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A. Proofs
First we state some lemmas that will be used in proving the main theorems.

A.1. Proper MDP Models

Example 1. Let JMaxEnt be the MaxEntRL objective. Then, the MaxEnt MDP model PMDP[R; d, T, JMaxEnt] is proper.

Proof. Let R be any set of reward functions. We need to show that 8r, r̂ 2 R, r ⇠=⌧ r̂ ) pr = pr̂. If r ⇠=⌧ r̂, then
r and r̂ have trajectory level rewards shifted by a constant, i.e for all x0 2 X

0 there exists a constant cx0 such that
8⌧ 2 ⌦[x0, d, T ], r̂(⌧) = r(⌧) + cx0 . It suffices to show that the optimal policies for r, r̂ are the same. For any policy
family ⇧,

argmax
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⇡2⇧

E⌧⇠⇡[r(⌧)] + Ex0⇠P0 [cx0 ] +H(⇡)

= argmax
⇡2⇧

E⌧⇠⇡[r(⌧)] +H(⇡)

where H(⇡) := E⇡[�
PT

t=0 �
t log ⇡(at|st)] is the �-discounted causal entropy. The last step holds since Ex0⇠P0 [cx0 ] is

constant with respect to ⇡.

A.2. Weak Identifiability

Lemma 1. For all reward families R, r, r̂ 2 R, and any (d, T ), (r ⇠=x,a r̂) ) (r ⇠=⌧ r̂)

Proof. Let r, r̂ 2 R be rewards such that r ⇠=x,a r̂. For all ⌧, ⌧ 0 2 ⌦[d, T ], where ⌧ = (xt, at)0tT , ⌧ 0 = (x0
t, a

0
t)0tT ,

r̂(⌧)� r(⌧) =
TX

t=0

�t(r̂(xt, at)� r(xt, at)) (6)

=
TX

t=0

�t(r̂(x0
t, a

0
t)� r(x0

t, a
0
t)) (7)

= r̂(⌧ 0)� r(⌧ 0)

where 6 ! 7 holds since for all 0  t  T , (xt, at), (x0
t, a

0
t) 2 X ⇥A and so r̂(xt, at)� r(xt, at) = r̂(x0

t, a
0
t)� r(x0

t, a
0
t).

Thus, r ⇠=⌧ r̂

Proposition 1. A proper MDP model is strongly identifiable only if it is weakly identifiable

Proof. We prove the contrapositive: if a proper MDP model is not weakly identifiable it is also not strongly identifiable. Let
PMDP[R; d, T, J ] be a proper MDP model that is not weakly identifiable. Since the model is not weakly identifiable, there
exists r, r̂ 2 R such that either (r ⇠=⌧ r̂ and pr 6= pr̂) or (r �⌧ r̂, and pr = pr̂). Since the model is proper the former cannot
be true. Thus it must be that there exists r, r̂ 2 R such that r �⌧ r̂, and pr = pr̂. Then, by the contrapositive of Lemma 1,
r �x,a r̂. Thus, pr = pr̂ 6) r ⇠=x,a r̂ and PMDP[R; d, T, J ] is not strongly identifiable as desired.
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Theorem 1. Let PMDP[R; d, T, JMaxEnt] be a MaxEnt MDP model and R ✓ {r | r : X ⇥A ! R} be any set of rewards.
Then, for all domains d := (X ,A, P, P0, �) consisting of deterministic transition dynamics, i.e 8(x, a), |supp(P (·|x, a))|=
1, a deterministic initial state, i.e |supp(P0)|= 1, and T � 0, PMDP[R; d, T, JMaxEnt] is weakly identifiable.

Proof. We seek to show that 8r, r̂ 2 R, (r ⇠=⌧ r̂) () (pr = pr̂). Since PMDP is a MaxEnt MDP model, it is proper by
Example 1 and as a result (r ⇠=⌧ r̂) ) (pr = pr̂). We are left to prove that 8r, r̂ 2 R, (pr = pr̂) ) (r ⇠=⌧ r̂)

From Ziebart et al. (2008), for all MDPs with deterministic dynamics and a deterministic initial state, the trajectory
distribution of the MaxEnt optimal policy is

pr(⌧) =
er(⌧)

Zr

where Zr =
R
⌦[d,T ] e

r(⌧ 0)d⌧ 0 is the partition function. Then, 8⌧ 2 ⌦[d, T ]

pr(⌧) = pr̂(⌧)

log pr(⌧) = log pr̂(⌧)

r(⌧)� logZr = r̂(⌧)� logZr̂

r(⌧) = r̂(⌧) + log
Zr

Zr̂

Since, log Zr
Zr̂

is a constant w.r.t ⌧ , we have r ⇠=⌧ r̂ as desired.

Proposition 2. Let PMDP[R; d, T, J ] be an MDP model that is weakly identifiable. Then, it is strongly identifiable if and
only if for all r, r̂ 2 R, (r ⇠=⌧ r̂) ) (r ⇠=x,a r̂). In other words, 8r 2 R, [r]⌧ ✓ [r]x,a.

Proof. Let PMDP[R; d, T, J ] be weakly identifiable. We abbreviate Strongly Identifiable as S.I.

• (Sufficiency) 8r 2 R, [r]⌧ ✓ [r]x,a ) PMDP is S.I.

