functions f , g and Brownian motion W . The strong solu-
tion to this SDE may be defined as the unique function S
such that S(µ,W ) = X almost surely (Rogers & Williams,
2000, Chapter V, Definition 10.9).

Intuitively, this means that SDEs are maps from a noise
distribution (Wiener measure, the distribution of Brownian
motion) to some solution distribution, which is a probabil-
ity distribution on path space.

We recommend any of Karatzas & Shreve (1991), Rogers
& Williams (2000), or Revuz & Yor (2013) as an introduc-
tion to the theory of SDEs.

SDEs can be sampled from: this is what a numerical SDE
solver does. However, evaluating its probability density
is not possible; in fact it is not even defined in the usual
sense.1 As such, an SDE is typically fit to data by asking
that the model statistics

{
EX∼model

[
Fi(X)

]}
1≤i≤n,

match the data statistics
{
EX∼data

[
Fi(X)

]}
1≤i≤n,

1Technically speaking, a probability density is the Radon–
Nikodym derivative of the measure with respect to the Lebesgue
measure. However, the Lebesgue measure only exists for finite
dimensional spaces. In infinite dimensions, it is instead necessary
to define densities with respect to for example Gaussian measures.
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for some functions of interest Fi. Training may be done via
stochastic gradient descent (Giles & Glasserman, 2006).

For completeness we now additionally introduce the rel-
evant ideas for GANs. Consider some noise distribution
µ on a space X , and a target probability distribution ν on
a space Y . A generative model for ν is a learnt function
Gθ : X → Y trained so that the (pushforward) distribution
Gθ(µ) approximates ν. Sampling from a trained model
is typically straightforward, by sampling ω ∼ µ and then
evaluating Gθ(ω).

Many training methods rely on obtaining a probability den-
sity for Gθ(µ); for example this is used in normalising
flows (Rezende & Mohamed, 2015). However this is not in
general computable, perhaps due to the complicated inter-
nal structure of Gθ. Instead, GANs examine the statistics
of samples from Gθ(µ), and seek to match the statistics
of the model to the statistics of the data. Most typically
this is a learnt scalar statistic, called the discriminator. An
optimally-trained generator is one for which

EX∼model
[
F (X)

]
= EX∼data

[
F (X)

]

for all statistics F , so that there is no possible statistic (or
‘witness function’ in the language of integral probability
metrics (Bińkowski et al., 2018)) that the discriminator may
learn to represent, so as to distinguish real from fake.

There are some variations on this theme; GMMNs in-
stead use fixed vector-valued statistics (Li et al., 2015), and
MMD-GANs use learnt vector-valued statistics (Li et al.,
2017).

In both cases – SDEs and GANs – the model generates
samples by transforming random noise. In neither case
are densities available. However sampling is available, so
that model fitting may be performed by matching statis-
tics. With this connection in hand, we now seek to combine
these two approaches.

3.2. Generator

Let Ytrue be a random variable on y-dimensional path space.
Loosely speaking, path space is the space of continuous
functions f : [0, T ]→ Ry for some fixed time horizon T >
0. For example, this may correspond to the (interpolated)
evolution of stock prices over time. Ytrue is what we wish
to model.

Let W : [0, T ] → Rw be a w-dimensional Brownian mo-
tion, and V ∼ N (0, Iv) be drawn from a v-dimensional
standard multivariate normal. The values w, v are hyperpa-
rameters describing the size of the noise.

Let

ζθ : Rv → Rx,
µθ : [0, T ]× Rx → Rx,
σθ : [0, T ]× Rx → Rx×w,

αθ ∈ Ry×x

βθ ∈ Ry

where ζθ, µθ and σθ are (Lipschitz) neural networks. Col-
lectively they are parameterised by θ. The dimension x is a
hyperparameter describing the size of the hidden state.

We define neural SDEs of the form

X0 = ζθ(V ),

dXt = µθ(t,Xt) dt+ σθ(t,Xt) ◦ dWt, (3)

Yt = αθXt + βθ,

for t ∈ [0, T ], with X : [0, T ] → Rx the (strong) solution

to the SDE, such that in some sense Y
d≈ Ytrue. That is

to say, the model Y should have approximately the same
distribution as the target Ytrue (for some notion of approx-
imate). The solution X is guaranteed to exist given mild
conditions (such as Lipschitz µθ, σθ).

