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A. Details of Section 3
We develop Poisson Latent Neural Differential Equations (PLNDE), which infers the underlying nonlinear dynamics of
neural population spike trains.

We maximize the marginal log-likelihood log pΘ(tx|u) by computing the variational lower bound, where tx are the spike
times of N observed neurons and u is the external stimulus given by the experimenter that affects z:

log pΘ(tx|u) = log

∫
pθ(tx|z,u)p(z|u)dz

= log

∫
qφ(z|tx,u)

qφ(z|tx,u)
pθ(tx|z,u)p(z|u)dz

≥ Eq
[
log

pθ(tx|z,u)p(z|u)

qφ(z|tx,u)

]
= Eq [log pθ(tx|z,u)]−DKL(qφ(z|tx,u)||p(z|u))

Since the mapping from z(t) to λ(t) is defined by Equation (2) in the main text,

log pΘ(tx|u) ≥ Eq [log pθ(tx|z,u)]−DKL(qφ(z|tx,u)||p(z|u))

= Eq [log pθ(tx|λ)]−DKL(qφ(z|tx,u)||p(z|u)) = L

where

Eq[log pθ(tx|λ)] =

N∑
n=1

Eq[log pθ(t
(n)
x |λn)].

Here, Θ = {θ, φ} are the parameters of our model, where θ are the generative parameters and φ are the variational
parameters. The Poisson process likelihood log pθ(tx|λ) (Palm, 1943; Duncker et al., 2019) is

log pθ(t
(n)
x |λn) = −

∫
T
λn(t)dt+

α(n)∑
i=1

log λn(t
(n)
x,i )

where t(n)
x,· are the spike times and λ ∈ RN are the firing rates of the observed neurons n = 1, 2, ..., N . α(n) is the total

number of spike counts of the n-th neuron.
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A.1. Eq [log pθ(tx|λ)]

While it is possible to compute the Poisson process likelihood log pθ(tx|λ) via an ODE solver (Rubanova et al., 2019), we
find that binning the spike times into k bins of width ∆t and inferring the mean λk of the Poisson distribution works well in
the synthetic datasets we test, and may be more efficient for our application as the number of neurons N can get large:

λk = exp(Czk + d)

xn,k ∼ Poisson(∆tλn,k)

Then,

log pθ(tx|λ) ≈
∑
k

log pθ(xk|λk) =
∑
k

∑
n

[xn,k log(∆tλn,k)−∆tλn,k]

We estimate Eq [log pθ(tx|λ)] by

Eq [log pθ(tx|λ)] ≈
∑
k

Eq [log pθ(xk|λk)]

Eq [log pθ(xk|λk)] ≈ log pθ(xk|λ̂k)

λ̂k = exp (Cẑk + d)

ẑk ∼ qφ(z|tx,u)

A.2. DKL(qφ(z|tx,u)||p(z|u))

Suppose external stimulus u is discrete, where the discrete stimulus event times are tu. Then, the posterior process
qφ(z|tx, tu) can be described as:

ż = fψ(z, t) + δtu(guφ(z, t) + ηu)

ηu ∼ N (0,Σu
φ(z(t), t))

where fψ is a generic function that may be approximated with a feedforward neural network (FNN). fψ characterizes the
phase portrait, with its zeros representing the fixed points. guφ is the mean update in the latent state at each event time tu,j ,
and the diagonal matrix Σu

φ represents sensory noise in the update. ηu models noise in the sensory input perceived by the
animal, similar to Brunton et al. 2013. Because noise ηu is added only at stimulus event times,

qφ(z|tx, tu) = qφ(z(t0), z(tu,1), ...,z(tu,M )|tx) = qφ(z(t0)|tx)

M∏
j=1

qφ(z(tu,j)|z(tu,j−1), tx)

qφ(z(t0)|tx) = N (µ0
φ,Σ

0
φ)

qφ(z(tu,j)|z(tu,j−1), tx) = N (µ(tu,j),Σ
u
φ)