By weak identifiability, for all r, r̂ 2 R, (pr = pr̂) ) (r ⇠=⌧ r̂) and by (r ⇠=⌧ r̂) ) (r ⇠=x,a r̂), we have r ⇠=x,a r̂. Thus,
(pr = pr̂) ) (r ⇠=x,a r̂).

By Lemma 1, for all r, r̂ 2 R , (r ⇠=x,a r̂) ) (r ⇠=⌧ r̂), and by weak identifiability (r ⇠=⌧ r̂) ) (pr = pr̂). Thus,
(r ⇠=x,a r̂) ) (pr = pr̂).

We have 8r, r̂ 2 R, (r ⇠=x,a r̂) () (pr = pr̂) as desired.

• (Necessity) PMDP is S.I ) 8r 2 R, [r]⌧ ✓ [r]x,a.

We prove the contrapositive. Suppose there exists r, r̂ 2 R such that r ⇠=⌧ r̂ but r 6⇠=x,a r̂. By weak identifiability,
(r ⇠=⌧ r̂) ) (pr = pr̂), so (pr = pr̂) 6) (r ⇠=x,a r̂). Thus, PMDP[R; d, J, T ] is not strongly identifiable.

Corollary 1. Let PMDP[R; d, T, J ] be an MDP model that is weakly identifiable, R be the set of all rewards, |X 0
|= 1, and

� = 1. Then, it is strongly identifiable if and only if rank(A[d, T ]) = |X ⇥A|

Proof. Let PMDP be weakly identifiable, � = 1.

• (Sufficiency) We seek to show that if rank(A[d, T ]) = X ⇥A, then PMDP is strongly identifiable. By Proposition 2, it
suffices to show that 8r, r̂ 2 R, (r ⇠=⌧ r̂) ) (r ⇠=x,a r̂), i.e trajectory equivalence implies state-action equivalence.

Since A[d, T ] is full rank, the solution to the linear system A[d, T ]rx,a = r⌧ is unique for any r⌧ . Let r⌧ , r̂⌧ be two
trajectory equivalent rewards such that r⌧ = r̂⌧ + c for some constant vector c = (c, ..., c) 2 R|⌦[d,T ]|. Then,

A[d, T ]rx,a �A[d, T ]r̂x,a = r⌧ � r̂⌧

A[d, T ](rx,a � r̂x,a) = c

Since A[d, T ] is a trajectory matrix, 8i,
P

j Aij [d, T ] = T + 1, i.e all feasible trajectories are of the same length and
hence visit the same number of (not necessarily distinct) nodes. Thus, one solution to A[d, T ](rx,a � r̂x,a) = c is to let
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rx,a � r̂x,a = ( c
T+1 , ...,

c
T+1 ). In fact, since A[d, T ] is full rank, ( c

T+1 , ...,
c

T+1 ) is the only solution and thus rx,a, r̂x,a are
trajectory equivalent, 8x, a 2 X ⇥A, r(x, a) = r̂(x, a) + c

T+1 implying r ⇠=x,a r̂.

• (Necessity) We show that if PMDP be strongly identifiable, then rank(A[d, T ]) = |X ⇥ A|. By strong identifiability,
8r, r̂ 2 R, (r ⇠=⌧ r̂) ) (r ⇠=x,a r̂) and thus general solutions to

A[d, T ]rx,a = r⌧

must only be constant shifts of a particular solution. Equivalently, ker(A[d, T ]) must only contain constant vectors. We then
claim that in fact ker(A[d, T ]) only contains the zero vector and thus A[d, T ] is full rank.

Suppose for contradiction that c 2 ker(A[d, T ]) for some non-zero constant vector c. Then, for any scalar k 2 R,
kc 2 ker(A[d, T ]). Thus the kernel must contain all constant vectors. Pick a strictly positive constant vector c+ =
(c+, ..., c+) where c+ > 0. Then, c+ 2 ker(A[d, T ]) ) A[d, T ]c+ = 0, so 8i,

P
j Aij [d, T ]c+ = c+

P
j Aij [d, T ] =

0 ) 8i,
P

j Aij [d, T ] = 0. Since A[d, T ] is a trajectory (path) matrix, its entries represent visitation counts of a state-action
pair and thus are all non-negative, i.e 8i, j, Aij [d, T ] � 0. Therefore, (8i,

P
j Aij [d, T ] = 0) ) (8i, j, Aij [d, T ] = 0), so

A[d, T ] is the zero-matrix. Then, ker(A[d, T ]) = R|X⇥A| which contradicts strong identifiability. Therefore, ker(A[d, T ])
can only contain the zero vector and A[d, T ] is full rank, i.e rank(A[d, T ]) = X ⇥A.

A.3. Properties of Domain Graphs

Lemma 2. Let Gd = (Vd, Ed, V 0
d ) be a domain graph.

1. (Commutative) For all V ✓ Vd and t, t0 � 0, Lt0(Lt(V )) = Lt+t0(V )

2. (Monotonic) For all V, V 0
✓ Vd such that V ✓ V 0 and t � 0, Lt(V ) ✓ Lt(V 0)

Proof. • (Commutative) We first prove that Lt0(Lt(V )) ✓ Lt+t0(V ). Let v 2 Lt0(Lt(V )), then by Definition 6, 9⇣ 0 =
(v0i)0it0 such that v0t0 = v and v00 2 Lt(V ), i.e 9⇣ = (vi)0it where vt = v00, v0 2 V . Then, v 2 Lt+t0(V ) since there
exists a path ⇣ � ⇣ 01: = (v0, ..., vt, v01, ..., v

0
t0) such that v0t0 = v and v0 2 V .

