The Lipschitz Constant of Self-Attention

Appendix

A. Useful Identities for deriving Jacobian expressions
In this section, we list some useful identities for deriving the Jacobians of the expressions in the paper.

Suppose )\ is a scalar, u,v,x € R"*! are column vectors, and f(u) is a vector valued function. We use the standard
convention that for a € R™, b € R™, we have % € R™*" Then we have the following chain rule identities:

o _ yOu oA

o [\ = g2 +x52

o () _ 9f(1) du
Ox ~  Ou 0x
o T _ ., TOov T Ou

o Zu'vl=u §X+v g

Note % 1S a row vector, so u% 1S a matrix.

X X

The Jacobian of the softmax is also well-known. Suppose v = softmax (u) € R™*!. Then

v (1 —wvy) — V1V —V1Up,
ov —V2V1 ’U2(1 — Ug) e —V2VUp
— — di —vv! =
7a iag(v) —vv

— VU1 — VU2 R N

B. Power Iteration

Although ||W|| can be computed efficiently in O(nm) time for W € R™*™, naively computing |W |2 = omax(W) =
V/ Amax (W TW) requires O(n?) operations. (By Anax(A) we denote the greatest eigenvalue of a symmetric matrix A.) We
can however obtain an underestimate & (W) via power iteration:

WTWh, bW T Wy,
byt = e G (W) = [ Ok 9
= e o) b ©)

with each iteration taking O(n?) time. Then using K < n iterations gives us an underestimate & in O(Kn?) time. Since
this is an underestimate, the resulting approximation to the Lipschitz constant of the linear map will not be an upper bound.
However the number of power iterations is usually chosen so that ¢ is accurate enough — K = 5 is shown to be sufficient
in the context of fully connected networks or convolutions considered by Behrmann et al. (2019).

The iteration will converge if W T W has an eigenvalue that is strictly greater in magnitude than its other eigenvalues, and
the starting vector by has a nonzero component in the direction of an eigenvector associated with the dominant eigenvalue.
This happens with probability 1 if b is chosen at random, and the convergence is geometric with ratio |Aa/Amax| Where g
is the eigenvalue with second largest magnitude (Mises & Pollaczek-Geiringer, 1929).

C. Proof of Theorem 3.1 for General D

Theorem 3.1. DP-MHA is not Lipschitz for any vector p-norm || - ||, with p € [1, oo].
Proof. The mapping f can be written as fO)T
f(X) = PX = softmax (XATXT) X = : € RV*P, (10)
In(X)"
where A = WKWQT/\/W € RP*P and fi(X) = Z;\Ll Py;x; with P,] = softmax (X Ax;). Hence f can be

interpreted as a map of each x; to a point in the convex hull of x1, ..., x. Since f is a map from RV*P to RV*P its

Jacobian is
J11 . JlN



The Lipschitz Constant of Self-Attention

where J;; = % € RP*D_ By taking partial derivatives we can show that J;; = X "PW [E; X AT + X Ad;;] + Pi;1

where E;; € RN is a binary matrix with zeros everywhere except the (i, j)th entry, d;; is the Kronecker delta, and
PO = diag(P;.) — PJR-:. So fori = j:

Ji=X"POE;XAT + XTPOXA+ Pl
=P (xi — Y, Puxp)x] AT + XTPOXA+ Pyl (12)

For the last equality, note E;; X has all rows equal to zero except for the ith row given by x; . We can then verify that
XTPOE,; X simplifies to Py (x; — >, Pixr)x; .

For vector p-norms, ||J¢||,, is bounded if and only if its entries are bounded, by definition of the operator norm. The entries
of X T P X A are bounded for arbitrary A only if the entries of X " P() X are bounded. So let us investigate the entries
of this D x D matrix. Writing out each term of the matrix, we observe that it is in fact a covariance matrix of a discrete
distribution. Specifically:

(XTPOX], =3 Pkiatim — (g Pixwrt) (X Pikrm) = Cov(Xy, Xon), (13)

where X is a discrete distribution with support at the inputs {x1, ..., xy} and probability mass function given by their
softmax probabilities P(X = x;) = P;;. A consequence of this interpretation is that P is positive semi-definite (PSD)
since for D = 1, Equation (13) becomes X ' P X = Var(X) > 0, with equality if and only if the x; are all equal.

We use this observation to show that the terms of J;; are unbounded, and so DP-MHA is not Lipschitz. Consider the
case x; = 0. Then P,/ = softmax (X Ax;) = %]l, i.e. we have uniform attention regardless of x;. The first term
of J;; in Equation (12) disappears since x; = 0, and the last term becomes %I . For the second term, the entries
[XTP(i)X]” = Var(X) are unbounded since the latter is equal to the sample variance of xy;, ...,z xy;, which can be
arbitrarily large.