µ(tu,j) = guφ(z(tu,j), tu,j) + z(tu,j−1) +

∫ tu,j

tu,j−1

fψ(z(t), t)dt

where M is the total number of jump events, t0 is the start of the trial, and tu,j is the timing of the j-th event. Similarly, the
prior is given by

p(z|tu) = p(z(t0), z(tu,1), ...,z(tu,M )) = p(z(t0))

M∏
j=1

p(z(tu,j)|z(tu,j−1))

p(z(t0)) = N (µ0
prior,Σ

0
prior)

p(z(tu,j)|z(tu,j−1)) = N (µ(tu,j),Σ
u
prior)

µ(tu,j) = guprior(z(tu,j), tu,j) + z(tu,j−1) +

∫ tu,j

tu,j−1

fψ(z(t), t)dt



Inferring Latent Dynamics Underlying Neural Population Activity via Neural Differential Equations

The Kullback-Leibler (KL) divergence then becomes

DKL(qφ(z|tx, tu)||p(z|tu)) = DKL(qφ(z(t0)|tx)||p(z(t0))) +

M∑
j=1

DKL(qφ(z(tu,j)|z(tu,j−1), tx)||p(z(tu,j)|z(tu,j−1)))

≈ 1

2

[
log
|Σ0

prior|
|Σ0

φ|
− d+ tr{Σ0−1

priorΣ
0
φ}+ (µ0

φ − µ0
prior)

>Σ0−1

prior(µ
0
φ − µ0

prior)
]

+

M∑
j=1

1

2

[
log
|Σu

prior|
|Σu

φ|
− d+ tr{Σu−1

priorΣ
u
φ}

+ (guφ(ẑ(tu,j), tu,j)− guprior(ẑ(tu,j), tu,j))
>Σu−1

prior(g
u
φ(ẑ(tu,j), tu,j)− guprior(ẑ(tu,j), tu,j))

]
where ẑ is a single trajectory sampled from the posterior process. If guprior and guφ are not functions of z, we have an
equivalence as in the main text. Therefore, we have an estimate of L = Eq [log pθ(tx|λ)] −DKL(qφ(z|tx,u)||p(z|u)).
We find parameters Θ that maximize L via a first-order method such as ADAM.

A.3. Computing the Adjoints with Stochastic Jumps

We compute the gradient ∂L/∂Θ by using the reparametrization trick (Kingma & Welling, 2014), storing ε ∼ N (0, I)
instantiated in the forward pass, and using the same noise instances during the backward pass. Similar approaches have also
been used in fitting circuit models in neuroscience (Duan et al., 2021) and in calibrating market models in finance (Giles &
Glasserman, 2006).

z
(
t+u,j
)

= z (tu,j) + guφ (z (tu,j) , tu,j) + ε�
√

Σu
φ (z (tu,j) , tu,j), ε ∼ N (0, I)

Due to Jia & Benson 2019 and Corner et al. 2018, the adjoint is

a (tu,j) =
∂L

∂z (tu,j)
=

∂L
∂z
(
t+u,j
) ∂z (t+u,j)
∂z (tu,j)

= a
(
t+u,j
)(∂z (t+u,j)

∂z (tu,j)

)

Then,

a (tu,j) = a
(
t+u,j
)I +

∂guφ (z (tu,j) , tu,j)

∂z (tu,j)
+ ε�

∂
√

Σu
φ (z (tu,j) , tu,j)

∂z (tu,j)


= a

(
t+u,j
)

+ a
(
t+u,j
) ∂ [guφ (z (tu,j) , tu,j)

]
∂z (tu,j)

+ ε� a
(
t+u,j
) ∂ [√Σu

φ (z (tu,j) , tu,j)
]

∂z (tu,j)
.