Next, we prove that Lt+t0(V ) ✓ Lt0(Lt(V )). If v 2 Lt+t0(V ), then 9⇣ 00 = (v00i )0it+t0 such that v00t+t0 = v and v000 2 V .
Then, there exists paths ⇣ = (vi)0it0 = (v000 , ..., v

00
t ) and ⇣ 0 = (v0i)0it0 = (v00t , ..., vt+t0) which can be joined to form

⇣ 00. Therefore, v 2 Lt0(Lt(V )) since there exists a path ⇣ 0 such that v0t0 = v and v00 2 Lt(V ) since ⇣ is a path such that
vt = v00 and v0 2 V .

• (Monotonic) Let V, V 0
✓ Vd satisfy V ✓ V 0. If v 2 Lt(V ), then by Definition 6, 9⇣ = (vi)0it such that vt = v and

v0 2 V . Since V ✓ V 0, v0 2 V 0 as well. Therefore, v 2 Lt(V 0).

Lemma 3. If Gd is coverable, then [(x,a)2X⇥Asupp(P (·|x, a)) = X

Proof. Since Gd is coverable, there exists v 2 V 0
d and t � 0 such that Lt(v) = Vd. If Gd is 0-coverable, i.e L0(v) = {v} =

Vd = X ⇥ A, then |X ⇥ A|= 1 and thus supp(P (·|x, a)) = {x} = X . For t � 1, since Lt(v) = L1(Lt�1(v)) = Vd

and Lt�1(v) ✓ Vd, by Lemma 2 monotonicity, we have L1(Lt�1(v)) = Vd ✓ L1(Vd) . Since L1(Vd) ✓ Vd, it must
be that L1(Vd) = Vd = X ⇥ A. By definition of layers, L1(Vd) = ( [(x,a)2X⇥A supp(P (·|x, a))) ⇥ A and thus
[(x,a)2X⇥Asupp(P (·|x, a)) = X .

Lemma 4. Let Gd be a domain graph and v 2 Vd be t-covering. Then for all t0 � t, Lt0(v) = Vd.

Proof. We prove by induction.

• Base t0 = t: trivially holds since Lt(v) = Vd by definition of a covering vertex.

• For t0 � t: Lt0(v) = Vd ) Lt0+1(v) = Vd.

Lt0+1(v) = L1(Lt0(v)) = L1(Vd)

Lt(v) = L1(Lt�1(v)) = Vd and Lt�1(v) ✓ Vd, we have that L1(Lt�1(v)) = Vd ✓ L1(Vd) by Lemma 2 monotonicity.
Since L1(Vd) ✓ Vd, it must be that L1(Vd) = Vd.
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Proposition 3. Let Gd be strongly connected. Then, Gd is aperiodic if and only if it is coverable.

Proof. (aperiodic ) coverable) If Gd is aperiodic, there exists two cycles C = (vi)0ik, C 0 = (v0i)0ik0 of coprime
length k, k0. For any v 2 V 0

d and any destination vertex ṽ 2 Vd consider paths that start from v, reaches v0 via a shortest
path ⇣v!v0 , loops n times around cycle C back to v0, reaches v00 via a shortest path ⇣v0!v0

0 , loops n0 times around cycle C 0

back to v00, and finally reaches ṽ via a shortest path ⇣v
0
0!ṽ , i.e

⇣v!ṽ = ⇣v!v0 � n · C1: � ⇣
v0!v0

0
1: � n0

· C 0
1: � ⇣

v0
0!ṽ

1:

The paths ⇣v!v0 , ⇣v0!v0
0 , ⇣v

0
0!ṽ exist by strong connectivity of Gd. We let |⇣| denote the length of a path. Then,

|⇣v!ṽ
|= nk + n0k0 + |⇣v!v0 |+|⇣v0!v0

0 |+|⇣v
0
0!ṽ

| (8)

Since k, k0 are coprime, for all |⇣v!ṽ
|� (k � 1)(k0 � 1) + |⇣v!v0 |+|⇣v0!v0

0 |+|⇣v
0
0!ṽ

|, there exists n, n0 such that Eq. 8
holds. (Corollary 2 of Denardo (1977)) Furthermore, since |⇣v!v0 |, |⇣v0!v0

0 |, |⇣v
0
0!ṽ

| |Vd| since they are shortest paths.
Thus, for any destination vertex ṽ 2 Vd and all lengths T � (k � 1)(k0 � 1) + 3|Vd|, there exists a path ⇣v!ṽ such that
|⇣v!ṽ

|= T . Therefore, Gd is coverable.

(coverable ) aperiodic) If Gd is coverable, there exists v 2 V 0
d and t � 0 such that Lt(v) = Vd. If t = 0, then Vd = {v}

and there must be an edge (v, v) 2 Ed. Therefore, there exists cycles (v, v), (v, v, v) which have coprime lengths 1 and 2,
respectively. For t � 1, by Lemma 4, Lt+1(v) = Vd. Since v 2 Lt(v) and v 2 Lt+1(v), there exists cycles of coprime
length t, t+ 1 that start and end at v. Thus, Gd is aperiodic.

A.4. Strong Identifiability

Theorem 2. (Strong Identification Condition) For all (d, r, T, J) such that the MDP model PMDP[R; d, T, J ] is proper and
Gd is strongly connected,

• (Sufficiency) PMDP[R; d, T, J ] is weakly identifiable, Gd is T0-coverable, and T � 2T0 ) PMDP[R; d, T, J ] is strongly
identifiable

• (Necessity) PMDP[R; d, T, J ] is strongly identifiable ) PMDP[R; d, T, J ] is weakly identifiable, Gd is coverable.