Note that we have shown that single head dot-product self-atttention (H = 1) is not Lipschitz, but it is clear that this implies
multihead self-attention DP—-MHA is also not Lipschitz, since the output of multihead attention is a linear combination of the
outputs of each head. O

D. Bias term in DP Self-Attention

A natural question to ask is whether we can add bias terms b< to x;/ W< and b* to x] W to resolve the issue of attention
weights P;. becoming uniform when x; = 0. The answer is no in general. It can again be shown that .J;; is unbounded when
x; is chosen such that x| W + b® = 0 (such a choice is possible assuming W is full rank, a dense set in RP*DP/H),
Then P, = %]l again, and the diagonal entries of X " P(¥) X are unbounded.

E. Efficient Computation of L2 Self-Attention

Dot-product self-attention only requires a few matrix multiplications to compute the logits (i.e. the inputs to the softmax)
between all pairs of inputs, without having to loop over pairs, hence it can be computed efficiently. Similarly, we can show
that L2 self-attention can also be computed in an efficient manner. Using the identity ||a — b|2 = ||a||3 — 2a b + ||b]|2 we
can compute the logits of L2 attention between all pairs via matrix multiplications and computation of row-wise L2 norms,
with negligible overhead compared to dot-product self-attention. Specifically, for L2 self-attention we can show that

(14)

P = softmax ( HXWQ”2 1’ - 2XWQ(XWK)T + ]IHXWKPT)

D/H

where || A||2,, applies the squared L2 norm to each row of A, so if A € R™*" then ||A|%, € R™.

Trow

In Table 2 we show the wall-clock training times for the Transformer models with different attention functions and a varying
number of layers. It is evident that the differences between the models are rather small.
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’ H 1 Layer \ 2 Layers \ 3 Layers \ 4 Layers \ 5 Layers ‘

Transformer (DP) 37 56 77 92 110
Transformer (L2) 35 56 73 99 115
Transformer, W& = WF (L2) 39 58 79 91 108
Transformer, (Contractive-L2) 37 60 81 102 127

Table 2. Wall clock training times for one epoch of training (seconds)

F. Proof of Theorem 3.2

Recall the formulation of 1.2 -MHA:

F:RVXD _ RNxD
F(X) = [fr{Owt A xow VA wo
(X)) = PhXx A,

e Wk — xR 3

P} oc exp(Lyj) 1:exp<— DI >7 ZPZ}:l
J

where we have that W@h WKL Vb ¢ RDXD/H 170 ¢ RDxD ph ¢ RNXN and A, = WQ’hWQhT/ D/H €
RP*P and the softmax is applied to each row of the input matrix. Recall Equation (14):

i
Ph — softmax (_ | XWRh|2 1T — 2XWh(XWEH)T 4 ]l||XWK’h||30W> ‘

D/H

F.1. L2 self-attention is not Lipschitz for general W?, WK

Let us first look at the case of H = 1 and suppress the index / to reduce clutter. Consider the map f (X) = PX,so
f(X) = f(X)A. We need f to be Lipschitz for f and hence F to be Lipschitz. Note that P is defined as:

I W2 — ] W3
D/H

P;; < exp(Li;) = exp (

and the normalisation constant satisfies ), P;; = 1, for P € RNXN X ¢ RNxD,

For L2 self-attention, we may take partial derivatives and use the chain rule to show that the Jacobian of f is:

jll e le
Ji=| 1 .. 1 | eRNDXND (15)
le jNN
with
z T i) OLi: DxD
Jij:X P 7+PijIER (16)
8(Ej
where
OLi 2 [(XWE = 1T W) Wb + (B X W2 = By XW) wi| a7
axj \/W 7 () Jt 77
and
Pi(1— Py) —P;1 Py e P PN

, —Pa Py Pio(1—Py) ... —PiaPin
P = diag(P;.) — P, P, : ) . ,

1

—Pin Py —PiNPy ... Pin(1—Pp)
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po_ oD (—lIx; we — XTWKH2)
Y eexp (<l WO —x[WE|3)

Recall that Ej; € RN*N is a binary matrix with zeros everywhere except the (7, ¢)th entry. Hence E;; X has all rows equal
to zero except for the jth row given by x; . We can then verify:

XTPOE;X = Pj(x Z Pyexp)x, - (18)

Also note P is symmetric, and each row/colum sums to 0, i.e. P()1 = 1T P(¥) = (. Hence we may simplify the Jacobian
terms as follows:

. 2
Jii = XTPOXWE —1xTWw)ywe' + XTPOE, X(W — WK)WKT} 4 Pl
D/H |
2 | . .
= oim _XTP(Z)(XWK—]lxiTWQ)WQ + Py(x; Zkak W —WRYWE | + PyI
2 i 3 T
= XTPOXWEWR' + Py(x; Pyx —WEYWE | + P,I, (19)
DI | Z kX)) X )
and for i # j:
~ 2 .
= ———X PO, XWO — E;XWRYWET + puT
D/H
2
= \/ﬁpij (x; — ZPika)(XZTWQ — X;FVVK)T/VKT + P;1. (20)
k

We are now ready to show that f is not Lipschitz for general W@, WK

LemmaF.1. I[f WK e RP*P/H js il rank (i.e. full column rank), and W # W<, then Jij has terms that are unbounded
for i # j, hence f is not Lipschitz.