To compute aΘ (tu,j), we let

zaug (t) =

 z
Θ
t

 (t),
dzaug (t)

dt
=

 fθ(z, t) + δtu(guφ(z, t) + ηu)

0
1



aaug (t) =
[
a aΘ at

]
(t)

gaug (z (tu,j) , tu,j) =

 guφ (z (tu,j) , tu,j)

0
0

 , √
Σaug (z (tu,j) , tu,j) =


√

Σu
φ (z (tu,j) , tu,j)

0
0

 , εaug =

 ε
0
0


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zaug
(
t+u,j
)

=

 z (tu,j)
Θ
tu,j

+

 guφ (z (tu,j) , tu,j)

0
0

+ εaug �


√

Σu
φ (z (tu,j) , tu,j)

0
0


= zaug (tu,j) + gaug (z (tu,j) , tu,j) + εaug �

√
Σaug (z (tu,j) , tu,j)

aaug (tu,j) = aaug
(
t+u,j
)(∂zaug

(
t+u,j
)

∂zaug (tu,j)

)

=
[
a aΘ at

] (
t+u,j
) I +

∂guφ
∂z(tu,j)

+ ε�
∂
√

Σuφ
∂z(tu,j)

∂guφ
∂φ + ε�

∂
√

Σuφ
∂φ

∂guφ
∂tu,j

+ ε�
∂
√

Σuφ
∂tu,j

0 I 0
0 0 1


Therefore, the adjoints are

a (tu,j) = a
(
t+u,j
)

+ a
(
t+u,j
) ∂ [guφ (z (tu,j) , tu,j)

]
∂z (tu,j)

+ ε� a
(
t+u,j
) ∂ [√Σu

φ (z (tu,j) , tu,j)
]

∂z (tu,j)

aΘ (tu,j) = aΘ

(
t+u,j
)

+ a
(
t+u,j
) ∂ [guφ (z (tu,j) , tu,j)

]
∂Θ

+ ε� a
(
t+u,j
) ∂ [√Σu

φ (z (tu,j) , tu,j)
]

∂Θ

at (tu,j) = at
(
t+u,j
)

+ a
(
t+u,j
) ∂ [guφ (z (tu,j) , tu,j)

]
∂t

+ ε� a
(
t+u,j
) ∂ [√Σu

φ (z (tu,j) , tu,j)
]

∂t

where ε is the same ε ∼ N (0, I) instantiated during the forward pass. Computing the adjoints take O(M) memory and
O(M̃) time, similar to continuous adjoint sensitivity methods that utilize checkpointing (Serban & Hindmarsh, 2005;
Rackauckas et al., 2020). M is the number of jump events and M̃ is the number of function evaluations.
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B. Details of Section 4
B.1. Model Architectures

PLNDE is implemented with libraries in Julia’s (Bezanson et al., 2017) SciML ecosystem—DifferentialEquations.jl and
DiffEqFlux.jl (Rackauckas & Nie, 2017; Rackauckas et al., 2020). The FNN fψ of our model had the same architecture
for all analyses done in this paper. fψ had three hidden layers with swish activations, with the first layer having 17 units,
the second layer 23 units, and the third layer 17 units. The ODE solver used was Tsitouras 5/4 Runge-Kutta method, and
automatically switched to a second order A-B-L-S-stable one-step ESDIRK method (TR-BDF2) whenever stiffness was
detected (Rackauckas & Nie, 2017).

For Sections 4.1 and 4.2 in the main text, parameters Θ = {θ,µ0
φ,Σ

0
φ} were jointly optimized with ADAM, where for the

variational parameters φ, the constants µ0
φ and Σ0

φ were fit separately for each trial, and Σ0
φ were constrained to be diagonal,

with the diagonal elements less than 1. We let µ0
prior = 0 and Σ0

prior = I . After training was finished, we evaluated on the
test trials by freezing the generative parameters θ, and optimizing only the variational parameters φ on the test dataset via
ADAM.

For Section 4.3 in the main text, we let u be eitherR for right side and L for left side, and set the constant vectors gRφ = −gLφ .
While µ0

φ, Σ0
φ, gRφ , ΣR

φ ,gLφ , ΣL
φ can be more general and be some functions of z or x, we let them be constants for our

experiments. We fit constants gRφ , gLφ , ΣR
φ , ΣL

φ separately for each pulse. ΣR
φ and ΣL

φ were constrained to be ΣR
φ = ΣL

φ

and diagonal, with the diagonal elements less than 0.01 (chosen to be a reasonable value relative to the mean jumps in
Equation (28) of the main text). gRφ and gLφ were constrained to be between −1.2 and 1.2 with the tanh function and
gRφ = −gLφ . We let the prior reflect the true parameters used to generate mutual inhibition dynamics, i.e., µRprior = CR,
µLprior = CL and ΣR

prior = ΣL
prior = κI where κ = 0.001. µ0

φ and Σ0
φ were constrained and fit in the same way as Sections

4.1 and 4.2. Therefore, parameters Θ = {θ,µ0
φ,Σ

0
φ, g

R
φ , g

L
φ ,Σ

R
φ ,Σ

L
φ} were optimized.

