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A. Additional Qualitative Results
As a complement to Section 4.1 and Figure 3 from the main
paper, we present videos that demonstrate various skills
learned by IBOL at https://vision.snu.ac.kr/
projects/ibol.

B. Derivation of the Lower Bound
We describe the derivation of Equation (4) from the main
paper. Starting with Equation (3) from the main paper,

Et[I(Z;Gt|St)− β · I(Z;S0:T )]

= E τ∼pθs (τ),t,
z∼pφ(z|s0:T )

[
log

pθs(gt|st, z)
πθs(gt|st)

− β log
pφ(z|s0:T )

pφ(z)

]
.

For the first term, as described in the main paper, we use the
skill policy’s output distribution πθz(gt|st, z) as a variational
approximation of pθs(gt|st, z), which derives

E τ∼pθs (τ),t,
z∼pφ(z|s0:T )

[
log

pθs(gt|st, z)
πθs(gt|st)

]
= E τ∼pθs (τ),t,

z∼pφ(z|s0:T )

[
log

πθz(gt|st, z)
πθs(gt|st)

]
+ Es0:T∼pθs (·),t,

z∼pφ(z|s0:T )

[
DKL(pθs(Gt|st, z)‖πθz(Gt|st, z))

]
≥ E τ∼pθs (τ),t,

z∼pφ(z|s0:T )

[
log

πθz(gt|st, z)
πθs(gt|st)

]
. (1)

Also, for the second term, we use r(z) as the variational
approximation of the marginal distribution pφ(z), and it
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derives

E τ∼pθs (τ),
z∼pφ(z|s0:T )

[
log

pφ(z|s0:T )

pφ(z)

]
= E τ∼pθs (τ),

z∼pφ(z|s0:T )

[
log

pφ(z|s0:T )

r(z)

]
−DKL(pφ(Z)‖r(Z))

≤ E τ∼pθs (τ),
z∼pφ(z|s0:T )

[
log

pφ(z|s0:T )

r(z)

]
= Eτ∼pθs (τ)

[
DKL(pφ(Z|s0:T )‖r(Z))

]
. (2)

Combining the derivation of Equations (1) and (2) obtains
Equation (4) from the main paper.

C. Encouraging Disentanglement
Disentanglement learning methods often model the gen-
eration process as X ∼ p(·|Z), assuming that data X is
generated with its underlying latent factors Z (Kim & Mnih,
2018; Do & Tran, 2020). While the aggregated posterior
of Z is defined as q(Z) =

∫
x
q(Z|x)p(x)dx for an encoder

q(Z|X) (Makhzani et al., 2015), one of common disentan-
glement approaches is to penalize the total correlation of
q(Z), expressed as TC(q(Z)) = DKL(q(Z)‖∏d

i q(Zi)).

The IB framework has theoretical connections to the disen-
tanglement of representation (Achille & Soatto, 2018b;a;
Chen et al., 2018). In Section 3.2, we derived our objec-
tive in the form of IB. Especially, if we model the prior of
Z as r(Z) =

∏d
i r(Zi), the term DKL(pφ(Z|s0:T )‖r(Z))

in Equation (4) from the main paper is decomposed
into three terms revealing the total correlation term
TC(pφ(Z)) = DKL(pφ(Z)‖∏d

i pφ(Zi)) (Chen et al.,
2018) (refer to Appendix D for the proof), where the ag-
gregated posterior of the trajectory encoder is pφ(Z) =∫
s0:T

pφ(Z|s0:T )p(s0:T )ds0:T . By penalizing TC(pφ(Z)),
we encourage each dimension of the skill latent space Z
disentangled from the others with respect to S0:T . As a
result, the learned skill latent Z can provide improved ab-
straction, where each dimension focuses more on only its
corresponding behavior of the discovered skills.

https://vision.snu.ac.kr/projects/ibol
https://vision.snu.ac.kr/projects/ibol
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D. Decomposition of the KL Divergence Term
When the prior of Z is modeled as a factorized distribution,
i.e. r(Z) =

∏d
i r(Zi), the KL divergence term in Equa-

tion (4) from the main paper can be decomposed as follows
(Chen et al., 2018):