Proof. Let us investigate the expression K,; == P WX (x; — 32, P ) (x] W — x] WK) € R#*# fori # j, which
is related to ji]‘ as follows by Equation (20):

K+ Pij1> Wk,

WK T, = (2
VDJH

It suffices to show that K;; is unbounded to show that .J;; is unbounded, since W is full rank and P;; € [0, 1].
Lety,] =x/ W% —x] WX, Then we have:

— > Puyi = W x; - W x; — > Pr(W9 x; - WK xy)
e
= WQTXZ‘ - WKTXj - (WQTXi - Z PikWKTX

= —VVKT (Xj — ZPika).

Hence Kij = —P;(y; — 3., Pikyk)ij. Note y; can take an arbitrary value in RP/H since WX # W and W is
full-rank.
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For all j # i, let us choose x; such that y; = —y;. This is possible for any value of y; since W is full-rank. Note
2
y; = —Y; and not y,;. We then have that ||y, ||3 is equal for all j, hence P;; := % = + for all j. Then for
| ©XP{— 2

1 # j, K;; simplifies to
-~ 1 1 2N — 2
Ki‘:—f —i—fN—Q—Z‘ —iT:—iiT
j N<y v ( )(.Y)>(y) Nz YiYi

whose entries are unbounded since y; can be any vector in RD/H (note we assume N > 2 for self-attention to be
well-defined, hence 2N — 2 # 0). O

The intuition for this result is as follows: a reason for DP—MHA not being Lipschitz is that for x; = 0,, the attention weights
P;; become uniform regardless of the values of x; for j # i. A similar issue arises for L2-MHA with We £ WK and
full-rank WX as shown above: given any x;, we can choose x; such that the P;; become uniform.

F.2. L2 self-attention is Lipschitz for W?@ = WK

Hence we impose the restriction that W = W@, With this assumption we have
Py o< exp (=Il(xi = x;)TVAI3) @1

where A = WQW®" /\/D/H € RP*P and /A is chosen such that A = VAVA', in particular v/A = WR/(D/H).
The terms in the Jacobian of f simplify to:

Ji =2X "POXA+ Py;I (note P11 = 0), (22)
jij = 2P1](XJ — ZPikxk)<Xi — Xj)TA + Png for i 75 ] (23)
k
Let the Jacobian of f(X) be:
J11 . JlN
Jp=| : .. 1 | e RVPXND, (24)
JNl ce JNN

Since f(X) = f(X)A, and by the chain rule 8%]» [fi(X)A] = AT 81;)(5) = Aagi‘f) (by symmetry of A), we have that
Jij = Ajij. Hence

Jii =2AX "TPOXA+ P, A (note PY1 = 0), (25)
Jij = 2.P7;jA(Xj —ZPikxk)(xi —Xj)TA+PijA for ¢ 7&] (26)
k

Noting Lip,,(f) = supx [|./¢(X)

»» we would like to upper bound ||J||.

F.2.1. UPPER BOUND ON Lip_, (F') FOR L2-MHA

Consider the choice p = oo, where ||Jf|| is the maximum absolute row sum of .J;. A key observation is that if we
can bound the co-norm of the Jacobian of f;, a single output of f, (i.e. a single block row ||[J;1, ..., Jin]||cc Of J) then
this is also a bound on ||J¢||« due to permutation equivariance of self-attention; all block rows have the same maximal
I - loc when each is optimised over the input X. Using this, we can prove that ||J¢| oo admits an upper bound that is
O(log N — loglog N). Below we state and prove lemmas that lead to the proof of this upper bound.

T .
First we analyse the term v A X | P(®) X+/A, that appears in the first term of J;;. Note that for Y := X /A, so that the
rows of Y are y;| = x; v/A, we have

VA XTPOXVA=YTPDY = Cov(Y) 27)
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where P(Y = y;) = Pi; = exp(—|ly; — vill3)/ 21 exp(—||yx — y:l|3)- The last equality uses the observation in Equation
).

The central inequality used throughout the proof of the main theorem is the following:

Lemma F.2. Tr(Cov(Y)) = 32, Pijlly; = Xp Paryrll3 < 325 Pislly; — yills < 671 (N — 1) where ¢(c) = cexp(c+1)
is a one-dimensional invertible function on Rx>.