For Section 4.4 in the main text, we used the same configuration as in Section 4.3.

If the dynamics we want to infer are complex, PLNDE may fall into a local minimum. To avoid this, for Sections 4.1–4.3,
we first trained PLNDE on the first few ms of each trial, and gradually increased the interval that we use to train PLNDE,
until finally we trained on the entire duration of each trial. While not necessary, doing this generally increased performance
of PLNDE on the synthetic datasets. This method of “iteratively growing the fit” is introduced in an example in the
documentation of DiffEqFlux.jl (Rackauckas et al., 2020). For Section 4.4, we did not iteratively grow the fit, as the median
duration of the trials was only 0.5s.

As noted in Section A, although it is possible to directly compute Equation (14) via an ODE solver for each neuron n, if
the number of neurons N becomes large, computing (14) may become less tractable. Thus, we binned our spikes with the
maximal number of bins possible for spike times rounded to the thousandths—1001 bins. We used the same number of
bins for PLDS, and used 100 bins for LFADS. We used 100 bins as GRU may not retain memory for longer time bins and
potentially suffer more from vanishing and exploding gradients (Bengio et al., 1994; Hochreiter & Schmidhuber, 1997).

For LFADS and PLDS, we used the default initializations, hyperparameters and termination criteria given in their original
repositories.

For PLDS, EM iterations ended whenever the specified tolerance was reached or the maximum number of iterations (set to
be 150) was reached. PLDS was initialized with nuclear-norm minimization (Pfau et al., 2013), except for the nonlinear
spiral dynamics having low mean population firing rates, where we initialized with exponential family PCA. This was
because nuclear-norm minimization ended with only a couple of iterations and did not produce a meaningful result. For
testing PLDS, after training, we performed the E-step on the test dataset.

We initialized the parameters of PLNDE with Glorot normal and trained for ≈ 5000 iterations. When there are instabilities
in the solver, this often happens at the beginning of the training routine, and may typically be solved by either reducing the
learning rate or with a different initialization. Different initializations of the model parameters, whenever there were no
instabilities in the solver, resulted in phase portraits and performances that are similar.

https://diffeq.sciml.ai/
https://diffeqflux.sciml.ai/
https://diffeqflux.sciml.ai/
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B.2. Spiral Dynamics

The set of equations:

ż1 = −4z3
1 − 4z1 − 80z3

2 − 80z2

ż2 = 80z3
1 + 80z1 − 4z3

2 − 4z2

ż3 = −12z3
3 − 12z3

generates nonlinear spiral dynamics similar to the spiral example in (Brunton et al., 2016). We used spike trains from 23, 33,
43, 53, 63, 73, 2 · 73, and 3 · 73 trials for training. The initial values of each trial were chosen from 2× 2× 2, 3× 3× 3,
4× 4× 4, 5× 5× 5, 6× 6× 6, and 7× 7× 7 grids in [−0.5, 0.5]× [−0.5, 0.5]× [−0.5, 0.5] when training with 23, 33,
43, 53, 63, 73 trials, respectively. When we train with 2 · 73 trials, we use the 7 × 7 × 7 grid, where two trials have the
same initial value, and when we train with 3 · 73 trials, three trials have the same initial value. Each trial was 1 second
long. For this dataset, we tested two different cases, 1) the case where the mean firing rate across the neural population is
high (6.62 spikes/s for 73 training trials, see Figure 2B in the main text, left column, example spike trains) and 2) low (1.12
spikes/s for 73 training trials, see Figure 2C in the main text, left column, example spike trains). The mapping from the
latent trajectories to spike times followed Equations (2), where each element of C was chosen arbitrarily by drawing from
U [8, 9] and randomly multiplying by either 1 or −1, for Case 1). For Case 2), each element was drawn from U [2, 3] and was
randomly multiplied by either 1 or −1. d = 0 for both cases. The spike times were rounded to the nearest thousandths. We
evaluated the models on 73 test trials. Initial values of the test trials were not chosen from a grid. Each trial had a different
initial value coming from a uniform distribution with range [−0.25, 0.25]× [−0.25, 0.25]× [−0.25, 0.25]. Therefore, the
initial values in the test dataset were never seen in training.