DKL(pφ(Z|s0:T )‖r(Z)) (3)

= Ez∼pφ(Z|s0:T )
[
log

pφ(z|s0:T )

r(z)

]
= Ez∼pφ(Z|s0:T )

[
log

pφ(z|s0:T )

pφ(z)

]
+ Ez∼pφ(Z|s0:T )

[
log

pφ(z)∏d
i=1 pφ(zi)

]

+ Ez∼pφ(Z|s0:T )

[
log

∏d
i=1 pφ(zi)∏d
i=1 r(zi)

]
= DKL(pφ(Z|s0:T )‖pφ(Z))

+DKL(pφ(Z)‖
d∏
i=1

pφ(Zi))

+

d∑
i=1

DKL(pφ(Zi)‖r(Zi)), (4)

where pφ(Z) =
∫
s0:T

pφ(Z|s0:T )p(s0:T )ds0:T denotes the
aggregated posterior.

The second term corresponds to the total correlation of Z,
as TC(pφ(Z)) = DKL(pφ(Z)‖∏d

i pφ(Zi)), encouraging
Z to have a more disentangled representation. The third
term operates as a regularizer, which pushes each dimen-
sion of the aggregated posterior pφ(Z) to be located in
the vicinity of the prior. The expectation of the first term
can be represented in the form of mutual information, as
Es0:T [DKL(pφ(Z|s0:T )‖pφ(Z))] = I(S0:T ;Z). This cor-
responds to the original compression term before applying
the variational approximation.

E. Information-Theoretic Evaluation Metrics
In this section, we describe the information-theoretic met-
rics used for the evaluation in Section 4.2. In addition
to I(Z;S(loc)

T ), we use the SEPIN@k and WSEPIN met-
rics for measuring informativeness and separability (Do &
Tran, 2020). For SEPIN@k, I(S(loc)

T ;Zi|Z 6=i) quantifies the
amount of information about S(loc)

T contained by Zi but not
Z 6=i, and the metric is defined as

SEPIN@k =
1

k

k∑
j=1

I(S(loc)
T ;Zrj |Z 6=rj ), (5)

where rj is the dimension index with the j-th largest value
of I(S(loc)

T ;Zi|Z 6=i) for i = 1, . . . , d. That is, SEPIN@k is

the average of the top k values of I(S(loc)
T ;Zi|Z 6=i). They

also define WSEPIN as

WSEPIN =

d∑
i=1

ρi · I(S(loc)
T ;Zi|Z 6=i) (6)

for ρi =
I(S(loc)

T ;Zi)∑d
j=1 I(S

(loc)
T ;Zj)

. It is the sum of I(S(loc)
T ;Zi|Z 6=i)

weighted based on their informativeness, I(S(loc)
T ;Zi).

F. Varying Number of Bins for MI Estimation
We quantize variables for the estimation of mutual infor-
mation for measuring the information-theoretic metrics in
Section 4.2 from the main paper (see Appendix I.6 for the
details). To show that IBOL outperforms the baseline skill
discovery methods under different evaluation configurations,
we make a more comprehensive comparison between the
methods using different numbers of bins for quantization.

Figures 1, 2, 3 and 4 compare the skill discovery methods on
Ant, HalfCheetah, Hopper and D’Kitty, varying the number
of bins for the mutual information estimation. The results
show that on all the four environments, IBOL outperforms
DIAYN-L, VALOR-L and DADS-L in the evaluation met-
rics of I(Z;S(loc)

T ), WSEPIN and SEPIN@1 regardless of
binning, which robustly supports IBOL’s improved perfor-
mance.

G. Diversity of External Returns
We qualitatively demonstrate the diversity of external returns
the methods receive for their skills. As the skill discovery
methods learn their skill policies without any external re-
wards, examining their skills in regard to external returns
can be used to evaluate the diversity of the skills as well as
their usefulness on the original tasks.