Proof. The first equality holds since Tr(Cov(Y)) = >_, Cov(Y);; = >, Var(Y;) = >, E[(Y; — E[Y,])?]. The next
inequality holds since Var(Y;) = Var(Y;) = E[Y?] - E[Y;)? < E[Yj] where Y = Y — y;. The final inequality can be
proved as follows.

We would like to bound

2y —vildexp(=lly; —yill)) X, 27 exp(=27)

Pylly; — yill2 = (28)
2Pl =l = e T = 5D >, exp(—22)

where z; := |ly; — yill2 (hence z; = 0). Define:

B Ej 2]2 exp(—zf-) Zj# ZJQ exp(—zf-)

9(@) = Seexp(—22) 1+ D i €XD(—27) >

First note that as z; — oo, exp(—z7) — 0 exponentially fast, causing the product 23 exp(—z7) — 0. Hence we expect the
above quantity to be bounded and attain its maximum.

Let h(z;) = exp(fzjz.) for notational conciseness, and note h(z;) > 0. By taking partial derivatives with the chain rule, we
have that for j # i

9g(z) _ 2zjh(z) _ 2 . 22) 22
0z (o4 h(=r))? " j)zk:h( k)+zk:h( £)2k] - G0

Hence the derivative is 0 if and only if z; = 0 or (1 — 23) 37, h(zi) + 35 h(zk)z; = 0, the latter being equivalent to

2
27 =1+ % = 1+ g(z). Hence at the maximum, the non-zero values among {z; } *_; must be equal to one another.

It is clear now that the maximum value ¢ is attained when 25 = 1+ ¢ for j # i (and recall z; = 0). So h(z;) = exp(—1—¢)
for j # 4. Substituting this into g(z), and rearranging, we obtain cexp(c + 1) = N — 1. Note ¢(x) = xexp(z + 1) is
increasing for z > 0 hence ¢ = ¢~} (N — 1). O

Note ¢(log N) = (log N) exp(log N + 1) > Nlog N > N — 1 for N > 3. Since ¢ is increasing, we have ¢~ }(N — 1) <
log(N) for N > 3. In fact, it is known that =2 (N — 1) = O(log N — loglog N) (Corless et al., 1996).

Note the A term in f(X) = f(X)A allows us to use the above inequality, since Y T P()Y = Cov(Y) now appears in the
terms of Jy:

Ty = WA TPOYIVA + PuA, 31
T
Jij» = 2VAP;(y; = > Puyi)(yi —y;) VA + PjA fori# j. (32)
k
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Using the inequalities || BC|| < || B||||C|l, |B + C|| < ||B]| + ||C|| and ||[A1, - .., AN]

[ i1, -, Jin] e
< iilloo + > 15l
j#i

. T
<2VAo|lY TPOY [0 [VA oo + Piill Allos
+2) VAol Py (y; — ZszYk )i = ¥) Tlloo VA oo + Py Allsc

J#i
T .
=2(|VA oo [VA || (HWP@YHOO 3 PGy = S Payi) (yi yj>T||oo) + | Alloo
J#i k
||WQ|OO|WQT||OO( T ) T ) [WeWR o
=2 Y'POY| o + Pily;— ) P i = Yi) oo | + ——".
D/H H || ;H J(YJ ; k}’k)(y YJ) || D/H

For the first equality, note that > ; Pij = 1. For the second equality, note that the summand for j = ¢ is 0 because the term
yi: —¥; = 0. Each of the terms in the brackets are bounded by the following lemmas:

LemmaF3. |YTPOY|, < ¢~ Y (N —1)\/D/H (¢ defined as in Lemma F.2).

Proof. Recall that YT P®Y = Cov(Y). Let o(Y,,) denote the standard deviation of Y,,. Then [Cov(Y)]s, <
o(Y;)o(Y,,). Hence

1Cov(Y)[lo = mlaXZ [Cov(Y)]im| < maxo(Yy) > oY)

< @ ;a%w = @ Tr(Cov(Y))
< \/EW(N - 1),

since 3, 0(Y,,) <1/ 2/, 02(Y,,) (by e.g. using the Cauchy-Schwartz inequality on [o(Y1),...,o(Yp /)] and 1)
and max; U(Yl) <vV>om 02(Y ), and the last inequality is from Lemma F.2. O

Lemma Fd. 3= ||Pi;(y; — 25 Pyr)(¥i = ¥j) ' lloo < ¢~ (N —1)y/D/H.

