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Abstract
We study the problem of reward identifiability
in the context of Inverse Reinforcement Learn-
ing (IRL). The reward identifiability question is
critical to answer when reasoning about the ef-
fectiveness of using Markov Decision Processes
(MDPs) as computational models of real world
decision makers in order to understand complex
decision making behavior and perform counter-
factual reasoning. While identifiability has been
acknowledged as a fundamental theoretical ques-
tion in IRL, little is known about the types of
MDPs for which rewards are identifiable, or even
if there exist such MDPs. In this work, we formal-
ize the reward identification problem in IRL and
study how identifiability relates to properties of
the MDP model. For deterministic MDP models
with the MaxEntRL objective, we prove neces-
sary and sufficient conditions for identifiability.
Building on these results, we present efficient al-
gorithms for testing whether or not an MDP model
is identifiable.

1. Introduction
Inverse Reinforcement Learning (IRL) is the process of esti-
mating a reward function from demonstrations of optimal
behavior. In general, the demonstrator is assumed to behave
optimally with respect to an underlying Markov Decision
Process (MDP). A key component of the MDP is the re-
ward function which encapsulates the underlying incentives
driving the behavior of the optimal demonstrator. A funda-
mental, yet unsolved question in the field of IRL is reward
identifiability: given the optimal behavior, can the reward
motivating the behavior be identified up to a reasonable
equivalence class?

The reward identifiability question is heavily motivated by
real world use cases of IRL. One such area is in applying
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MDPs to build computational models (Niv, 2009) of real-
world, rational decision makers such as investors (Dixit
et al., 1994; Rust, 1994), farmers (Nielsen and Kristensen,
2015), doctors (Heckman and Navarro, 2007), and animals
(Montague et al., 1995; Doya and Sejnowski, 1998). Given
demonstrations of how these decision makers behave, one
can apply IRL to extract the underlying reward which can
then be studied to better interpret and understand economic,
healthcare, and ecological systems. In order for the MDP
model to be an effective modeling choice, it should be suf-
ficiently flexible so that there exists an MDP that induces
complex, realistic behaviors and identifiable so that the ex-
tracted reward function can be interpreted. If the MDP
model is unidentifiable, this fact implies that a large number
of arbitrarily different rewards rationalize the demonstra-
tions equally well under the MDP model. As a result, no
meaningful understanding of the decision maker can be
obtained by IRL.

Another important application of IRL is in counterfactual
reasoning (Kalouptsidi et al., 2015; Christensen and Con-
nault, 2019), such as a financial institution attempting to pre-
dict the change in behavior of its customer base in response
to changes in the economic climate amongst other environ-
mental factors (Rust, 1994). Assuming that the only factor
that has changed is the environment and not the customer’s
incentives, IRL can be used to deduce a set of plausible re-
ward functions describing the customer’s incentives and the
modeler can choose a reward to re-optimize in a different
environment that simulates the change in economic climate.
In this scenario, identifiability is a desirable property since
often times the modeler’s will examine the extracted rewards
and choose the one which is most likely to transfer well to
the new environment. If the MDP model is unidentifiable,
it’s unlikely that the modeler can effectively select a transfer
reward as a large set of vastly different plausible rewards
cannot be interpretted.

Despite the importance of the reward identifiability question,
it is heavily under-explored in the Machine Learning (ML)
literature. Little known about the types of MDP models for
which the reward are identifiable, or even if there exist such
MDP models. Many prior works raise concerns that IRL is
an ill-posed problem due to identifiability issues (Ng et al.,
2000; Ziebart et al., 2011; Ziebart, 2010; Dvijotham and
Todorov, 2010; Fu et al., 2017; Geng et al., 2020), often pro-
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viding the example that a constant reward rationalizes any
optimal behavior. This example gives the wrongful impres-
sion that all MDP models are always unidentifiable as there
are several RL frameworks such as the Maximum Entropy
RL (MaxEntRL) framework where constant rewards cannot
rationalize all behaviors. To the best of our knowledge, no
prior works in the IRL literature have formally studied the
reward identifiability problem.

In this work, we formalize the reward identification problem
in IRL and study how identifiability relates to properties
of the MDP model. For deterministic MDP models with
the MaxEntRL objective, we prove necessary and sufficient
conditions for identifiability. Building on these results, we
present efficient algorithms for testing whether or not an
MDP model is identifiable.

2. Preliminaries
Let �(S) denote the set of probability measures over the
set S. An MDP M is a finite sequence (tuple) M :=
(X ,A, P, P0, r, �, T ) where X is the discrete state space,
A is the discrete action (decision) space, P : X ⇥ A !

�(X ) is the transition kernel, P0 2 �(X ) is the initial state
distribution, r : X ⇥A ! R 2 R is the reward function in
a reward family R, and T � 0 is the time horizon.