We found that PLNDE can accurately infer the phase portrait of these spiral dynamics and reconstruct the test latent
trajectories more accurately than LFADS and PLDS (see the main text for details). In these experiments, we assumed we
know the latent dimensionality (= 3), not just for PLNDE but also for LFADS and PLDS. However, we often do not know
the true latent dimensionality of the system we observe. In such a case, the optimal dimensionality may be recovered by
comparing the test loss (ELBO) and the test log-likelihood (LL) of each neuron across models that assume different latent
dimensions. Recovering the optimal dimensionality with this approach was possible for Case 1 (Figure 5).

Figure 5. Recovering the dimensionality of the three-dimensional nonlinear spiral dynamical system with PLNDE. (A) Test evidence
lower bounds (ELBO) of PLNDEs that assume different latent dimensions. (B) The average test log-likelihoods per neuron for PLNDEs
that assume different latent dimensions. The error bars indicate ±1 standard deviations. The average test log-likelihood for dimension 3
was significantly higher than that of either dimension 2 or 4 (p < 0.0001; two-sided Mann-Whitney U tests).
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B.3. FitzHugh-Nagumo

Spike times of 50 neurons were generated from a system governed by the FitzHugh-Nagumo oscillator:

ż1 = ρτ

(
z1 −

1

3
z3

1 − z2

)
+ Iinput

ż2 =
τ

ρ
(z1 + a− bz2)

where a = b = 0, ρ = 2, τ = 15 and Iinput = 0. We used spike trains from different numbers of trials (100, 200, 300, 500,
1000, 2000) to train the models. The initial values of each trial were chosen from a 10× 10 grid in [−2, 2]× [−2, 2]. The
mapping from the latent trajectories to spike times followed Equations (2), where each element of C was chosen arbitrarily
by drawing from U [1, 2] and randomly multiplying by either 1 or −1. d = 0. The spike times were rounded to the nearest
thousandths. When we train using 100 trials, each trial thus has a different initial value. When we train using 200 trials,
two trials have the same initial value, and when we train using 2000 trials, twenty trials have the same initial value. Each
trial was 1 second long. The mean firing rate across the neural population in the 100 training trials was 11.94 spikes/s. We
evaluated the models on 100 test trials, with the initial value for each trial randomly generated from [−3.5, 3.5]× [−3.5, 3.5].
Therefore, the initial values in the test dataset were never seen in training.

We found that PLNDE can accurately infer the phase portrait of FitzHugh-Nagumo, capturing the limit cycle and the
unstable fixed point (Figure 6B–C). We trained PLNDE, PLDS and LFADS on different numbers of training trials and
found that PLNDE significantly outperformed LFADS and PLDS in reconstructing test latent trajectories in all numbers
of trials we considered (p < 0.0001; Mann-Whitney U tests; Figure 6F) except for when there were 2000 training trials
(p = 0.0364 between LFADS and PLNDE; Mann-Whitney U test; the rightmost circles in Figure 6F). We also found
that PLNDE significantly outperformed LFADS and PLDS in reconstructing test firing rates in all numbers of trials we
considered (p < 0.0001; Mann-Whitney U tests; Figure 6G).