Proof. Let PMDP[R; d, T, J ] be proper and Gd be strongly connected.

• (Sufficiency) Let PMDP[R; d, T, J ] be proper and weakly identifiable, Gd be strongly connected and T0-covering, and
T � 2T0. By Proposition 2 it suffices to show that

8x 2 X
0, 8⌧, ⌧ 0 2 ⌦[x, d, T ], r̂(⌧)� r(⌧) = r̂(⌧ 0)� r(⌧ 0) )

8(x, a), (x0, a0) 2 X ⇥A, r̂(x, a)� r(x, a) = r̂(x0, a0)� r(x0, a0)

In the language of domain graphs, this statement translates to:

8v 2 V 0
d , 8⇣, ⇣

0
2 Z[v, d, T ], r̂(⇣)� r(⇣) = r̂(⇣ 0)� r(⇣ 0) ) 8v, v0 2 Vd, r̂(v)� r(v) = r̂(v0)� r(v0)

Let r, r̂ be any two rewards such that, 8v 2 V 0
d , 8⇣, ⇣ 0 2 Z[v, d, T ], r̂(⇣) � r(⇣) = r̂(⇣ 0) � r(⇣ 0) or equivalently

r̂(⇣)� r̂(⇣ 0) = r(⇣)� r(⇣ 0). Let v⇤0 2 V 0
d be any vertex that is T0-covering and for any integer t � 0 let Ht be the statement

that,

8v, v0 2 Lt(v
⇤
0), r̂(v

0)� r̂(v) = r(v0)� r(v)

Since v⇤0 is T0-covering, we have that LT0(v
⇤
0) = Vd, so it suffices to prove HT0 . We prove by strong induction.

H0: Trivially true, since L0(v⇤0) = {v⇤0} only has one element.
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H<t ) Ht for all 0 < t  T0: Let ⇣0 2 Z[v⇤0 , d, T � t] be any base path of length T � t that starts at v⇤0 and reaches
v⇤0 again T � t steps. Such a base path exists for all 0  t  T0 since T � 2T0 ) T � t � T0 and so by Lemma 4,
v⇤0 2 LT0(v

⇤
0) ) v⇤0 2 LT�t(v⇤0).

We will use Zt to denote the set of all paths of length T that starts at v⇤0 and follows ⇣0 to reach v⇤0 again at time T � t, then
reaches a vertex in Lt(v⇤0) in t steps, i.e.

Zt = {⇣ 2 Z[v⇤0 , d, T ] | ⇣:�t = ⇣0}

It’s then clear that the set terminal vertices of paths in Zt is equal to Lt(v⇤0), i.e. {v | 9⇣ := (vt)0tT 2 Zt s.t v = vT } =
Lt(v⇤0) since Zt contains all possible paths that take t steps after reaching v⇤0

Consider any two ⇣, ⇣ 0 2 Zt where ⇣ = (vt)0tT , ⇣ 0 = (v0t)0tT .

r̂(⇣)� r̂(⇣ 0) = r̂(⇣:�t+1)� r̂(⇣ 0:�t+1) + r̂(⇣�t+1:)� r̂(⇣ 0�t+1:) + �T (r̂(vT )� r̂(v0T )) (9)

r(⇣)� r(⇣ 0) = r(⇣:�t+1)� r(⇣ 0:�t+1) + r(⇣�t+1:)� r(⇣ 0�t+1:) + �T (r(vT )� r(v0T )) (10)

Since ⇣:�t+1 = ⇣ 0:�t+1 = ⇣0, we have r̂(⇣:�t+1)� r̂(⇣ 0:�t+1) = r(⇣:�t+1)� r(⇣ 0:�t+1) = 0. Furthermore,

r̂(⇣�t+1:)� r̂(⇣ 0�t+1:) =
t�1X

t0=0

�T�t0(r̂(vT�t0)� r̂(v0T�t0))

=
t�1X

t0=0

�T�t0(r(vT�t0)� r(v0T�t0))

= r(⇣�t+1:)� r(⇣ 0�t+1:) (11)

since for all 0  t0 < t, vT�t0 , v0T�t0 2 Lt�t0(v⇤0) and by the inductive hypothesis H<t, it holds that, for all 0  t0 < t,
r̂(vT�t0)� r̂(v0T�t0) = r(vT�t0)� r(v0T�t0).

By definition, Zt ✓ Z[v⇤0 , d, T ], and thus by weak identifiability, r̂(⇣)� r̂(⇣ 0) = r(⇣)� r(⇣ 0). Combining with Eq. 9, 10,
11, we get that for all vT , v0T 2 {v | 9⇣ := (vt)0tT 2 Zt s.t v = vT } = Lt(v⇤0),

r̂(vT )� r̂(v0T ) = r(vT )� r(v0T )

Thus, by strong induction Ht is true for 0  t  T0, which includes HT0 .

• (Necessity) Next we prove necessity. To do so, we will first prove some useful properties of layer sequences.

Lemma 5. Let Gd be strongly connected. Then, for all v, v0 2 Vd, there exists t � 1 such that v0 2 Lt(v).

Proof. Pick any v, v0 2 Vd. Since Gd is strongly connected, there exists a path ⇣ of length |⇣|� 1 between v, v0. Thus
v0 2 L|⇣|(v).