Let � denote the concatenation operator between finite
sequences An = (a0, ..., an), Bm = (b0, ..., bm) so that
An � Bm = (a1, ..., an, b1, ..., bm). For integers i 

j, we use the indexing notation Ai = (ai), Ai:j =
(ai, ai+1, ..., aj). We decompose an MDP into its domain
d := (X ,A, P, P0, �) 2 D, reward r 2 R, and horizon
T 2 N so that M := d� (r)� (T ). Intuitively, the domain
d characterizes the physical embodiment of the decision
making agent as well as the external environment dynamics,
the reward r encapsulates the desired optimal behaviors for
a task, and the time horizon T defines how many decisions
the agent gets to make to accomplish a task.

A policy is a stochastic function ⇡ : X ! �(A) 2 ⇧
where ⇧ denotes the set of considered policies. A trajec-
tory of length k is a sequence of state-actions, i.e ⌧ =
(xt, at)kt=0 where for all 0  t  k, xt 2 X , at 2 A.
The trajectory distribution of a policy ⇡ executed in a do-
main d with time horizon T is denoted p(⌧ ;⇡, d, T ) =

P0(x0)⇡(a0|x0)
QT

t=1 ⇡(at|xt)P (xt|xt�1, at�1). When
there is no ambiguity we will omit d, T and simply write
p(⌧ ;⇡). We will denote by X

0 the set of feasible initial
states, i.e x 2 X

0
) P0(x) > 0, and by ⌦[x, d, T ] the set

of feasible trajectories of length T in domain d starting from
initial state x 2 X

0, so ⌧ 0 2 ⌦[x, d, T ] if ⌧ 00 = x and there
exists a policy ⇡ that can sample it, i.e p(⌧ 0;⇡) > 0. When
x is omitted, ⌦[d, T ] =

S
x2X 0 ⌦[x, d, T ] denotes the set

of all feasible trajectories.

r
⌧⇡⇤

T

d
J

T

Figure 1. Graphical Representation of MDP Models where d is
the domain, J is the learning objective, r is the reward, T is the
time horizon, ⇡⇤ is the optimal policy for (d, r, T, J) and ⌧ is a
trajectories sampled from ⇡⇤

The learning objective J : ⇧⇥R⇥D ⇥ N ! R 2 J is a
reward-dependent metric of policy performance that has as a
unique global maximum with respect to ⇡ for any (d, r, T ).
An optimal policy ⇡⇤ for an RL task (d, r, T, J) satisfies
⇡⇤ = argmax⇡2⇧ J(⇡; d, r, T ). Note that we restrict our-
selves to well-behaving learning objectives that induce a
unique optimal policy so that identifiability is well-defined
later. For example, the Maximum Entropy RL (MaxEntRL)
objective JMaxEnt(⇡; d, r, T ) = E⇡[

PT
t=0 �

tr(xt, at) �
log ⇡(at|xt)] satisfies the uniqueness maximizer property
while the standard RL objective, i.e E⇡[

PT
t=0 �

tr(xt, at)],
does not. For compactness, we overload notation and write
r(⌧) =

PT
t=0 �

tr(xt, at). We can then define RL task to
be a sequence M � (J) := (d, r, T, J), i.e an MDP with
a corresponding learning objective, which fully defines the
RL problem to be solved.

We define the corresponding optimal trajectory distribution
for an RL task as pr(⌧ ; d, T, J) := p(⌧ ;⇡⇤, d, T ). Again,
when there is no ambiguity we will omit d, T and simply
write pr(⌧). For some RL tasks, pr can be written down
explicitly as a function of the reward r. For example, when
J is the MaxEntRL objective from before and the transitions
are deterministic, pr(⌧) = er(⌧)/

R
⌧ 02⌦[d,T ] e

r(⌧ 0)d⌧ 0.

An MDP model PMDP[R; d, T, J ] := {pr(⌧ ; d, T, J) :
r 2 R} is a family of optimal trajectory distributions
parametrized by the reward r. Note that the unknown param-
eter is the reward r and (d, T, J) are assumed to be known.
The data generating process for an MDP model is solving an
RL problem with respect to M then sampling trajectories ⌧
from the optimal policy ⇡⇤. (see Figure 1)

Inverse Reinforcement Learning (IRL) seeks to invert the
map r ! pr(⌧) given samples, or demonstrations, from pr.
IRL is a ill-posed problem when r ! pr is not injective
with respect to r, i.e many underlying rewards rationalize
the distribution of observable data. In this work, we are in-
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terested in this question of identifiability: when is it possible
to invert r ! pr(⌧) up to a reasonable equivalence class
given knowledge of pr (e.g by having an infinite number of
demonstrations) and (d, T, J). In the following section, we
will begin by formalizing reward identifiability.