Architecture Equation (3) has a certain minimum
amount of structure. First, the solutionX represents hidden
state. If it were the output, then future evolution would sat-
isfy a Markov property which need not be true in general.
This is the reason for the additional readout operation to Y .
Practically speaking Y may be concatenated alongside X
during an SDE solve.

Second, there must be an additional source of noise for the
initial condition, passed through a nonlinear ζθ, as Y0 =
αθζθ(V ) + βθ does not depend on the Brownian noise W .

ζθ, µθ, and σθ may be taken to be any standard network
architecture, such as a simple feedforward network. (The
choice does not affect the GAN construction.)

Sampling Given a trained model, we sample from it by
sampling some initial noise V and some Brownian mo-
tion W , and then solving equation (3) with standard nu-
merical SDE solvers. In our experiments we use the mid-
point method, which converges to the Stratonovich solu-
tion. (The Euler–Maruyama method converges to the Itô
solution).

Comparison to the Fokker–Planck equation The dis-
tribution of an SDE, as learnt by a neural SDE, contains
more information than the distribution obtained by learning
a corresponding Fokker–Planck equation. The solution to
a Fokker–Planck equation gives the (time evolution of the)



Neural SDEs as Infinite-Dimensional GANs

probability density of a solution at fixed times. It does not
encode information about the time evolution of individual
sample paths. This is exemplified by stationary processes,
whose sample paths may be nonconstant but whose distri-
bution does not change over time.

Stratonovich versus Itô The choice of Stratonovich so-
lutions over Itô solutions is not mandatory. As the vector
fields are learnt then in general either choice is equally ad-
missible.

3.3. Discriminator

Each sample from the generator is a path Y : [0, T ]→ Ry;
these are infinite dimensional and the discriminator must
accept such paths as inputs. There is a natural choice: pa-
rameterise the discriminator as another neural SDE.

Let

ξφ : Ry → Rh,
fφ : [0, T ]× Rh → Rh,
gφ : [0, T ]× Rh → Rh×y,

mφ ∈ Rh (4)

where ξφ, fφ and gφ are (Lipschitz) neural networks. Col-
lectively they are parameterised by φ. The dimension h is
a hyperparameter describing the size of the hidden state.

Recalling that Y is the generated sample, we take the dis-
criminator to be an SDE of the form

H0 = ξφ(Y0),

dHt = fφ(t,Ht) dt+ gφ(t,Ht) ◦ dYt, (5)

D = mφ ·HT ,

for t ∈ [0, T ], with H : [0, T ] → Rh the (strong) solution
to this SDE, which exists given mild conditions (such as
Lipschitz fφ, gφ). The value D ∈ R, which is a function of
the terminal hidden state HT , is the discriminator’s score
for real versus fake.

Neural CDEs The discriminator follows the formulation
of a neural CDE (Kidger et al., 2020) with respect to the
control Y . Neural CDEs are the continuous-time analogue
to RNNs, just as neural ODEs are the continuous-time ana-
logue to residual networks (Chen et al., 2018). This is what
motivates equation (5) as a probably sensible choice of dis-
criminator. Moreover, it means that the discriminator en-
joys properties such as universal approximation.

Architecture There is a required minimum amount of
structure. There must be a learnt initial condition, and the
output should be a function of HT and not a univariate HT

itself. See Kidger et al. (2020), who emphasise these points
in the context of CDEs specifically.

Single SDE solve In practice, both generator and dis-
criminator may be concatenated together into a single SDE
solve. The state is the combined [X,H], the initial condi-
tion is the combined

[ζθ(V ), ξφ(αθζθ(V ) + βθ)],

the drift is the combined

[µθ(t,Xt), fφ(t,Ht) + gφ(t,Ht)αθµθ(t,Xt)],

and the diffusion is the combined

[σθ(t,Xt), gφ(t,Ht)αθσθ(t,Xt)].

HT is extracted from the final hidden state, andmφ applied,
to produce the discriminator’s score for that sample.

Dense data regime We still need to apply the discrimi-
nator to the training data.