Lemma 6. Let Gd be strongly connected. Then for all v, v0 2 Vd and T � 0, there exists t � T such that v0 2 Lt(v).

Proof. If v0 2 LT (v), then we are done. If v0 /2 LT (v), then choose any vertex vT 2 LT (v). There exists a path ⇣v!vT that
starts from v and reaches vT . Since Gd is strongly connected there exists a path ⇣vT!v0

that starts from vT and reaches v0.
Thus ⇣v!v0 = ⇣v!vT

:�1 � ⇣vT!v0
is a path that starts from v and reaches v0 in |⇣v!v0 |� T steps and v0 2 L|⇣v!v0 |(v).

Lemma 7. Let Gd be strongly connected. Let Tv � 1 denote the smallest positive horizon such that v 2 LTv (v). Then, for
all v 2 Vd, the sequence (LnTv (v))n�0 converges to a limiting layer L̄(v) ✓ Vd, i.e, for all v 2 Vd, there exists n̄v � 0
such that, for all n � n̄v , LnTv (v) = L̄(v).

Proof. Since Gd is connected, v must be able to reach itself again and so there indeed exists a Tv � 1 such that v 2 LTv (v).
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We first show that (LnTv (v))n�0 is "growing", i.e LnTv (v) ✓ L(n+1)Tv
(v) for all n � 0 by induction. The base case

when n = 0 holds trivially by how we’ve defined LTv (v) since L0(v) = {v} ✓ LTv (v). Now assume for induction that
LnTv (v) ✓ L(n+1)Tv

(v). Then,

L(n+1)Tv
(v) = LTv (LnTv (v)) ✓ LTv (L(n+1)Tv

(v)) = L(n+2)Tv
(v)

by Lemma 2, monotonicity.

We now see that sequence {LnTv (v)}n is growing and bounded above, i.e LnTv (v) ✓ L(n+1)Tv
(v) and LnTv (v) ✓ Vd for

all n � 0. Thus the sequence must converge to some fixed set L̄(v) ✓ Vd, i.e there exists n̄v � 0 such that LnTv (v) = L̄(v)
for all n � n̄v .

Lemma 8. Let Gd be connected. Then, for all v 2 Vd, the sequence {Lt(v)}t�0 is eventually periodic, i.e, for all v 2 Vd,
there exist T̄v � 0, �v � 1 such that, for all t � T̄v , Lt(v) = Lt+�v (v).

Proof. By Lemma 7, since Gd is connected, for all v 2 Vd, (LnTv (v))n�0 converges to a limiting layer L̄(v) i.e, for all
v 2 Vd, there exists n̄v � 0 such that, for all n � n̄v , LnTv (v) = L̄(v).

Set T̄v = n̄vTv and �v = Tv . Then we see that for all t � T̄v = n̄vTv , it holds that

Lt+�v (v) = L(t�n̄vTv)+n̄vTv+Tv
(v)

= L(t�n̄vTv)+(n̄v+1)Tv
(v) (12)

= Lt�n̄vTv (L(n̄v+1)Tv
(v)) (13)

= Lt�n̄vTv (Ln̄vTv (v)) (14)
= Lt�n̄vTv+n̄vTv (v)

= Lt(v)

where 12 ! 13 holds since (n̄v + 1)Tv � 0 and t � n̄vTv � 0. Furthermore, 13 ! 14 holds by Lemma 7 since
L(n̄v+1)Tv

(v) = L̄(v) = Ln̄vTv (v).

In words, Lemma 8 states that the layers induced by starting at any vertex always converge to a periodic sequence.

Definition 8. Let (at)t�0 be a sequence. We say that a sequence (bt)t�0 is a tail of the sequence (at)t�0 if and only if
there exists an index N � 0 such that bt = at+N . Let (at)t�0 be an eventually periodic sequence. We say that a sequence
(bt)t�0 is a periodic tail of the sequence (at)t�0 if and only if (bt)t�0 is a periodic sequence and a tail of (at)t�0.

We now prove some characteristics of the periodic tail.

Lemma 9. Let Gd be strongly connected. Let us denote L̄t(v) := Lt(L̄(v)). Then, the sequence (L̄t(v))t�0 is a periodic
tail of the sequence {Lt(v)}t�0.

Proof. From Lemma 7, (LnTv (v))n�0 converges to L̄0, so there exists n̄v such that Ln̄vTv (v) = L̄0(v). Therefore,
Lt+n̄vTv (v) = L̄t(v) and (L̄t(v))t�0 is a tail of the sequence {Lt(v)}t�0. It is left to show that (L̄t(v))t�0 is periodic.
(L̄0(v) = L̄Tv (v)) ) (8t � 0, L̄t(v) = L̄Tv+t(v)), therefore (L̄t(v))t�0 is periodic.

Lemma 10. Let Gd be strongly connected. Let Tv � 1 denote the smallest horizon t � 1 such that v 2 Lt(v). Let �v � 1
denote the period of the tail sequence (L̄t(v))t�0 so that L̄t(v) = L̄t0(v) for 0  t < t0 if and only if (t0 � t) mod �v = 0.
Then Tv mod �v = 0.