3. Identifiability
In general, a statistical model P⇥ = {p✓ | ✓ 2 ⇥} for some
parameter family ⇥ is said to be identifiable if the map
✓ 7! p✓ is bijective, i.e ✓1 = ✓2 () p✓1 = p✓2 . However,
this standard definition of identifiability is not directly appli-
cable to MDP models since most RL objectives will yield
the same optimal policy when the rewards are additively
shifted by a constant. Thus, we first propose a definition
of identifiability adapted to MDP models. We use ⇠= to
denote an equivalence relation on R, and the corresponding
equivalence class of r by [r] = {r̂ 2 R | r̂ ⇠= r}. All proofs
of theorems, propositions, and examples will be deferred to
the Appendix.
Definition 1. (Identifiability) An MDP model
PMDP[R; d, T, J ] = {pr(⌧ ; d, T, J) | r 2 R} is
identifiable up to an equivalence relation ⇠= if for all
r, r̂ 2 R,

r ⇠= r̂ () pr = pr̂

We will consider two specific equivalence relations and
derive different levels of identifiability from them. The first
is trajectory equivalence:

r ⇠=⌧ r̂ () 8x 2 X
0, ⌧ 0, ⌧ 00 2 ⌦[x, d, T ],

r̂(⌧ 0)� r(⌧ 0) = r̂(⌧ 00)� r(⌧ 00)
(1)

Two rewards are trajectory equivalent, i.e ⇠=⌧ , if they are
equal up to a constant after discounted summing over state-
action pairs in trajectories starting from the same initial
vertex. In other words, the two rewards represent the same
preferences over trajectories. The second is state-action
equivalence:

r ⇠=x,a r̂ () 8(x0, a0), (x00, a00) 2 X ⇥A,

r̂(x0, a0)� r(x0, a0) = r̂(x00, a00)� r(x00, a00)
(2)

Two rewards are state-action equivalent, i.e ⇠=x,a, if they
are equal up to a constant at the state-action level. In other
words, the two rewards represent the same preferences over
state-actions. We will use [r]⌧ = {r̂ 2 R | r̂ ⇠=⌧ r} and
[r]x,a = {r̂ 2 R | r̂ ⇠=x,a r} to denote trajectory and
state-action equivalence classes, respectively.

Before defining different levels of identifiability, we intro-
duce a notion of proper MDP models which we will focus
on for the remainder of this work.

Definition 2. (Proper Models) An MDP model
PMDP[R; d, T, J ] = {pr(⌧ ; d, T, J) | r 2 R} is
proper if for all r, r̂ 2 R,

r ⇠=⌧ r̂ ) pr = pr̂

A proper MDP model is one that yields the same optimal
behavior, i.e pr = pr̂, when the rewards are trajectory equiv-
alent. An MDP model with most RL objectives J will be
proper since J generally takes the form E⌧⇠⇡[r(⌧)] + f(⇡)
for some regularization function f : ⇧ ! R. For example,
MaxEnt MDP models are proper. (see Example 1)
Example 1. Let JMaxEnt be the MaxEntRL objective. Then,
the MaxEnt MDP model PMDP[R; d, T, JMaxEnt] is proper.

We are now ready to define different levels of identifiability
starting with weak identifiability. (Definition 3)
Definition 3. (Weak Identifiability) An MDP model
PMDP[R; d, T, J ] is weakly identifiable if it is identifiable
up to ⇠=⌧ , i.e trajectory equivalence.

If an MDP model is weakly identifiable, then one can iden-
tify rewards at the trajectory level given the optimal behavior.
Put differently, a modeler can deduce the demonstrator’s
true preferences over trajectories starting from the same ini-
tial state from the demonstrator’s behavior. We now define
a stronger notion of identifiability in Definition 4.
Definition 4. (Strong Identifiability) An MDP model is
strongly identifiable if it is identifiable up to rewards shifted
by a constant, i.e ⇠=x,a.

If an MDP model is strongly identifiable, then one can
identify rewards at the most granular level, i.e state-actions,
given the optimal behavior. Intuitively, the best we could
hope for is to have MDP models be identifiable up to state-
action equivalences since the optimal behavior should not
change when state-action rewards are shifted by a constant.
For example,

Proposition 1 shows that, for proper RL models, strong
identfiability is a strictly stronger notion of identifiability
than weak identifiability.
Proposition 1. A proper MDP model is strongly identifiable
only if it is weakly identifiable

In the following sections, we will characterize MDP models
that satisfy different levels of identifiability starting with
weak identifiability, and eventually moving up to strong
identifiability.

4. Weak Identifiability
4.1. Deterministic MaxEnt MDP models

As shown by Proposition 1, an MDP model must first be
weakly identifiable in order to be strongly identifiable. In
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this section, we first show that under the widely employed
MaxEntRL learning objective, JMaxEnt, MDP models with
a domain d containing deterministic dynamics is weakly
identifiable.
Theorem 1. Let PMDP[R; d, T, JMaxEnt] be a MaxEnt
MDP model and R ✓ {r | r : X ⇥ A ! R}
be any set of rewards. Then, for all domains d :=
(X ,A, P, P0, �) consisting of deterministic transition dy-
namics, i.e 8(x, a), |supp(P (·|x, a))|= 1, a determin-
istic initial state, i.e |supp(P0)|= 1, and T � 0,
PMDP[R; d, T, JMaxEnt] is weakly identifiable.