Proof. Note |[uv ' ||oc = ||ul|so||V||1 for real vectors u, v. Hence
S NP =Y Py (i =) oo = > Pislly; = > Pueylloollyi — 5l
J k J k
=a'b < [|a2|b|
a = [jafl2 2,

where a; = \/Py;lly; — >p PikYilloo» b5 = /Pijllyi — yill1-

Note a; < ¢; == \/Pij|ly; — > Pirykll2 since [|u]los < |[ul|2 for vector u. Hence [|al|2 < [|c|2.

Also b; < \/gdj = \/g\/PT]HyZ — yjll2 since [lull; < \/§||u||2 for u € RP/H (e.g. by the Cauchy—Schwartz
inequality on [[uy],...,|up,/g|] and 1). Hence ||b[|2 < \/ngHg.

Note ||cl[5 = 37, Pijlly; — 3 Piryrll3 = Tr(Cov(Y)) < ¢~ (N —1) from Lemma F2, and [|d|[3 = 3=; Pyjllyi —y;/3 <
61 (N — 1) also from Lemma F.2. Hence [|alls[[b]l2 < /% lelllld]s < /5o~ (N — 1). 0
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Putting the above lemmas altogether, with the observation sup x ||J¢(X)||cc = supx [|[Ji1(X), ..., Jin (X)]|leo by per-

mutation invariance of ||J¢||o (since f is permutation equivariant and || - ||o is the maximum absolute row sum), we
have
wewe' |
Ttlloo < AW l|[WE [|lawd™ LN — 1 L IWEWE oo
[T lloo < 4IW 5 oo [WS Jlood™( ) D
1
< WOl WO o [ 40~ (N = 1) + 33)
< WOl W o (497 0V 1)+ (

< W9l W9 oo <410gN+

1
NoIZA
where the last inequality holds for N > 3.
The full multihead attention map that combines the heads f”(X) is:
F: X [fH(xwV L AXWYHwe = g(x)ywV wo
where g : X +— [f1(X),..., fH(X)], WO € RP*P and

wvtooo 0
wV=1| : - .| e RPEXD,
0 .. owvH

Note the Jacobian .J, is a block matrix whose rows are Jx, hence ||.J|| oo = maxy, ||.J¢n [|oo, and similarly ||VVVT loo =

maxy, ||VVV7hT |loo- Hence we have

Lipog (F) < max [/ oo masx [ WY o [[WO |-

Combining this with Inequality (33), we have:

. _ T T T
Lip,(F) < (4¢ YN -1)+ >m}ffmeQ’h||oo||WQ’h oo max [[WY" oo W [|oc.

1
/D/H
F.2.2. UPPER BOUND ON Lip, (F') FOR L2-MHA

For p = 2, we use the following lemma:

Lemma F.5. Let A be a block matrix with block rows Ay, ..., An. Then ||Alls < />, | Ail|3, and equality holds if and
only if the first right singular vectors of the A; align.

Proof.
A1 AT P
1AIZ = ||| : = sup D]l = sup YO AxZ <Y sup A3 = (Al
A [Ix[[2=1 A lIx[l2=1""; 7 lIxll2=1 i
N1z N 2
Note that equality holds if and only if the first right singular vectors of the A; align. O

Hence a bound on the spectral norm of each block row of .J; can give us an O(v/N) bound on ||.J¢||2, which may be loose,
and it remains an open question as to whether this bound can be tightened.

To bound the || - || norm of each row of J¢, we use the following lemmas:
LemmaF6. |[YTPOY |, < ¢~ 1(N —1)
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Proof. ||[YTPOY |3 = |[|Cov(Y)|l2 = Amax(Cov(Y)) < Tr(Cov(Y)) < ¢~ (N — 1), where the first equality holds by
symmetry of Cov(Y) and the next holds by Cov(Y) being positive semi-definite, so all its eigenvalues are non-negative, and
hence the maximal eigenvalue is bounded by the sum of the eigenvalues, equal to its trace. The final inequality is from
Lemma F.2. [

Lemma F.7. 3 || Pij(y; — > Pyr)(yi —y5) 'll2 < ¢7' (N = 1)
Proof. Directly use Cauchy—Schwartz on ¢ and d in the proof of Lemma F.4. O

Again using the inequalities || BC|| < ||B||||C|, [|B + C|| < ||B]| + ||C]| and ||[A1,..., An]|| < 3, | Ail|, with the
additional equality || BT ||z = || B||2, we have the bound:

I[Ji1, -5 Jin]ll2
||WQ|2||WQ72( T i T ) W W |,
ol - 2y TPWY|, + Py, — P; i =Y 4+ —
e\ o+ IR 5s = 2 Pavelty =) 7
Q12 QT
gy WUE | IweweT,
D/H D/H
Q|2
< W=l <4¢_1(N— 1)+ 1).
vD/H
Using Lemma E.5, we have that
\/NIIWQII%< )
Jille < ——2(4¢p (N -1)+1 34)
sl < = (467 0V - (
we
VNI v,
vD/H
To obtain the final result for the full multihead self-attention F', we need a final lemma:
Lemma F.8. Let A be a block matrix with block columns Ay, ..., An. Then ||All2 < />, | 4il5-
Proof.
2
X1
||A||2 = H[A]_, . .,AN]HQ = sup [A17~ .. 714]\/'] = sup || ZAiXiHQ
> lIxill3=1 % i llxllz=1
N1llg
sup [Aixill2 = sup Ail|Aieill2 = sup AillAill2
Z Hx7|‘2—1§i: Hei”2:172i A%:lgi: Zz )\12:127,‘:

< XAz

where we are using the substitution x; = \;e;, and the last inequality holds by e.g. Cauchy—Schwartz inequality on
[A1,..., An] and [||Aq]l2, - - -, [|AN]||2)- O

Recall that
F:X e AWV fxOwYHEwe.

Since || /(X)W VP |y < || gn|2][WV>" |2, by Lemma F.8 we have that

I COWYE, L P OwWYA |, < \/Z 1750 |2V 2
h
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and hence
Lipa(F) < \/Z I I3RS | WO 65)
h
Combining this with Inequality (34), we have:
Lip,(F) < gH (4671 (N — 1) + 1) th (W3 ||Wv’h||§) IWOlo.

G. The Case with Masking

Since self-attention is often used with masking, a natural question is how masking affects the derived bounds. In self-
attention (for any choice of attention function), masking is implemented as follows: given a set of mask indices M C
{1,...,N} x {1,..., N}, the logits (i.e. the inputs to the softmax) are set to —oo at the mask indices. That is,

Lo Lij if (i,5) ¢ M
Y —o0 if (i,j) € M

where L;; is the original logit (e.g. for L2 self-attention, L;; = —(x; — x;) T A(x; — x;)).

Masking implies f;(X) is not a function of x; for (7, j) € M, hence J;; = 0 for (¢, j) € M. Thus f;(X) is equal to the
ith output for self-attention with inputs restricted to {x; : (4, j) ¢ M}, the unmasked inputs with respect to the ith output.
Hence J;; will no longer contribute to the bound on ||[J;1,. .., J;n]||, and hence the bound for the unmasked case will
continue to hold as long as (¢,7) € M i.e. x; attends to itself (this is necessary for the proof of Lemma F.2 to hold). The
bound can in fact be tightened by replacing N with |{x; : (4, j) ¢ M }|, the number of unmasked inputs with respect to the
ith output.

H. Experimental Details

For the experiment in Section 5.1, showing the asymptotic tightness of the upper bound on Lip__ (F') where F is L2-MHA,
we fix all free parameters of F' (namely W@, TWV) to be the identity, and only optimise the input X. We use 50 random
initialisations of X for each N, where X;; ~ U[—c,¢] for ¢ ~ U0, 10] (we observed that having c itself be random
improves optimisation). We display the top 5 results for each value of NV after optimising each random initialisation till
convergence using Adam (Kingma & Ba, 2015) with a learning rate of 0.1.

For the experiments in Section 5.3, we comparing the performance of the original Transformer and the Transformer
with Lipschitz/invertible self-attention at character-level language modelling on the Penn Treebank dataset (Marcus et al.,
1993).! Each training example is a sentence represented as a variable-length sequence of characters, and examples are
batched according to length such that padding is minimised, with the maximum sequence length set to 288. All models
are autoregressive, outputting the logits for the categorical likelihood predicting the next character, and are trained using
maximum likelihood (cross-entropy loss) with a batch size of 64. The LSTM models have the dimensionality of the hidden
state equal to the dimensionality D of the cell state (the usual default implementation). The Transformer models are
trained with a varying number of blocks (number of layers) with H = 8 heads and D = 512, tuning hyperparameters for
dropout rate in {0,0.1,0.2} and base learning rate v € {0.2,0.4,0.6,0.8,1.0,1.5,2.0} with number of warmup iterations
w € {1000, 2000, 4000, 8000} for the standard custom learning rate schedule in Vaswani et al. (2017):

€ = lmin(flm,tw*gﬂ),

VD
where ¢; is the learning rate at training iteration ¢. Hence the learning rate linearly increases from 0 to (Dw) /2 over
w iterations, then decays proportionally to t~1/2. We use Glorot Uniform initialisation (Glorot & Bengio, 2010) for all

weights (U {_\/dmﬁdm , \/dinjdout J ), except for weights in L2—-MHA that are initialised from U [—\/‘—%, %}, and s is

a hyperparameter. For D = 512, we used s = 2% All experiments were done in Tensorflow 1.14 (Abadi et al., 2016) on
single Nvidia Tesla V100 GPUs.