We compare IBOL with DIAYN-L, VALOR-L and DADS-L
in Ant, HalfCheetah and Hopper. For every pair of a skill
discovery method and an environment, each of the eight
skill policies learned by the method with d = 2 in the envi-
ronment is used to sample trajectories given 2000 random
skill latents from their prior distribution, p(z) i.e. the stan-
dard normal distribution. Figure 5 visualizes the results,
where each vertically stacked histogram denotes the exter-
nal returns for the 2000 skills with corresponding colors
from the color bar for the environment. In the visualizations,
the skills learned by IBOL exhibit not only wider but also
more diverse ranges of external returns compared to the
baseline methods, which suggests that IBOL can acquire a
more varied and useful set of skills in the environments.
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Figure 1. Comparison of IBOL (ours) with the baseline methods, DIAYN-L, VALOR-L and DADS-L, in the evaluation metrics of
I(Z;S(loc)

T ), WSEPIN and SEPIN@1, on Ant, with different bin counts for the range of each variable estimating mutual information. For
each method, we use the eight trained skill policies.
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Figure 2. Comparison of IBOL (ours) with the baseline methods, DIAYN-L, VALOR-L and DADS-L, in the evaluation metrics of
I(Z;S(loc)

T ), WSEPIN and SEPIN@1, on HalfCheetah, with different bin counts for the range of each variable estimating mutual
information. For each method, we use the eight trained skill policies.

H. Comparison of Reward Function Choices
for the Linearizer

Prior work on hierarchical reinforcement learning. We
first review previous works that train low-level policies sim-
ilarly to ours. SNN4HRL (Florensa et al., 2016) trains a
high-level policy on top of a context-conditioned low-level
policy, which is pre-trained with a task-related auxiliary re-
ward function that facilitates the desired behaviors as well as
exploration. For example, as a reward for its low-level policy
in locomotion tasks, it uses the speed of the agent combined
with an information-theoretic regularizer that encourages
diversity. FuN (Vezhnevets et al., 2017) jointly trains both
a high-level policy and a low-level goal-conditioned pol-
icy rewarded by the cosine similarity between goals and

directions in its latent space. HIRO (Nachum et al., 2018)
takes a similar approach to FuN, but its high-level policy
generates goals in the raw state space, without having a sep-
arate latent goal space. Its low-level policy is guided by the
Euclidean distance instead of the cosine similarity. Nachum
et al. (2019) train a goal-conditioned low-level policy with
the Huber loss, which is a variant of the Euclidean distance,
in a learned representation space within the framework of
sub-optimality.

In contrast to these approaches, we train the linearizer,
which can be viewed as a low-level policy, with the re-
ward in the inner-product form. Also, we reward the lin-
earizer with the state difference between macro time steps:
(s(i+1)·` − si·`), where ` is the interval of the macro step
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Figure 3. Comparison of IBOL (ours) with the baseline methods, DIAYN-L, VALOR-L and DADS-L, in the evaluation metrics of
I(Z;S(loc)

T ), WSEPIN and SEPIN@1, on Hopper, with different bin counts for the range of each variable estimating mutual information.
For each method, we use the eight trained skill policies.
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Figure 4. Comparison of IBOL (ours) with the baseline methods, DIAYN-L, VALOR-L and DADS-L, in the evaluation metrics of
I(Z;S(loc)

T ), WSEPIN and SEPIN@1, on D’Kitty, with different bin counts for the range of each variable estimating mutual information.
For each method, we use the eight trained skill policies.

(we use ` = 10 in our experiments).

Comparison of different reward function choices. We
now compare our reward function for the linearizer with
other choices. We experiment on Ant and evaluate them
by their state coverage in the x-y plane. We sample 2000
trajectories from each of the linearizers, where we only
change the values of x and y dimensions in the goal space
and set the other dimensions’ value to 0. We measure the
state coverage by the number of bins occupied by the trajec-
tories out of 1024 equally divided bins in the x-y plane. For
the comparison, we test different values of ` = 1, 10, 100
with our inner-product reward function, as well as one in
the form of the Euclidean distance as in HIRO (Nachum
et al., 2018) with ` = 1, 10. Since the Euclidean distance

reward function requires the specification of the valid goal
ranges, we employ the goal range values used by HIRO. As
a consequence, we follow the practice of HIRO to exclude
the state dimensions for velocities in specifying the goal
space for the Euclidean distance reward function. On the
contrary, we use the full state dimensions to design the goal
space for the inner-product reward function.