For such deterministic MaxEnt MDP models, the optimal
trajectory distribution is given analytically by (Ziebart et al.,
2011)

pr(⌧) =
er(⌧)

Z
where Z =

X

⌧ 02⌦[d,T ]

er(⌧
0) (3)

Eq. 3 provides the intuition behind Theorem 1. pr(⌧) is an
energy-based model (EBM) with the energy function set to
the additive inverse of trajectory rewards �r(⌧). We may
than apply the result that two EBMs are equal if and only if
the energy functions differ by a constant. (see Appendix for
formal proof)

Intuitively, the demonstrator has a strong degree of con-
trol over it’s future when the dynamics are deterministic,
as it can choose to sample a feasible trajectory at its will
without interference from the randomness of the dynamics.
Thus, the optimal trajectory distribution can be viewed as
a noiseless manifestation of the demonstrator’s trajectory
preferences, which makes it possible to uniquely identify
the trajectory level rewards. On the contrary, the following
section will provide examples of stochastic MDPs for which
the corresponding MDP model is not identifiable as a result
of the randomness of the environment interfering with the
agent realizing trajectories according to its true preferences.

4.2. Common Misconceptions about Stochastic MDP
Models and Weak Identifiability

A common misconception in the IRL literature is that the
trajectory distribution of the MaxEnt optimal policy for
stochastic dynamics is always equal to

pr(⌧) / er(⌧)P0(x0)
TY

t=1

P (xt|xt�1, at�1) (4)

which is also simply an EBM as the dynamics terms
can be factored into the exponential. If the misconcep-
tion were true, than one could also prove that all stochas-
tic MDP models are weakly identifiable with the same
proof for Theorem 1. As a counterexample to Eq. 4,
consider an MDP with uniform random dynamics, i.e

8(x, a, x0), P (x0
|x, a) = 1/|X |. Consider any reward func-

tion r that is state-only, i.e 8(x, a, a0), r(x, a) = r(x, a0),
and constant everywhere except for one higher reward state
x⇤, i.e 8x, a 2 X ⇥ A \ {x⇤

} ⇥ A, r(x, a) = c and
8a, r(x⇤, a) = c + 10. It’s clear that the MaxEnt optimal
policy for this MDP is a uniform random policy, since any
other policy would have lower entropy yet obtain the same
expected rewards due to the environment dynamics forcing
uniform state visitation. However, pr(⌧) from Eq. 4 expo-
nentially prefers trajectories with higher reward and is thus
not that attained by a uniform random policy. Thus we can
conclude that the distribution in Eq. 4 not always attainable
in stochastic environments. We can also see that by setting r̂
to be the constant reward, i.e 8(x, a), r̂(x, a) = c, we have
two rewards r, r̂ that are not trajectory equivalent since r̂ has
constant trajectory rewards, while r has a higher trajectory
reward for trajectories that visit x⇤ as compared to those
that do not. (Note that these two types of trajectories are
both feasible since the transition dynamics is always fully
supported on the next state) Yet r, r̂ have the same uniform
trajectory distribution pr, pr̂. Thus, this counterexample
also serves to show that pr = pr̂ 6) r ⇠=⌧ r̂ and that not all
stochastic MDP models are weakly identifiable. We leave
to future work to further characterize weakly identifiability
for stochastic MDP models.

5. Strongly Identifiability
5.1. Domain Graphs

The key conceptual idea that will be used throughout the
remaining sections is to embed the domain of an MDP
model into a graph and reason about how properties of the
graph relate to identifiability of the MDP model. We first
define domain graphs.

Definition 5. A domain graph for a domain d =
(X ,A, P, P0, �) is a tuple Gd := (Vd, Ed, V 0

d ) where

1. Vd := X ⇥A are the vertices

2. V 0
d := {(x, a) | P 0(x) > 0} are the initial vertices.

3. Ed := {e := (v, v0) = ((x, a), (x0, a0)) | v, v0 2

Vd, P (x0
|x, a) > 0} are the edges

In words, the domain graph has a vertex for each state-action
pair and a directed edge between vertices if the correspond-
ing transition occurs with positive probability under the
domain dynamics. We refer to the source and destination
vertex of a directed edge e = (v, v0) by es = v and ed = v0,
respectively. The initial vertex set V 0

d is the set of vertices
that are feasible under the initial state distribution.