'We use the standard training-validation-test split, and the dataset can be found at e.g. https://github.com/harvardnlp/
TextFlow/tree/master/data/ptb.


https://github.com/harvardnlp/TextFlow/tree/master/data/ptb
https://github.com/harvardnlp/TextFlow/tree/master/data/ptb
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I. Numerical Invertibility of MHA Residual Map

Following Section 5.2, Figure 6 confirms that numerical invertibility does not hold for trained weights for dot-product
multihead self-attention (DP-MHA) (obtained from one-layer Transformer (DP) model used for Figure 4), similar to the
randomly initialised weight case. Figure 7 shows additional results for different values of N and D.

Inverting trained DP-MHA
Residual Map (D=512,H=8)

107
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10! — €=0.90
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Figure 6. Tnvertibility of g(x) = x + ¢f(x) for trained DP-MHA f.
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Figure 7. Numerical invertibility of g(x) = x + c¢f(x) where f is L2-MHA(left) or DP-MHA (right), for different values of NV and D.
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J. Behaviour of Lower Bound on Lip, (F')

8
7
6
5
4
3 — top 1 out of 50 random init
5 xxx top 5 out of 50 random init
10 100 300

N

Figure 8. Lower bound on Lip, (F') where F'is L2-MHA, with D = 1 and varying NN, obtained by optimising ||.J7(X)||2 with respect to
X, with 50 random initialisations of X for each V.

In Figure 8, we show the lower bound on Lip, (F’) obtained by optimising ||.Jz(X)||2 using the same optimisation procedure
as for Figure 2 of Section 5.1. Here the optimisation is more difficult, evident in the variance of the top 5 values, and the
trend is less clear, but it appears that Lip, (f) grows at a rate of O(log N). The message is less clear here, and there are at
least two possibilities:

(1) The optimisation is difficult even for small values of IV, hence Figure 8 shows a loose lower bound.

(2) If the lower bound is tight, this suggests that the O(v/N log N) bound in Theorem 3.2 is not asymptotically tight, and
could be improved to O(log N) (or O(log N — loglog N) as for p = 00).

K. Optimising the norm of the Jacobian of DP-MHA

In Figure 9, we show how the norm of the Jacobian ||J¢(X)||« for DP—MHA f keeps increasing when being optimised with
respect to X. This is a useful sanity check validating our theoretical result of Theorem 3.1, that DP-MHA is not Lipshchitz.
The oscillations are likely due to momentum term of Adam optimizer that was used to optimise the norm.

Optimise ||J#{(X)||» wrt X for
f = DP-MHA (trained, D=512)

25000

20000

X

X 15000

[U/r

10000

5000

0 50 100 150 200 250 300
optim iterations

Figure 9. Optimise ||J;(X)||s W.r.t. X for trained DP-MHA f.
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L. Experiment tying keys and queries of L2-MHA but preserving parameter count

In Figure 4 of Section 5.3, we have shown that there is a clear reduction in performance when tying the keys and queries.
To test whether this can be attributed to the reduction in parameter count, we tried doubling the number of columns of
W when the keys and queries are shared (i.e. from D/H to 2D/H) so that the shared model has the same number of
parameters as the unshared model. In Figure 10, the third column shows results for shared L2-MHA, but with the same
number of parameters as the unshared L2-MHA i.e. without tying the keys and queries. The performance is similar to the
second column (tying with a reduced number of parameters), suggesting that there is an inherent limitation in expressiveness
to tying the keys and queries, and that the reduction in number of parameters is an insufficient explanation this phenomenon.

Transformer (L2), WP = WK,

Transformer (L2) Transformer (L2), W@ = WK same parameter count
1.8 Num Layers Num Layers Num Layers
' —1 —1 —1
[ 2 [ [
1.6 — 3
3 — 4
=
-_— 5
21.4
©
>
1.2
1.0
20 40 60 80 100 20 40 60 80 100 20 40 60 80 100
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Figure 10. Experiment tying keys/queries but preserving parameter count.

M. Training curves for fixed learning rate DP-MHA vs L2-MHA
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Figure 11. Train NLL for Transformer (DP), Transformer (L2) and Transformer (Contractive-L2)
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N. The Lipschitz constant of LayerNorm

In this section, we show that LayerNorm is Lipschitz, with a loose bound on its Lipschitz constant w.r.t. to the co-norm.
LayerNorm is defined as follows:

o ox—p(x)
LN(X)—7)+€®7+ﬁ

12D
p(x) = D Z Td
1 d;
(%) = D (wa — p(x))*

where x, 3,y € RP. We will omit dependence on z to write 1, 0 in cases when there is no ambiguity to reduce clutter.

In the trivial case where x4 are all equal or when D = 1, x = p hence LN (x) = (3, so its Lipschitz constant is 0. Thus let
us assume D > 2 and not all x4 are equal.