Figure 6. PLNDE accurately infers phase portrait and fixed point. PLNDE outperforms LFADS and PLDS in inferring single-trial latent
trajectories and individual neural firing rates for FitzHugh-Nagumo. (A) Spike trains of the 50 neurons in this dataset in an example test
trial. (B) True phase portrait. Black line indicates the example trajectory that generated the spike times in A. Magenta circle indicates the
true unstable fixed point. (C) Inferred phase portrait affine-transformed to match the true phase portrait. Blue line indicates the inferred
trajectory. Magenta circle indicates the inferred unstable fixed point. (D) An example test firing rate of an example neuron. Model fits are
from training with 100 trials. (E) The example trajectory in B–C unrolled in time. Model fits are from training with 100 trials. (F) Each
circle indicates the median R2 of the true and inferred latent trajectories. The error bars indicate the first and third quartiles. (G) Same as
F, but for firing rates.
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We also considered the case when a = b = 0, ρ = 2, τ = 15, but Iinput 6= 0. We used spike trains of 50 neurons from 100
trials to fit PLNDE. The initial values of each trial were chosen from a 10× 10 grid in [−2, 2]× [−2, 2]. The mapping from
the latent trajectories to spike times followed Equations (2), where each element of C was chosen arbitrarily by drawing
from U [1, 2] and randomly multiplying by either 1 or −1. d = 0. The spike times were rounded to the nearest thousandths.
Each trial was 1 second long. There were 10 different conditions where the currents input to the system were different for
each condition. Each condition had 10 trials. The input currents were damped oscillations that followed the equations below.

Condition 1: Iinput(t) = 40 sin(8πt) exp(−t) Condition 6: Iinput(t) = 40 cos(8πt) exp(−t)
Condition 2: Iinput(t) = 20 sin(4πt) exp(−t) Condition 7: Iinput(t) = 20 cos(4πt) exp(−t)
Condition 3: Iinput(t) = 10 sin(5πt) exp(−t) Condition 8: Iinput(t) = 10 cos(5πt) exp(−t)
Condition 4: Iinput(t) = 50 cos(πt) exp(−t) Condition 9: Iinput(t) = 10 sin(πt) exp(−t)
Condition 5: Iinput(t) = 0.1 cos(πt) exp(−t) Condition 10: Iinput(t) = 0 (No current)

We evaluated the models on 100 test trials with each trial having different initial values. The initial values were randomly
generated from [−3.5, 3.5]× [−3.5, 3.5]. We used one of the input currents in the 10 conditions used in training for each test
trial’s input current, so that for the 100 test trials, there are 10 different conditions with each condition having 10 test trials.

We found that PLNDE can infer the phase portrait of FitzHugh-Nagumo even when there are continuous input currents to
the system, capturing the limit cycle and the unstable fixed point (Figure 7A). Also, the reconstructed test latent trajectories
and test firing rates matched the ground truth well (Figure 7B–C) when the latents were perturbed with different types of
damped oscillation inputs (Figure 7D). When we quantified the reconstruction accuracy with R2 for each test trial, the
median was 0.922 (Figure 7E).

Figure 7. PLNDE can infer phase portrait and fixed point in the presence of continuous input streams in FitzHugh-Nagumo. (A) Same as
Figure 2A, but for FitzHugh-Nagumo when Iinput = 10. Magenta circles indicate the true and inferred unstable fixed points. (B–C) Black
lines show a true example latent trajectory and firing rate while blue lines show the posterior means. (D) Currents input to the system
colored differently for each condition. Bright orange is the input current used in B. (E) Histogram of R2 between the true test trajectories
and the posterior means (median=0.922).
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B.4. Mutual Inhibition with External Input Stimuli

Spike trains from 150 neurons were generated from a system that has the following attractor dynamics:

ż1 = τ

(
−z1 +

1

1 + exp (k (z2 − γ))

)
+
(
δt,tR

(
CR1 + ηR,1

)
+ δt,tL

(
CL1 + ηL,1

))
ż2 = τ

(
−z2 +

1

1 + exp (k (z1 − γ))

)
+
(
δt,tR

(
CR2 + ηR,2

)
+ δt,tL

(
CL2 + ηL,2

))
where τ = 10, k = 16, and γ = 0.5. A similar model was studied in Wong & Wang 2006 and Piet et al. 2017 to describe
the dynamics of two mutually inhibiting neural populations accumulating evidence for decision-making. For these 150
neurons, we assumed that the animal is doing the auditory decision-making task in Figure 1B of the main text, where there
are two input trains of pulses of 30 Hz, one for the left and one for the right side of the chamber. A pulse on the right side
induces a mean jump of CR, and a pulse on the left side induces a mean jump of CL. We let

CR =

[
0.05
−0.05

]
, CL =

[
−0.05
0.05

]
.