A path ⇣ of length k � 0 in the domain graph is a sequence
of vertices ⇣ := (vt)0tk such that (vt, vt+1) 2 Ed
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for all 0  t < k. We denote by |⇣| the length of
the path. Note that there are k + 1 (not necessarily dis-
tinct) vertices on the path. We further introduce index-
ing notation to extract subpaths. For integers 0  a 

b  k, ⇣a: = (va, ..., vk), ⇣:a = (v0, ..., va�1), ⇣:�a =
(v0, ..., vk�a�1), ⇣�a: = (vk�a, ..., vk), and ⇣a:b =
(va, va+1, ..., vb�1). A simple path is a path that does not
contain the same vertex more than once. In Gd, we say that
v0 is reachable from v in k-steps if there exists a path of
exactly length k that starts at v that ends at v0, i.e there exists
⇣ = (vt)0tk such that v0 = v and vk = v0. A domain
graph Gd is strongly connected if there exists a path between
any two v, v0 2 Vd. A cycle C is a path that starts and ends
at the same vertex, i.e v0 = vk. We say that a domain graph
Gd is aperiodic if there does not exist n > 1 that divides the
length of every cycle in the graph, and periodic otherwise.

We denote by Z[v, d, k] the set of all paths of length k that
start from v 2 V 0

d , i.e Z[v, d, k] = {⇣ = (vt)0tk =
(xt, at)0tk | v0 = v}, and subsequently Z[d, k] =S

v2V 0
d
Z[v, d, k]. It should be clear that Z[d, k] has a bi-

jection to the set of all feasible trajectories of length k in
domain d, i.e Z[d, k] $ ⌦[d, k]. Given a reward func-
tion r and discount factor �, we denote the reward of a
path ⇣ to be r(⇣) :=

Pk
t=0 �

tr(vt) =
Pk

t=0 �
tr(xt, at).

When combined with path indexing notation, we write
r(⇣a:b) :=

Pb�1
t=a �

tr(vt). We now introduce a key con-
cepts related to reachability starting with layers.
Definition 6. The kth layer of a vertex v 2 Vd, de-
noted Lk(v), is the set of all vertices reachable in ex-
actly k-steps from v, i.e Lk(v) = {v0 2 Vd | 9⇣ =
(vt)0tk s.t v0 = v, vk = v0}. We define L0(v) = {v}
and for V ✓ Vd, Lk(V ) =

S
v2V Lk(v).

Intuitively, the size of the layers |Lk(v)| should grow with
k as vertices further away from the initial vertices in V 0

d
become reachable, although this is not strictly true, e.g
bipartite graphs where certain vertices can only be reached
in a odd or even number of steps. An important family of
domain graphs are those that are coverable.
Definition 7. A vertex v 2 Vd is said to be t-covering for
t � 1 if Lt(v) = Vd. We say that a domain graph Gd is t-
coverable (or just coverable) if there exists an initial vertex
v 2 V 0

d that is t-covering.

In words, if a domain graph is t-coverable, there exists some
time t at which all vertices can be reached. Intuitively, a
domain with a coverable domain graph is one in which the
agent can sample trajectories that terminate at a diverse set
of state-actions.

5.2. From Weak to Strong Identifiability

In this section, we show the conditions under which a
weakly identifiable MDP model can become strongly identi-

fiable.

Proposition 2. Let PMDP[R; d, T, J ] be an MDP model
that is weakly identifiable. Then, it is strongly identifiable
if and only if for all r, r̂ 2 R, (r ⇠=⌧ r̂) ) (r ⇠=x,a r̂). In
other words, 8r 2 R, [r]⌧ ✓ [r]x,a.

In words, a weakly identifiable MDP model is strongly
identifiable if trajectory equivalence implies state-action
equivalence. Along with domain graphs, Proposition 2 will
be used in the later sections to prove necessary and sufficient
conditions for strong identifiability.

Intuitively, Proposition 2 suggests that in order for an MDP
model to be strongly identifiable, the set of feasible trajecto-
ries in the MDP should be diverse enough so that the state-
action rewards can be deduced from the trajectory rewards.
To formalize this intuition, we introduce a linear systems
perspective of identifiability. For simplicity of thought, con-
sider an MDP with only one initial state, i.e |V 0

d |= 1. A path
(trajectory) matrix A[d, k] is a matrix, of size |Z[d, k]|⇥|Vd|,
whose rows correspond to frequency counts of each node
encountered on the feasible paths, i.e for some enumeration
of the vertices Vd and paths Z[d, k], Aij [d, k] is the number
of times the jth vertex (state-action) v(j) = (x, a)(j) 2

Vd was visited by the ith path ⇣(i) = ⌧ (i) 2 Z[d, k].
When the discount factor � = 1, the reward of the ith

path is simply r(⇣(i)) =
P

0j|Vd| Aij [d, k]r(v(j)) =
P

0j|X⇥A| Aij [d, k]r((x, a)(j)). In vector form, we
may denote rx,a = (r(v(j)))0j|Vd| and r⌧ =

(r(⌧ (j)))0j|Z[d,k]|. Then,

A[d, k]rx,a = r⌧ (5)

We see that the trajectory rewards are a linear transformation
of the state-action rewards with the transformation matrix
depending on the set of feasible paths (trajectories). Propo-
sition 2 states that a weakly identifiable model is strongly
identifiable if the state-action rewards can be identified from
trajectory rewards, which, for � = 1, is an equivalent state-
ment to saying that, for the linear system of Eq. 5 should
have a unique solution (when treating rx,a as an unknown
and r⌧ as known). Thus, a weakly identifiable model is
strongly identifiable if the trajectory (path) matrix is full
rank, since this condition guarantees a unique solution to
Eq 5.