First let us compute the derivative of 1 and o w.r.t 2:
% — l]lT
3x D

8x Z Td — M afxd—u)

1
fzd:xd— ed—B]l)

{Zxd_ s = 583t |

d
= — xd*
D
d

U

™) \

=,§<x—u>T

where e; € RP is a one-hot vector with 1 at the dth element. Note the penultimate equality holds because Y (x4 — ) = 0.

Now the derivative of LN(x),, the dth element of LN(x), w.r.t.x is
1

N (2 ;

P — | a0+ ) o+ (wa = ) (- 0?7 S

0c?
ox |
1

— (o + ¢ | (ea = )T

(a0l + 07 S x|

DN =

=l + ¥ (ea = H1)T = 350>+ o - x0T |
Hence
P — (o2 4 dingl) — gyt lo” + g x - x|
Note
71(D - 1)/D —71/D —’Yl/D
—’}/Q/D ’}/Q(D—l)/D —’}/Q/D

. 1
diag(y) — EV]IT : . . . )

—vp/D —vp/D ... vp(D-=1)/D
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hence

‘ diag(y) — %’ﬂlT = w max |y, (36)
recalling that ||-|| _ is the maximum absolute row sum.
Let zq == x4 — p. Hence ), 24 = 0, o2 = % > 23 and
22 ... zz2p
Cov(x) = (x — ) (x — )" = :
Zpz1 ... 25

Hence
[Cov(x)[lo _ maxa|za| > 4 [2a]

2 - 1 2
g D 2d?d
Noting that this expression is scale-invariant in z, we may assume WLOG maxy |z4| = zp = 1, since we are assuming not
all z4 are equal and hence at least one z, is non-zero.

The expression now becomes

C 14 z
o 14> aen 2

Since all terms |z4| < 1 are bounded, this continuous expression reaches a global maximum for some value of z with
Zp = 1.

It is easy to see that at the global maximum, z4 # 0 Vd: suppose this were to be true, WLOG z; = 0. Then let us see how
the quantity (37) changes when z; = 0 is increased by 0 < § < 1 and zp = 1 is decreased by 9, keeping the sum constant.
It is easy to see that the numerator 3 ; |z,4| stays constant, but the denominator ), 23 changes by 26% — 2§ < 0. Since for
small ¢, the numerator of (37) stays constant but the denominator decreases, the quantity (37) increases, contradicting that
the global max is obtained for z; = 0. Hence we may assume that z4 # 0 Vd.

Hence the quantity (37) (in particular, ) , |24|) is differentiable at the global maximum, at which the partial derivatives of
the following Lagrangian are zero:

1+ > acp |7d]
LA = =<2 T A E 1).
‘C(Zlv yZD—1, ) 1+Zd<D Zﬁ (d<DZd+ )

d|zk|
dzy

From now on let us write ) _ for ), _, below to reduce clutter. Setting g—zi = 0 and noting = sgn(zy), we obtain

sgn(ze)(L+>2) =2z (L+ 30 l=al) \ _
(1+3023)°
= sgn(z)(1+ Y 23) = 2z(1+ > |za) = A1+ > 23)°
L= Senlz) (1 + 2 2g) = A1+ 3 23)?

<~z
2(1+ > |zal)
_ 2 2
o () =M1+ SR+ )
2(1+ 2" |zdl)
Hence at the global maximum, z;, takes one of two values a > 0 and b < 0. Further we have that
14> |24 _ sgn(zg) — A(1+ " 22) (38)
1+ Z Z?I 2z,

If both a and b are among the zj, we have that 17}‘(1;&2 20 717}‘(;:2: 2) Solving for A(1 + Y 22) and plugging it in
back to Equation (38), we get:

1+Z|zd|_ 1
1+3 22 a-b
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Since a > 0,b < 0and ) zg = —1, a — b is minimised when only one of the z, is a and the rest are b. Hence a crude lower
bound on a — b is ﬁ, giving a bound:
C
o
However we conjecture that the true global maximum is attained when z4 = fﬁ Vd < D (i.e. all the z,4 for d < D are
equal to b < 0), for which it is easy to show that L@@ =2(D-1)/D.
+> a<p 23

Putting together the above, we have:

H 3L§)EX) ’ — (0% + ¢)~ ¥ |diag(y) — %y]ﬁ - %(02 + ) Mdiag(y) (x — p)(x —p) "
< ( diag(y) — %’yIlT o+ % Idiag(v)llc [|(o® + €)™ (x = 1) (x = M)THOO>
<t ( diag(~) — %yf + % Idiag(7)|l.. |\COV(X)/02HDO)
<3 (W max yal + %mgx [val D(D — 2))

1 2(D—-1)
= ——+D-2
gl (255 4 0 - 2)
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