Figure 6 compares the performances of the reward function
choices. It suggests that using an appropriate size of the
macro step (i.e. ` = 10) improves the state coverage, es-
pecially exhibiting drastic performance improvement over
the case of ` = 1. We also observe that our inner-product
reward function shows a better state coverage compared to
the Euclidean reward function.
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Figure 5. Comparison of IBOL (ours) with the baseline methods, DIAYN-L, VALOR-L and DADS-L, in the diversity of external returns
for the skills discovered without any rewards. For every method, each of the eight vertical bars visualizes the external returns for 2000
skills sampled randomly with one trained skill policy of the skill discovery method, as a stacked histogram with corresponding colors
from the color bar on the left.

I. Experimental Details
I.1. Implementation

We employ garage (garage contributors, 2019) and PyTorch
(Paszke et al., 2019) to implement IBOL, DIAYN (Eysen-
bach et al., 2019), VALOR (Achiam et al., 2018) and DADS
(Sharma et al., 2020b). We use the official implementations
for EDL1 (Campos Camúñez et al., 2020) and SeCTAR2

(Co-Reyes et al., 2018) with additional tuning of hyperpa-
rameters to ensure fair comparisons.

I.2. Environments

We experiment with robot simulation environments in Mu-
JoCo (Todorov et al., 2012): Ant, HalfCheetah, Hopper

1https://github.com/victorcampos7/edl
2https://github.com/wyndwarrior/Sectar

and Humanoid from OpenAI Gym (Brockman et al., 2016)
adopting the configurations by Sharma et al. (2020b) and
D’Kitty with random dynamics from ROBEL (Ahn et al.,
2020) with the setups provided by Sharma et al. (2020a).
We use a maximum episode horizon of 200 environment
steps for Ant, HalfCheetah and D’Kitty, 500 for Hopper
and 1000 for Humanoid. Note that D’Kitty and Humanoid
have variable episode horizons, and we use an alive bonus
of 3e − 2 at each step in the training of the linearizers for
Humanoid to stabilize the training.

For the linearizer, we omit the locomotion coordinates of
the torso (x and y for Ant, Humanoid and D’Kitty, and x
for the others) from the input of the policy. Note that the
linearizer could be agnostic to the agent’s global location
since its rewards are computed only with the change of the
state. On the other hand, we retain them for skill discovery
policies and meta-controller policies since, without those

https://github.com/victorcampos7/edl
https://github.com/wyndwarrior/Sectar
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Figure 6. Comparison of various reward function choices for the
linearizer. The box plot shows the state coverage of each reward
function, measured by the number of bins occupied by the 2000
trajectories in the state space. We use four random seeds for each
method.

VALOR-XYODIAYN-XYO DADS-XYO

Figure 7. Visualization of the x-y traces of the skills for Ant dis-
covered by each baseline method trained with the omission of the
x-y coordinates from the inputs and the x-y prior (Sharma et al.,
2020b). The same skill latents are used with Figure 1 of the main
paper.

coordinates, the expressiveness of learnable skills may be
restricted.

However, as DADS originally omits the x-y coordinates
from the inputs in Ant (Sharma et al., 2020b), we also test
baseline methods of d = 2 with both the omission and the
x-y prior (Sharma et al., 2020b), denoted with the suffix
‘-XYO’, in Figure 7.

I.3. Models

In the experiments, we use an MLP with two hidden layers
of 512 dimensions for each non-recurrent learnable compo-
nent except for the linearizer, which uses two hidden layers
of 1024 dimensions. We use the tanh and ReLU nonlin-
earities for the policies and the others, respectively. We
model the outputs of the linearizer and the meta-controller
for downstream tasks with the factorized Gaussian distribu-
tion followed by a tanh transformation to fit into the action
space of environments. We use the Beta distribution policies
for the skill discovery methods. To feed policies with the
skill latent variable, we concatenate the skill latent z for
each episode with its state st at every time step t.