Corollary 1. Let PMDP[R; d, T, J ] be an MDP model that
is weakly identifiable, R be the set of all rewards, |X 0

|= 1,
and � = 1. Then, it is strongly identifiable if and only if
rank(A[d, T ]) = |X ⇥A|

In order for A[d, T ] to be full rank, the there should be a suf-
ficient number of "linearly independent" paths (trajectories)
in the feasible path set. Thus, intuitively, domain graphs
that generate a sufficiently diverse collection of paths are
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likely to yield strongly identifiable MDP models. This in-
tuition will be captured in the strong identification theorem
presented in the following section.

5.3. Conditions for Strong Identification

We now state the strong identifiability results, starting with
a necessary and sufficient condition for strong identifiabil-
ity when the domain graph of the MDP model is strongly
connected. Indeed, there is a wide pool of real world do-
mains that have strongly connected domain graphs, includ-
ing physics environments, e.g Mujoco (Todorov et al., 2012),
ThreeDWorld (Gan et al., 2020), Navigation environments,
e.g Household Robot Navigation (Mo et al., 2018), Mazes
(Brockman et al., 2016), and some investment environments
(Rust, 1994). We also provide sufficient conditions for
strong identifiability for domain graphs with weaker con-
nectivity.
Theorem 2. (Strong Identification Condition) For all
(d, r, T, J) such that the MDP model PMDP[R; d, T, J ] is
proper and Gd is strongly connected,

• (Sufficiency) PMDP[R; d, T, J ] is weakly identifiable, Gd

is T0-coverable, and T � 2T0 ) PMDP[R; d, T, J ] is
strongly identifiable

• (Necessity) PMDP[R; d, T, J ] is strongly identifiable )

PMDP[R; d, T, J ] is weakly identifiable, Gd is coverable.

In short, Theorem 2 states that coverability of the domain
graph is a necessary and sufficient condition for strong iden-
tifiability. Intuitively, coverable domain graphs have a di-
verse collection of feasible paths (trajectories) since for
every vertex (state-action) there exists a trajectory that termi-
nates at that vertex. Recalling the linear systems perspective
on identifiability from Proposition 1, Theorem 2 shows that
indeed coverability guarantees that there exists a threshold
time horizon 2T0 above which there will exist a sufficient
number of linearly independent feasible trajectories to have
a full rank trajectory matrix A[d, T ], and thus uniquely solve
for rx,a. On the contrary, for a non-coverable domain graph
there does not exist any time horizon at which the MDP
model is strongly identifiable.

To better understand and picture the types of strongly con-
nected domain graphs that are coverable, we first need to
recognize that there is an equivalence between aperiodicity
and coverability for strongly connected graphs.
Proposition 3. Let Gd be strongly connected. Then, Gd is
aperiodic if and only if it is coverable.

The intuition behind Proposition 3 is that if a graph is aperi-
odic, then there exist cycles of coprime length which can be
traversed an appropriate number of times before heading to
a vertex of choice to terminate at. Since all natural numbers

k-partite Cycle
(Unidenti!able)

Aperiodic Graph
(Identi!able)

Figure 2. Examples of domain graphs Gd. On the left is a do-
main graph for an MDP model that is not strongly identifiable due
to the graph being a k-partite cycle (vertices in the same partition
have the same color) which is a periodic graph. Right shows a
domain graph for a strongly identifiable MDP model due to the
graph being aperiodic as a result of the self loop state.

above a threshold can be expressed as a positive linear com-
bination of coprime natural numbers (Denardo, 1977), there
must exist a time horizon above which the feasible paths
can terminate at any vertex. For the converse, if a graph is
coverable at T , then it is also coverable at T + 1, T + 2, ....
Therefore, there is a cycle of length T that goes from an
initial vertex back to itself as well as a cycle of length T +1
that does the same. Since, T, T + 1 are coprime, the graph
is aperiodic. Corollary 2 immediately follows by combining
the results of Theorem 2 and Proposition 3.
Corollary 2. (Strong Identification Condition) For all
(d, r, T, J) such that PMDP[R; d, T, J ] is a proper MDP
model and Gd is strongly connected,

• (Sufficiency) PMDP[R; d, T, J ] is weakly identifiable,
Gd aperiodic ) 9T0 � 0 such that 8T �

T0,PMDP[R; d, T, J ] is strongly identifiable

• (Necessity) PMDP[R; d, T, J ] is strongly identifiable )

PMDP[R; d, T, J ] is weakly identifiable, Gd is aperiodic.