Proof. We first know that Tv � �v trivially holds since L̄0(v) = L̄Tv (v). Since Tv � �v > 0 are integers, Tv admits a
unique quotient q � 1 and remainder m � 0 by Euclid’s lemma, i.e Tv = q�v +m. Assume for contradiction that m > 0.
Then, q�v < Tv and m < �v. But then we have L̄q�v (v) = L̄Tv (v) and Tv � q�v = m < �v and there does not exist an
integer n > 0 such that Tv � q�v = n�v which is a contradiction. Thus it must be that m = 0 as desired.
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Lemma 11. Let Gd be strongly connected. Let �v � 1 denote the period of the tail sequence (L̄t(v))t�0 so that
L̄t(v) = L̄t0(v) for 0  t < t0 if and only if (t0 � t) mod �v = 0. Then, for all v 2 Vd and 0  t < t0 such that
t0 � t mod �v 6= 0, L̄t(v) \ L̄t0(v) = ;, i.e limiting layers within a period are all disjoint sets regardless of the starting
vertex. Equivalently, for all v 2 Vd and 0  t < t0, L̄t(v) = L̄t0(v) if t0 � t mod �v = 0 and L̄t(v)\ L̄t0(v) = ; otherwise.

Proof. Since (L̄t(v))t�0 is periodic with period �v, it suffices to prove that for all v 2 Vd and 0  t < t0  �v such that
t0 � t < �v , L̄t(v) \ L̄t0(v) = ;. We first prove the following claim:

Claim 1. For all v 2 Vd and t � 0, if t mod �v 6= 0, then v /2 L̄t(v).

Proof. Again, due to periodicity, it suffices to prove that for all v 2 Vd and 0 < t < �v , v /2 L̄t(v). Assume for contradiction
that there exist v 2 Vd and 0 < t < �v such that v 2 L̄t(v).

• We then claim that L̄0(v) ✓ L̄t(v). Assume, again, for contradiction that L̄0(v) ( L̄t(v). Let Tv � 1 denote the smallest
horizon t � 1 such that v 2 Lt(v). Since Gd is connected, by Lemma 10, Tv = q�v for some quotient integer q � 1. Then
for all n � 0

LnTv (v) ✓ LnTv (L̄t(v)) = LnTv (Lt(L̄(v))) = Lt+nTv (L̄(v)) = L̄t+nTv (v) = L̄t+nq�v (v) (15)

where the inclusion relation holds by monotonicity since v 2 L̄t(v) by outer assumption and the second equality holds by
commutativity. (Lemma 2)

Since Gd is connected, by Lemma 7, there exists n̄v � 0 such that, for all n � n̄v , LnTv (v) = L̄(v) = L̄0(v). Combining
this result with Eq. 15, there exists n̄v � 0 such that, for all n � n̄v

LnTv (v) = L̄0(v) ✓ L̄t+nq�v (v)

Then, since L̄0(v) ( L̄t(v), there exists n̄v � 0 such that L̄t(v) 6= L̄t+nq�v (v) for n � nv which contradicts the assumption
that (L̄t(v))t�0 is periodic with period �v . Thus, by contradiction, we have shown L̄0(v) ✓ L̄t(v).

• Now we enumerate all cases for L̄t(v) that satisfy L̄0(v) ✓ L̄t(v).

If L̄0(v) = L̄t(v), then this contradicts the assumption that (L̄t(v))t�0 is periodic with period �v

If L̄0(v) ⇢ L̄t(v), then for all n � 1,

L̄nt(v) = Lnt(L̄(v)) = Lnt(L̄0(v)) ✓ Lnt(L̄t(v)) = Lnt(Lt(L̄(v))) = L(n+1)t(L̄(v)) = L̄(n+1)t(v)

where the inclusion relation holds by monotonicity since we’ve just assumed L̄0(v) ⇢ L̄t(v) and the fourth equality holds
by commutativity. (Lemma 2) By transitivity this implies that for all 1  n  n0,

L̄nt(v) ✓ L̄n0t(v)

Choosing n = 1 and n0 = �v we have L̄0(v) ⇢ L̄t(v) ✓ L̄�vt(v) and so L̄0(v) 6= L̄�vt(v). Since t > 0 this again contradicts
the periodicity of (L̄t(v))t�0. Thus we have shown, by contradiction, for all v 2 Vd and 0 < t < �v , v /2 L̄t(v).

Now to prove the original lemma, assume for contradiction that there exists 0  t < t0  �v such that 0 < t0 � t < �v , and
a shared vertex vt,t0 2 Vd such that vt,t0 2 L̄t(v) and vt,t0 2 L̄t0(v). Since Gd is strongly connected vt,t0 can reach v and so
there exists a l such that v 2 L̄t+l(v) and v 2 L̄t0+l(v) by trivial extension of Lemma 6. We now enumerate all cases for
the value of t+ l.

If t+ l mod �v 6= 0, this contradicts Claim 1 since v 2 L̄t+l(v).

If t + l mod �v = 0, then t0 + l mod �v 6= 0 since (t0 + l) � (t + l) = t0 � t < �v. this contradicts Claim 1 since
v 2 L̄t0+l(v).

Lemma 12. Let Gd be strongly connected. Then, for all v, v0 2 Vd, the sequence (L̄t(v))t�0 is a periodic tail of the
sequence (Lt(v0))t�0 i.e vertex layers all converge to the same periodic sequence regardless of the starting vertex.
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Proof. Pick any v, v0 2 Vd and consider their corresponding periodic tails (L̄t(v))t�0, (L̄t(v0))t�0. (which exists by
Lemma 8) Without loss of generality, we will let the first layer of the periodic tails be those containing the initial vertex, i.e
v 2 L̄0(v), v0 2 L̄0(v0). Such layers exist in the periodic tail by Lemma 6.