For the trajectory encoder of IBOL and VALOR, we use a
bidirectional LSTM with a 512-dimensional hidden layer
followed by two 512-dimensional FC layers. When training
VALOR without the linearizer, we use a subset of the full
state sequence of each trajectory with evenly spaced states
to match the effective horizon with VALOR-L, following
Achiam et al. (2018). We employ the original implementa-
tion choice of DADS to predict ∆s = s′ − s (instead of s′)
from s and z with its skill dynamics model (Sharma et al.,
2020b). Both s and ∆s are batch-normalized, with a fixed
covariance matrix of I and a Gaussian mixture model with
four heads, again following Sharma et al. (2020b).

I.4. Training

We use the Adam optimizer (Kingma & Ba, 2015) with
a learning rate of 1e − 4 for skill discovery methods and
3e−4 for the others. We normalize each dimension of states,
which is important since it helps skill discovery methods
equally focus on every dimension of the state space rather
than solely on large-scale dimensions. Note that while we
observe that the skill discovery methods primarily focus
on the locomotion dimensions in the absence of the x-y
prior (Sharma et al., 2020b) as in Figure 1 from the main
paper, this is not due to the scale of those dimensions, as
all the state dimensions are normalized. We hypothesize
it is because the locomotion dimensions are those which
can have high informativeness with the skill latent variable.
When training meta-controllers or skill policies with the
linearizer, we use the exponential moving average. For the
rest, we use the mean and standard deviation pre-computed
from 10000 trajectories with an episode length of 50. Meta-
controllers for downstream tasks and skill policies use the
mode of each output distribution from their lower-level
policies.

At every epoch of the training of the linearizer or meta-
controller for downstream tasks, we collect ten trajectories
for Ant, HalfCheetah, Hopper and D’Kitty, and five trajec-
tories for Humanoid. For the skill discovery methods with
the linearizer, at each epoch 64 trajectories are sampled for
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Ant, HalfCheetah and D’Kitty and 32 for Hopper and Hu-
manoid. When training the methods without the linearizer
(e.g. VALOR-XY), we collect ten trajectories for Ant, since
their effective horizon is longer than that with the linearizer.

The linearizer. We train the linearizer using SAC
(Haarnoja et al., 2018a) with the automatic entropy adjust-
ment (Haarnoja et al., 2018b) for 8e4 epochs for D’Kitty,
3e5 epochs for Humanoid and 1e5 epochs for the others.
We apply 4 gradient steps and consider training with and
without a replay buffer, where rewards are normalized with
their exponential moving average without a buffer and 2048-
sized mini-batches are used with a buffer of 1e6. We set the
initial entropy to 0.1, the target entropy to −dim(A)/2, the
target smoothing coefficient to 0.005 and the discount rate
to 0.99. We choose a prior goal distribution for each envi-
ronment from {Beta(1, 1),Beta(2, 2)}. We determine the
hyperparameters based on the state coverage of the trained
linearizer.

Skill discovery methods. We train IBOL and the ‘-L’ vari-
ants of other skill discovery methods for 1e4 epochs with
` = 10, while the methods without the linearizer are trained
with the number of transitions that matches the total number
of transitions for the training of both the linearizer and each
skill discovery method on top of it. We employ SAC for
DADS and DIAYN, and the vanilla policy gradient (VPG)
for IBOL and VALOR. We set the entropy regularization co-
efficient to 1e-3 for VALOR and VALOR-L (searched over
{1e− 1, 1e− 2, 1e− 3, 0}), and use the automatic entropy
adjustment for DADS with an initial entropy coefficient
of 1e− 1, DADS-L with 1e− 3, DIAYN with 1e− 1 and
DIAYN-L with 1e−2 (searched over {1e−1, 1e−2, 1e−3}
with and without the automatic regularization). For those
using VPG, we apply four gradient steps with the entire
batch at each epoch. For SAC, we apply 64 gradient steps
(or 32 steps for the skill dynamics model in DADS) with
256-sized mini-batches, since increased gradient steps ex-
pedite the training by exploiting the off-policy property of
SAC. We use L = 100 for DADS and IBOL, and set λ = 2
(searched over {0.1, 1, 2}) and β = 1e− 2 (searched over
{1e− 1, 1e− 2, 1e− 3}) for IBOL.