Theorem 3 and Corollary 2 shows that strong identifiability,
coverability, and aperiodicity are all equivalent properties
for strongly connected domain graphs. This result is encour-
aging since the requirement of aperiodicity is fairly weak;
there need only exist two cycles C1, C2 of coprime length
such as k, k + 1. In fact, if there is any vertex with a self-
loop, i.e 9(x, a) such that x 2 supp(P (·|x, a)), the graph
is aperiodic. For domains such as a physics environment,
it’s reasonable to expect that there exists a static state where
you have an action that corresponds to not exerting any
external forces into the environment to maintain the static
state. Periodic graphs specifically have the topology of a
k-partite cycle where vertices in each partition do not have
edges between each other, and a vertices in a partition can
only be reached in periodic time intervals. See Figure 2 for
examples of different types of domain graphs.
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5.4. Strong Identifiability Test for Strongly Connected
Domain Graphs

Building on the results of Theorem 2 and Corollary 2, we
present a simple algorithm which tests for Strongly Iden-
tifiability by checking if the underlying domain graph of
the MDP model is aperiodic. Algorithm 1 builds off the
Period Finder algorithm of Denardo (1977) which
takes as input a directed graph and returns the greatest com-
mon divisor of lengths of every cycle in the graph.

Algorithm 1 Strong Identifiability Test for MDP models
with Strongly Connected Domain Graphs
Procedure MDPIdTest(PMDP[R; d, T, J ])

1 Construct a domain graph Gd = (Vd, Ed, V 0
d ) from d.

2 Set gcd = Period Finder(Vd, Ed) (Denardo, 1977)
3 return gcd == 1

MDPIdTest takes as input an MDP model, constructs a
domain graph from d, and checks whether or not the domain
graph is aperiodic. Algorithm 1 is correct and inherits the
time and space efficiency of Period Finder (Denardo,
1977) as shown in Theorem 3.

Theorem 3. Let PMDP[R; d, T, J ] be a weakly identifiable
MDP model and Gd be strongly connected. Then,

• (Correctness) MDPIdTest(PMDP[R; d, T, J ]) returns 1
(True) if and only if 9T such that PMDP[R; d, T, J ] is
strongly identifiable.

• (Efficiency) MDPIdTest runs with time and space com-
plexity O(|Ed|)

In the next section we show how to test for strong identifia-
bility when the domain graph is not strongly connected.

5.5. Strong Identifiability Sufficiency Test for Graphs
with Weaker Connectivity

Even when the domain graph is not strongly connected, the
sufficient condition from Theorem 2 is still holds as shown
in Corollary 3.

Corollary 3. (Strong Identification Condition) For all
(d, r, T, J) such that the MDP model PMDP[R; d, T, J ] is
proper.

• (Sufficiency) PMDP[R; d, T, J ] is weakly identifiable, Gd

is T0-coverable, and T � 2T0 ) PMDP[R; d, T, J ] is
strongly identifiable

While coverability is still a sufficient condition, it is no
longer a necessary condition for strong identifiability and
Proposition 3 does not hold either. Thus, we propose an

algorithm to test coverability directly as a sufficiency test of
strong identifiability.

Algorithm 2 Strong Identifiability Sufficiency Test for Gen-
eral MDP models
Procedure MDPCoverTest(PMDP[R; d, T, J ])

4 Construct a transition matrix M from d. Mij =

P̃ (v(j)|v(i)) where P̃ (x0, a0|x, a) = P (x0
|x, a).

5 Compute M |Vd|2

6 if The rows for the initial vertices in M |Vd|2 contains
only non-zero entries then

return 1
else

return 0
end

We show in Theorem 4 that MDPCoverTest from Algo-
rithm 2 is correct and efficient.
Theorem 4. Let PMDP[R; d, T, J ] be a weakly identifiable
MDP model. Then,

• (Correctness) If MDPCoverTest(PMDP[R; d, T, J ])
returns 1 (True) then, 9T0 such that 8T �

T0,PMDP[R; d, T, J ] is strongly identifiable.

• (Efficiency) MDPCoverTest runs with time complexity
O(|Vd|

3log|Vd|) and space complexity O(|Vd|
2)

In Algorithm 2, non-zero entries in the kth power of the
transition matrix represent vertices in the kth layer of the
domain graph. We check the |Vd|

2 power since the covering
horizon is upper bounded by |Vd|

2 (see proof of Theorem
4 in the Appendix) We leave to future work to derive both
necessary and sufficient conditions for strong identifiability
for non-strongly connected graphs.