Let tv, tv0 � 0 denote the horizons at which v 2 L̄tv (v
0), v0 2 L̄tv0 (v). Again, such layers exist by Lemma 6. Then,

we claim L̄0(v) ✓ L̄tv (v
0). To see this, first note that the sequence (LnTv (v))n�0, where Tv � 1 is the shortest time

horizon at which v 2 LTv (v), converges to L̄0(v) by Lemma 7. Furthermore, (L̄tv+nTv (v
0))n�0 = (L̄tv (v

0))n�0 since
(v 2 L̄tv (v

0), L̄tv+nTv (v
0)) ) (L̄tv+nTv (v

0) = L̄tv (v
0)) by Lemma 11. Since {v} ✓ L̄tv (v

0), it follows from monotonicity
(Lemma 2) that LnTv (v) ✓ LnTv (L̄tv (v

0)) = L̄tv+nTv (v
0) = L̄tv (v

0) for all n � 0. Since there exists an n̄v � 0 such that
Ln̄vTv (v) = L̄0(v), we thus have L̄0(v) ✓ L̄tv (v

0). The same argument can be applied to obtain L̄0(v0) ✓ L̄tv0 (v).

We now consider two different cases. If L̄0(v0) = L̄0(v), then it trivially follows that the sequences (L̄t(v))t�0, (L̄t(v0))t�0

are the same. For the second case if L̄0(v0) 6= L̄0(v), then L̄t(v) = Lt(L̄0(v)) ✓ Lt(L̄tv (v
0)) = L̄tv+t(v0) for all

t � 0 and L̄t(v0) = Lt(L̄0(v0)) ✓ Lt(L̄tv0 (v)) = L̄tv0+t(v) for all t � 0. Thus L̄0(v) ✓ L̄tv (v
0) ✓ L̄tv+tv0 (v). Then,

v 2 L̄0(v) ) v 2 L̄tv+tv0 (v) and it follows that L̄0(v) = L̄tv+tv0 (v) by Lemma 11. Thus, L̄0(v) = L̄tv (v
0) which implies

that L̄t(v) = L̄tv+t(v0) for all t � 0 and so (L̄t(v))t�0 is a tail of (L̄t(v0))t�0.

From Lemma 12, we see that the layer sequence converges to the same periodic tail sequence regardless of the starting
vertex. Thus, we shall henceforth denote a periodic tail of Gd as (L̄t)t�0, dropping the dependence on intial vertex.

Lemma 13. Let Gd be strongly connected and let (L̄t)t�0 be a periodic tail of the layer sequences in Gd. For all v 2 Vd

and t, t0 � 0, (Lt(v) \ L̄t0 6= ;) ) (Lt(v) ✓ L̄t0)

Proof. Suppose for contradiction that there exists v 2 Vd and t, t0 � 0 such that (Lt(v) \ L̄t0 6= ;), but (Lt(v) 6✓ L̄t0). Let
v� 2 Lt(v)� L̄t0 and v\ 2 Lt(v) \ L̄t0 .

Let Tv � 1 denote the smallest positive horizon such that v 2 LTv (v). Then, LnTv+t(v) = Lt(LnTv (v)) ✓

Lt(L(n+1)Tv
(v)) = L(n+1)Tv+t(v) for all n � 0 by Lemma 2 since LnTv (v) ✓ L(n+1)Tv

(v) from the proof of Lemma
7. Thus, the sequence (LnTv+t(v))n�0 must converge to some fixed set L̄t⇤ since the sequence is growing and bounded
above, i.e LnTv (v) ✓ L(n+1)Tv

(v) and LnTv (v) ✓ Vd for all n � 0. Thus, L̄t⇤ is an element of the tail (L̄t)t�0. Since
v�, v\ 2 Lt(v), we have v�, v\ 2 L̄t⇤ . This contradicts Lemma 11 since L̄t0 , L̄t⇤ are two tail layers that are not the same
but also not disjoint.

We now prove the necessary direction of the main theorem. We show the contrapositive, i.e if either PMDP[R; d, T, J ] is
not weakly identifiable or not coverable, it is not strongly identifiable. By Proposition 1, PMDP[R; d, T, J ] must be weakly
identifiable to be strongly identifiable. Thus, consider PMDP[R; d, T, J ] that is weakly identifiable but not coverable. By
Proposition 2 it suffices to show that 9r, r̂ 2 R such that r 6⇠=x,a r̂ but r ⇠=⌧ r̂.

Let (L̄t)t�0 be a periodic tail of the layer sequences in Gd. Let r, r̂ be two rewards such that 8v /2 L̄0, r̂(v) = r(v) and
8v 2 L̄0, r̂(v) = r(v) + c for some constant c 2 R. Since there does not exist a covering initial state, clearly, L̄0 ⇢ Vd and
thus r 6⇠=x,a r̂. We will show that r ⇠=⌧ r̂ to conclude that the PMDP[R; d, T, J ] is not strongly identifiable.