Meta-controllers for downstream policies. SAC is used
for training the meta-controllers. We fix the entropy co-
efficient to 0.01, and apply four gradient steps with the
full-sized batches. The meta-controllers select skill latents
in a range of [−2, 2], where they are fed into the learned
skill policies.

I.5. Downstream Tasks

In AntGoal, we sample a goal w ∈ [−50, 50]2 at the begin-
ning of each roll-out. In AntMultiGoals, a goal w is sampled
from [s(x)− 15, s(x) + 15]× [s(y)− 15, s(y) + 15] at every
η = 50 steps, where [s(x), s(y)] denotes the agent’s position

when the goal is about to be sampled. In CheetahGoal, we
sample a goal w ∈ [−60, 60] when each episode starts.

I.6. Information-Theoretic Evaluations

For each environment, we employ two pre-trained lineariz-
ers, and train every method four times for each linearizer,
resulting in eight runs in total. To measure the quantities,
we sample 2000 trajectories per run and use quantization,
where for each variable we divide the range of the values
from all the runs into 32 bins.

I.7. Additional Settings

For the rendered scenes of skills, we additionally consider
excluding velocity dimensions defining the goal space for
the linearizer as in HIRO (Nachum et al., 2018), to get more
visually diverse skills. For learning the non-locomotion
skills in Section 4.4 from the main paper, we exclude the x
and y dimensions from the input of each component. Also,
for the experiments with the goal space distortion in Sec-
tion 4.4, we preserve only the x and y dimensions in the
inputs.

J. Ablation Study
In this section, we demonstrate the effect of each hyperpa-
rameter of IBOL by showing qualitative results on a syn-
thetic environment named PointEnv, which is suitable for
clear illustrations. In PointEnv, a state s ∈ R2 is defined
as the x-y coordinates of the agent (point), and an action
a ∈ [−0.1, 0.1]2 indicates a vector by which the agent
moves. The initial state is sampled from [−0.05, 0.05]2

uniformly at random. As PointEnv is already linearized,
we do not use the linearizer for IBOL as well as other
baseline methods. We also reduce the common dimen-
sionality of the neural networks to 32 in lieu of 512. We
train IBOL, DIAYN, VALOR and DADS for 5e3 epochs
with an episode length of 50 and a learning rate of 3e− 4,
having two-dimensional skill latents with various hyperpa-
rameter settings on this environment. For IBOL, we test
β ∈ {2.25e−1, 2.25e−3, 0} and λ ∈ {1.5, 0.45, 0.15}, and
we also consider the setting without the auxiliary parameter
u for the sampling policy πθs , in which we model the sam-
pling policy as an LSTM policy (instead of a non-recurrent
policy) to compensate for the reduced expressiveness that
comes from the dropping of u. We examine the entropy
regularization coefficient α ∈ {1e+ 1, 1e− 1, 1e− 3} for
VALOR, DADS and DIAYN, and we test the automatic
entropy regularization for SAC (Haarnoja et al., 2018b) as
well for the latter two.

Figures 8 and 9 illustrate the x-y traces of the skills discov-
ered by each method with various settings. First, we observe
that an appropriate value of β (especially β = 2.25e − 3
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Figure 8. Visualization of the x-y traces of the skills discovered by IBOL in PointEnv with various hyperparameter settings. The fourth
row corresponds to IBOL without u and the auxiliary term, modelling πθs as a LSTM policy. The same skill latents are used with the top
row of Figure 1 of the main paper.

in Figure 8) for IBOL helps discover more disentangled
and evenly distributed skills. Also, since the auxiliary term
Eu∼p(u),τ∼pθs (τ |u)[λ · pφ(u|s0:T )] encourages IBOL to dis-
cover skills that can be easily reconstructed from the trajec-
tories, increasing λ results in having relatively condensed
trajectories. The fourth row of Figure 8 shows that IBOL
can still discover visually disentangled (yet slightly noisy)
skills in the absence of u and the auxiliary term. Figure 9
presents that for the baseline methods, overly increasing α
could result in collapsing while having a moderate value of
α improves the quality of discovered skills.
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