6. Related Work
In the Machine Learning (ML) literature, IRL (Ng et al.,
2000; Ramachandran and Amir, 2007; Ziebart et al., 2011;
Boularias et al., 2011) has been studied for two main pur-
poses. The first is to run RL with the estimated reward in
order to perform Imitation (Ng et al., 2000; Finn et al., 2016)
or Apprenticeship Learning (Abbeel and Ng, 2004). IRL is
an alternative to direct policy imitation (Pomerleau, 1991;
Ho and Ermon, 2016; Kostrikov et al., 2020; Kim et al.,
2020a;b) with the motivation being that the reward, in some
cases, may be easier to estimate from fewer demonstrations
than the policy. The second purpose is to run RL with the
estimated reward in a different environment in order to trans-
fer policies (Fu et al., 2017). The intuition is that rewards
are likely to transfer more readily across environments com-
pared to policies.
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Proper (e.g Most MDP Models) 

WI (e.g deterministic MaxEnt)

Proper & SI

Proper & SI & SC
= coverable graph
= aperiodic graph
(e.g graphs with a self loop)

Proper - WI (e.g Uniform random MDP)  

WI - proper & SI (e.g k-partite cycle graph)

Figure 3. Venn Diagram of MDP Models with varying levels of
identifiability. Weakly Identifiable (WI) Models, such as determin-
istic MaxEnt MDP models, are a strict subset of Proper Models
and a stochastic MaxEnt MDP model with uniform random dy-
namics is an example of a proper model that is not WI (section 4.2).
Proper and Strongly Identifiable (SI) models are a strict subset
of WI models where a deterministic MaxEnt MDP model with
a k-partite cycle domain graph (Figure 2) is an example of WI
model that is not SI. Finally, proper, SI, and Strongly Connected
(SC) models are equivalent to models with a coverable or aperiodic
domain graph, such as a graph with a vertex that has a self loop
(Figure 2)

Many prior works in IRL (Ng et al., 2000; Ziebart et al.,
2011; Ziebart, 2010; Dvijotham and Todorov, 2010; Fu
et al., 2017; Amin et al., 2017; Geng et al., 2020) have
touched upon the identifiability problem, but none have
formally addressed it. Although not widely known in the
IRL community, the field of econometrics has a rich body
of work on identifying Dynamic Discrete Choice (DDC)
(Rust, 1994; Arcidiacono and Miller, 2011; 2020; Abbring
and Daljord, 2020) models which is an equivalent problem
to IRL. The main result is that for infinite horizon MDP
models with stochastic dynamics fully supported on the
state space, rewards are not strongly identifiable. DDC
literature also separately explores identification for counter
factual reasoning (Kalouptsidi et al., 2015; Christensen and
Connault, 2019) which has various application areas such
as in health care (Heckman and Navarro, 2007) and retail
competition (Arcidiacono and Miller, 2011).

A seemingly unrelated area of Network Tomography is also
related in the sense that they seek to identify edge level
quantities in a graph by path level measurements. Although
the specific formulation has subtle differences, such as the
paths being constrained to start and end on designated "mea-
surement nodes", several works have looked into necessary
and sufficient conditions for identification of edge level
quantaties (Ren and Dong, 2016), and several works have
proposed algorithms to find the set of linearly independent
paths that represent equations which can be solved to iden-
tify edge quantities (Gopalan and Ramasubramanian, 2011;
Ren and Dong, 2016; Ma et al., 2013).

7. Discussion and future work
In this work we have formalized the reward identification
problem in IRL, showed that deterministic MaxEnt MDP
models are strongly identifiable if and only if the corre-
sponding domain graph is aperiodic, and presented algo-
rithms for testing identifiability in O(|Ed|) time and space.
A summary of our characteriziation of varying levels of
identifiability is presented in Figure 3.

The usefulness of IRL in real-world applications, e.g using
MDPs as computational models of decision makers for inter-
pretation and counterfactual reasoning, depends heavily on
whether the underlying rewards can be identified. Thus the
main practical guidance our theory and algorithms provide
is a formal framework to evaluate which modeling assump-
tions and domains are suitable for IRL. Imagine yourself as
a neuroscientist studying the behavior of male mice navigat-
ing a maze with various stimuli: cheeses, scents of females,
and traps. You seek to apply IRL to understand the cognitive
processes of the mice by inferring its underlying utility. Im-
portant questions to ask are: how should I design the maze
so that the mice’s utility can be inferred from behavioral
data? What type of MDP modeling assumptions should I
make? By applying Theorem 1 and 2 we can conclude that
a MaxEnt MDP model is appropriate and the maze should
be designed so that the mouse has an option to remain static.
(having a self-loop state guarantees strong identifiability)

There are a number of important open questions left to
answer. First, when are stochastic MDP models weakly
identifiable, if ever? The answer to this question can then be
combined with our strong identifiability results to character-
ize when stochastic MDP models are strongly identifiable.
Second, what are the necessary and sufficient conditions for
strong identifiability when the domain graph is not strongly
connected? Do there exist efficient algorithms for testing
identifiability in more weakly connected domain graphs?
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