For all v 2 V 0
d and for all paths ⇣ = (vt)0tT , ⇣ 0 = (v0t)0tT such that ⇣, ⇣ 0 2 Z[v, d, T ], we claim that r̂(vt)� r̂(v0t) =

r(vt) � r(v0t) for all 0  t  T . To see this, first note that vt, v0t 2 Lt(v) for all t � 0. We consider two cases:
(1). If vt 2 L̄0, then v0t 2 L̄0 since vt, v0t 2 Lt(v) and, by Lemma 13, (Lt(v) \ L̄t0 6= ;) ) (Lt(v) ✓ L̄t0). Thus,
r̂(vt) � r̂(v0t) = r(vt) + c � r(v0t) � c = r(vt) � r(v0t). (2) If vt /2 L̄0, then v0t /2 L̄0 since vt, v0t 2 Lt(v) and, by the
contrapositive of Lemma 13, (Lt(v) 6✓ L̄0) ) (Lt(v) [ L̄0 = ;). Thus, r̂(vt)� r̂(v0t) = r(vt)� r(v0t)

Then,

r(⇣ 0)� r(⇣) =
TX

t=0

�t(r(v0t)� r(vt))

=
TX

t=0

�t(r̂(v0t)� r̂(vt))

= r̂(⇣ 0)� r̂(⇣)
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Therefore, r, r̂ are two trajectory equivalent rewards which are not state-action equivalent. Hence PMDP[R; d, T, J ] is not
strongly identifiable.

Corollary 2. (Strong Identification Condition) For all (d, r, T, J) such that PMDP[R; d, T, J ] is a proper MDP model and
Gd is strongly connected,

• (Sufficiency) PMDP[R; d, T, J ] is weakly identifiable, Gd aperiodic ) 9T0 � 0 such that 8T � T0,PMDP[R; d, T, J ] is
strongly identifiable

• (Necessity) PMDP[R; d, T, J ] is strongly identifiable ) PMDP[R; d, T, J ] is weakly identifiable, Gd is aperiodic.

Proof. Let PMDP[R; d, T, J ] be proper and Gd be strongly connected. • (Sufficiency) Since Gd is strongly connected and
aperiodic, it is covering by Proposition 3, i.e there exists an initial vertex v0 2 V 0

d that is t⇤-covering for some t⇤. Let
T0 = 2t⇤, PMDP[R; d, T, J ] is strongly identifiable for all T � T0 by Theorem 2.

• (Necessity) If PMDP[R; d, T, J ] is proper, strongly identifiable, and Gd is strongly connected, by Theorem 3, it is weakly
identifiable and Gd is coverable. Since, Gd is strongly connected and coverable, it is aperiodic by Proposition 3.

A.5. Strong Identifiability Test Algorithms

Theorem 3. Let PMDP[R; d, T, J ] be a weakly identifiable MDP model and Gd be strongly connected. Then,

• (Correctness) MDPIdTest(PMDP[R; d, T, J ]) returns 1 (True) if and only if 9T such that PMDP[R; d, T, J ] is strongly
identifiable.

• (Efficiency) MDPIdTest runs with time and space complexity O(|Ed|)

Proof. • (Correctness) MDPIdTest returns 1 (True) if and only if the directed graph Gd is aperiodic as shown in (Denardo,
1977; Jarvis and Shier, 1999). Since PMDP[R; d, T, J ] is weakly identifiable and Gd is strongly connected, Gd is aperiodic
if and only if 9T such that PMDP[R; d, T, J ] is strongly identifiable by Corollary 2.

• (Efficiency) Graph aperiodicity testing can be done in O(|Ed|) space and time as shown in (Denardo, 1977; Jarvis and
Shier, 1999).

Corollary 3. (Strong Identification Condition) For all (d, r, T, J) such that the MDP model PMDP[R; d, T, J ] is proper.

• (Sufficiency) PMDP[R; d, T, J ] is weakly identifiable, Gd is T0-coverable, and T � 2T0 ) PMDP[R; d, T, J ] is strongly
identifiable

Proof. This result immediately follows from the proof of the Sufficiency direction for Theorem 2.

Theorem 4. Let PMDP[R; d, T, J ] be a weakly identifiable MDP model. Then,

• (Correctness) If MDPCoverTest(PMDP[R; d, T, J ]) returns 1 (True) then, 9T0 such that 8T � T0,PMDP[R; d, T, J ]
is strongly identifiable.

• (Efficiency) MDPCoverTest runs with time complexity O(|Vd|
3log|Vd|) and space complexity O(|Vd|

2)

Proof. • Since M is the transition matrix, i.e Mij = P̃ (v(j)|v(i)) where P̃ (x0, a0|x, a) = P (x0
|x, a), it is clear that

M |Vd|2
ij 6= 0 if and only if v(j) 2 L|Vd|2(v

(i)). If MDPCoverTest returns 1 (True), then there exists v(i) 2 V 0
d that has

a fully non-zero row M |Vd|2
i , i.e L|Vd|2(v

(i)) = Vd. Thus, Gd is |Vd|
2-coverable by v(i). Let T0 = 2|Vd|

2 and the result
follows from Corollary 3. Therefore, MDPCoverTest returns 1 (True) if and only if

• (Efficiency) It is well known that computing matrix powers Am (where the matrix A has size n ⇥ n) can be done
in O(n3 logm) time and O(n2) space (Cormen et al., 2009). Since M has size |Vd|⇥|Vd|, computing M |Vd|2 has time
complexity O(|Vd|

3log|Vd|
2) = O(|Vd|

3log|Vd|) and space complexity O(|Vd|
2). A naive approach to checking for rows
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with only non-zero entries requires enumerating over all elements of M which can be done in O(|Vd|
2) time and O(1) space,

thus not affecting the overall efficiency of the algorithm.