First suppose that we observe samples from Ytrue as an ir-
regularly sampled time series z = ((t0, z0), . . . , (tn, zn)),
potentially with missing data, but which is (informally
speaking) densely sampled. Without loss of generality let
t0 = 0 and tn = T .

Then it is enough to interpolate ẑ : [0, T ] → Ry such that
ẑ(ti) = zi, and compute

H0 = ξφ(ẑ(t0)),

dHt = fφ(t,Ht) dt+ gφ(t,Ht) ◦ dẑt,

D = mφ ·HT , (6)

where gφ(t,Ht) ◦ dẑt is defined as a Riemann–Stieltjes in-
tegral, stochastic integral, or rough integral, depending on
the regularity of ẑ.

In doing so the interpolation produces a distribution on path
space; the one that is desired to be modelled. For exam-
ple linear interpolation (Levin et al., 2013), splines (Kidger
et al., 2020), Gaussian processes (Li & Marlin, 2016; Fu-
toma et al., 2019) and so on are all acceptable.

In each case the relatively dense sampling of the data makes
the choice of interpolation largely unimportant. We use lin-
ear interpolation for three of our four experiments (stocks,
air quality, weights) later.

Sparse data regime The previous option becomes a little
less convincing when z is potentially sparsely observed. In
this case, we instead first sample the generator at whatever
time points are desired, and then interpolate both the train-
ing data and the generated data – solving equation (6) in
both cases.

In this case, the choice of interpolation is simply part of
the discriminator, and the interpolation is simply a way to
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embed discrete data into continuous space. We use this
approach for the time-dependent Ornstein–Uhlenbeck ex-
periment later.

Training loss The training losses used are the usual one
for Wasserstein GANs (Goodfellow et al., 2014; Arjovsky
et al., 2017). Let Yθ : (V,W ) 7→ Y represent the overall
action of the generator, and let Dφ : Y 7→ D represent the
overall action of the discriminator. Then the generator is
optimised with respect to

min
θ

[EV,WDφ(Yθ(V,W ))] , (7)

and the discriminator is optimised with respect to

max
φ

[EV,WDφ(Yθ(V,W ))− EzDφ(ẑ)] . (8)

Training is performed via stochastic gradient descent tech-
niques as usual.

Lipschitz regularisation Wasserstein GANs need a Lip-
schitz discriminator, for which a variety of methods have
been proposed. We use gradient penalty (Gulrajani et al.,
2017), finding that neither weight clipping nor spectral nor-
malisation worked (Arjovsky et al., 2017; Miyato et al.,
2018).

We attribute this to the observation that neural SDEs (as
with RNNs) have a recurrent structure. If a single step
has Lipschitz constant λ, then the Lipschitz constant of the
overall neural SDE will be O(λT ) in the time horizon T .
Even small positive deviations from λ = 1 may produce
large Lipschitz constants. In contrast gradient penalty reg-
ularises the Lipschitz constant of the entire discriminator.

Training with gradient penalty implies the need for a dou-
ble backward. If using the continuous-time adjoint equa-
tions of (Li et al., 2020), then this implies the need for a
double-adjoint. Mathematically this is fine: however for
moderate step sizes this produces gradients that are suffi-
ciently inaccurate as to prevent models from training. For
this reason we instead backpropagate through the internal
operations of the solver.

Learning any SDE The Wasserstein metric has a unique
global minima at Y = Ytrue. By universal approxima-
tion of Neural CDEs (with respect to either continuous in-
puts or interpolated sequences, corresponding to dense and

sparse data regimes respectively) (Kidger et al., 2020), the
discriminator is sufficiently powerful to approximate the
Wasserstein metric over any compact set of inputs.

Meanwhile by the universal approximation theorem for
neural networks (Pinkus, 1999; Kidger & Lyons, 2020) and
convergence results for SDEs (Friz & Victoir, 2010, The-
orem 10.29) it is immediate that any (Markov) SDE of the
form

dYt = µ(t, Yt) dt+ σ(t, Yt) ◦ dWt

may be represented by the generator. Beyond this, the use
of hidden state X means that non-Markov dependencies
may also be modelled by the generator. (This time without
theoretical guarantees, however – we found that proving a
formal statement hit theoretical snags.)