We used 100, 200, 300, 500, 1000, 2000 trials to train PLNDE, PLDS, and LFADS. The initial values of each trial were
chosen from a 10× 10 grid in [−1, 2]× [−1, 2]. The mapping from the latent trajectories to spike times followed Equations
(2), where each element of C was chosen arbitrarily by drawing from U [3, 4] and randomly multiplying by either 1 or
−1. d = 0. The spike times were rounded to the nearest thousandths. When we train using 100 trials, each trial thus has
a different initial value. When we train using 200 trials, two trials have the same initial value, and when we train using
2000 trials, twenty trials have the same initial value. Each trial was 1 second long. The mean firing rate across the neural
population in the 100 training trials was 21.50 spikes/s. For this dataset, we tested two different cases, 1) the case where
ηL = ηR = 0 and 2) the case where ηL, ηR ∼ N (0, κI) with κ = 0.001. For Case 1), we evaluated the models on 100 test
trials, with each trial having a different initial value coming from the 10× 10 grid in [−1, 2]× [−1, 2] (Figure 8). The left
and right click times used in testing were never seen at training. We found that PLNDE trained on 100 trials significantly
outperformed PLDS and LFADS trained on 1000 trials or less in reconstructing both the latent trajectories and the firing
rates (p < 0.0001; two-sided Mann-Whitney U tests; Figure 8F). LFADS trained on 2000 trials outperformed PLDS in
reconstructing the latent trajectories and the firing rates (p < 0.0001; two-sided Mann-Whitney U tests; Figure 8F), but still
did not perform better than PLNDE trained on 100 training trials in reconstructing the latent trajectories and the firing rates
(p < 0.0001; two-sided Mann-Whitney U tests; Figure 8F). Figure 3 in the main text shows the results of Case 2).
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Figure 8. PLNDE accurately infers phase portrait and fixed points. PLNDE outperforms LFADS and PLDS in inferring single-trial latent
trajectories and individual neural firing rates for the mutual inhibition dynamics. (A) An example test trial with spike trains of the first 50
neurons. (B) True phase portrait. Black line indicates the trajectory that generated the spike times in the example trial in A. The cyan
circles indicate the true stable fixed points, while the magenta circle indicates the true unstable fixed point. (C) Inferred phase portrait
affine-transformed to match the true phase portrait. Blue line indicates the inferred trajectory. The cyan circles indicate the inferred stable
fixed points, while the magenta circle indicates the inferred unstable fixed point. (D) An example test firing rate of an example neuron.
Model fits are from training with 100 trials. (E) The example trajectory in B–C unrolled in time. Model fits are from training with 100
trials. (F) Each circle indicates the median R2 between the true and inferred latent trajectories. The error bars indicate the first and third
quartiles. (G) Same as F, but for neural firing rates.

C. Number of Parameters
The table below shows the number of model parameters for each dataset (with 343 training trials for the spiral and with 100
training trials for FitzHugh-Nagumo and the mutual inhibition dynamics).

PLNDE LFADS PLDS

SPIRAL 3, 086 382, 288 630
FITZHUGH-NAGUMO 1, 459 304, 838 164
MUTUAL INHIBITION 1, 761 383, 138 468

D. Computing Infrastructure and Runtime
We trained LFADS on Princeton’s Tiger cluster. It is a Dell computer cluster with 320 NVIDIA P100 GPUs across 80
Broadwell nodes. LFADS took up one of these nodes, using one GPU that has 16GB of memory. LFADS took no more than
1 day to train on 1700–2000 trials, and usually took 3–5 hours to fit an average session (≈ 300 trials).

We trained PLDS and PLNDE on the Spock cluster in the Princeton Neuroscience Institute. A node in this cluster contains
two quad-core Xeon X5570 processors (Intel), operating at 2.7GHz, and 24GB of RAM. PLDS and PLNDE took no more
than 4 days to train on 1700–2000 trials, and usually took less than 1 day to fit an average session (≈ 300 trials). We did not
utilize GPUs and parallelize training routines for PLDS and PLNDE, but we expect the runtimes will become shorter with
parallelization.
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