4. Experiments
We perform experiments across four datasets; each one is
selected to represent a different regime. First is a univariate
synthetic example to readily compare model results to the
data. Second is a large-scale (14.6 million samples) dataset
of Google/Alphabet stocks. Third is a conditional gener-
ative problem for air quality data in Beijing. Fourth is a
dataset of weight evolution under SGD.

In all cases see Appendix A for details of hyperparameters,
learning rates, optimisers and so on.

4.1. Synthetic example: time-dependent
Ornstein–Uhlenbeck process

We begin by considering neural SDEs only (our other
experiments feature comparisons to other models), and
attempt to mimic a time-dependent one-dimensional
Ornstein–Uhlenbeck process. This is an SDE of the form

dzt = (µt− θzt) dt+ σ ◦ dWt.

We let µ = 0.02, θ = 0.1, σ = 0.4, and generate 8192
samples from t = 0 to t = 63, sampled at every integer.

Marginal distributions We plot marginal distributions at
t = 6, 19, 32, 44, 57. (Corresponding to 10%, 30%, 50%,
70% and 90% of the way along.) See Figure 3. We can
visually confirm that the model has accurately recovered
the true marginal distributions.

Figure 3. Left to right: marginal distributions at t = 6, 19, 32, 44, 57.
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Figure 4. Sample paths from the time-dependent Ornstein–
Uhlenbeck SDE, and from the neural SDE trained to match it.

Sample paths Next we plot 50 samples from the true dis-
tribution against 50 samples from the learnt distribution.

See Figure 4. Once again we see excellent agreement be-
tween the data and the model.

Overall we see that the neural SDEs are sufficient to re-
cover classical non-neural SDEs: at least on this experi-
ment, nothing has been lost in the generalisation.

4.2. Google/Alphabet stock prices

Dataset Next we consider a dataset consisting of
Google/Alphabet stock prices, obtained from LOBSTER
(Haase, 2013). The data consists of limit orders, in partic-
ular ask and bid prices.

A year of data corresponding to 2018–2019 is used, with
an average of 605 054 observations per day. This is then
downsampled and sliced into windows of length approxi-
mately one minute, for a total of approximately 14.6 mil-
lion datapoints. We model the two-dimensional path con-
sisting of the midpoint and the log-spread.

Models Here we compare against two recently-proposed
and state-of-the-art competing neural differential equation
models; specifically the Latent ODE model of Rubanova
et al. (2019) and the continuous time flow process (CTFP)
of Deng et al. (2020). The extended version of CTFPs,

including latent variables, is used.

Between them these models cover several training regimes.
Latent ODEs are trained as variational autoencoders;
CTFPs are trained as normalising flows; neural SDEs are
trained as GANs. (To the best of our knowledge neural
SDEs as considered here are in fact the first model in their
class, namely continuous-time GANs.)

Performance metrics We study three test metrics: clas-
sification, prediction, and MMD.

Classification is given by training an auxiliary model to dis-
tinguish real data from fake data. We use a neural CDE
(Kidger et al., 2020) for the classifier. Larger losses, mean-
ing inability to classify, indicate better performance of the
generative model.

Prediction is a train-on-synthetic-test-on-real (TSTR) met-
ric (Hyland et al., 2017). We train a sequence-to-sequence
model to predict the latter part of a time series given the first
part, using generated data. Testing is performed on real
data. We use a neural CDE/ODE as an encoder/decoder
pair. Smaller losses, meaning ability to predict, are better.

Maximum mean discrepancy is a distance between proba-
bility distributions with respect to a kernel or feature map.
We use the depth-5 signature transform as the feature map
(Király & Oberhauser, 2019; Toth & Oberhauser, 2020).
Smaller values, meaning closer distributions, are better.

Results The results are shown in Table 1. We see that
neural SDEs outperform both competitors in all metrics.
Notably the Latent ODE fails completely on this dataset.
We believe this reflects the fact the stochasticity inherent
in the problem; this highlights the inadequacy of neural
ODE-based modelling for such tasks, and the need for neu-
ral SDE-based modelling instead.

4.3. Air Quality in Beijing

Next we consider a dataset of the air quality in Beijing,
from the UCI repository (Zhang et al., 2017; Dua & Graff,
2017). Each sample is a 6-dimensional time series of the
SO2, NO2, CO, O3, PM2.5 and PM10 concentrations, as
they change over the course of a day.

We consider the same collection of models and perfor-
mance statistics as before. We train this as a conditional

Table 1. Results for stocks dataset. Bold indicates best performance; mean ± standard deviation over three repeats.

Metric Neural SDE CTFP Latent ODE

Classification 0.357 ± 0.045 0.165 ± 0.087 0.000239 ± 0.000086
Prediction 0.144 ± 0.045 0.725 ± 0.233 46.2 ± 12.3
MMD 1.92 ± 0.09 2.70 ± 0.47 60.4 ± 35.8
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Table 2. Results for air quality dataset. Bold indicates best performance; mean ± standard deviation over three repeats.

Metric Neural SDE CTFP Latent ODE

Classification 0.589 ± 0.051 0.764 ± 0.064 0.392 ± 0.011
Prediction 0.395 ± 0.056 0.810 ± 0.083 0.456 ± 0.095
MMD 0.000160 ± 0.000029 0.00198 ± 0.00001 0.000242 ± 0.000002

Table 3. Results for weights dataset. Bold indicates best performance; mean ± standard deviation over three repeats.

Metric Neural SDE CTFP Latent ODE

Classification 0.507 ± 0.019 0.676 ± 0.014 0.0112 ± 0.0025
Prediction 0.00843 ± 0.00759 0.0808 ± 0.0514 0.127 ± 0.152
MMD 5.28 ± 1.27 12.0 ± 0.5 23.2 ± 11.8

generative problem, using class labels that correspond to
14 different locations the data was measured at. Class la-
bels are additionally made available to the auxiliary models
performing classification and prediction. See Table 2.

On this problem we observe that neural SDEs win on two
out of the three metrics (prediction and MMD). CTFPs out-
perform neural SDEs on classification; however the CTFP
severely underperforms on prediction. We believe this re-
flect the fact that CTFPs are strongly diffusive models; in
contrast see how the drift-only Latent ODE performs rel-
atively well on prediction. Once again this highlights the
benefits of SDE-based modelling, with its combination of
drift and diffusion terms.

4.4. Weights trained via SGD

Finally we consider a problem that is classically understood
via (stochastic) differential equations: the weight updates
when training a neural network via stochastic gradient de-
scent with momentum. We train several small convolu-
tional networks on MNIST (LeCun et al., 2010) for 100
epochs, and record their weights on every epoch. This pro-
duces a dataset of univariate time series; each time series
corresponding to a particular scalar weight.

We repeat the comparisons of the previous section. Doing
so we obtain the results shown in Table 3. Neural SDEs
once again perform excellently. On this task we observe
similar behaviour to the air quality dataset: the CTFP ob-
tains a small edge on the classification metric, but the neu-
ral SDE outcompetes it by an order of magnitude on pre-
diction, and by a factor of about two on the MMD. Latent
ODEs perform relatively poorly in comparison to both.

4.5. Successfully training neural SDEs

As a result of our experiments, we empirically observed
that successful training of neural SDEs was predicated on
several factors.

Final tanh nonlinearity Using a final tanh nonlinearity
(on both drift and diffusion, for both generator and discrim-
inator) constrains the rate of change of hidden state. This
avoids model blow-up as in Kidger et al. (2020).

Stochastic weight averaging Using the Cesàro mean of
both the generator and discriminator weights, averaged
over training, improves performance in the final model
(Yazıcı et al., 2019). This averages out the oscillatory
training behaviour for the min-max objective used in GAN
training.

Adadelta We experimented with several different stan-
dard optimisers, in particular including SGD, Adadelta
(Zeiler, 2012) and Adam (Kingma & Ba, 2015). Amongst
all optimisers considered, Adadelta produced substantially
better performance. We do not have an explanation for this.

Weight decay Nonzero weight decay also helped to
damp the oscillatory behaviour resulting from the min-max
objective used in GAN training.

5. Conclusion
By coupling together a neural SDE and a neural CDE as
a generator/discriminator pair, we have shown that neural
SDEs may be trained as continuous time GANs. More-
over we have shown that this approach extends the existing
classical approach to SDE modelling – using prespecified
payoff functions – so that it may be integrated into existing
SDE modelling workflows. Overall, we have demonstrated
the capability of neural SDEs as a means of modelling dis-
tributions over path space.
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