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Abstract

Having the ability to acquire inherent skills from
environments without any external rewards or su-
pervision like humans is an important problem.
We propose a novel unsupervised skill discov-
ery method named Information Bottleneck Option
Learning (IBOL). On top of the linearization of
environments that promotes more various and dis-
tant state transitions, IBOL enables the discov-
ery of diverse skills. It provides the abstraction
of the skills learned with the information bottle-
neck framework for the options with improved
stability and encouraged disentanglement. We
empirically demonstrate that IBOL outperforms
multiple state-of-the-art unsupervised skill dis-
covery methods on the information-theoretic eval-
uations and downstream tasks in MuJoCo envi-
ronments, including Ant, HalfCheetah, Hopper
and D’Kitty. Our code is available at https:
//vision.snu.ac.kr/projects/ibol.

1. Introduction
Deep reinforcement learning (RL) has recently shown great
advancement in solving various tasks, from playing video
games (Mnih et al., 2013; 2015; Berner et al., 2019) to con-
trolling robot navigation (Kahn et al., 2018). While the
standard RL is to maximize rewards from environments as
a form of supervision, there has been a surge of interest
in unsupervised learning without the assumption of extrin-
sic rewards (Sukhbaatar et al., 2018; Shyam et al., 2019).
Discovering inherent skills in environments without super-
vision is important and desirable for multiple reasons. First,
since it is still challenging to define an effective reward
function for practical tasks (Hadfield-Menell et al., 2017;
Dulac-Arnold et al., 2019), unsupervised skill discovery
helps reduce the burden of it by identifying effective skills
for environments. Second, in sparse-reward environments,
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learned skills can encourage the exploration for encounter-
ing rewards, not only by providing useful primitives for the
exploration but also by reducing the effective horizon. Third,
those skills can be directly used to solve downstream tasks,
for example, by employing a meta-controller on top of the
discovered skills in a hierarchical manner (Achiam et al.,
2018; Eysenbach et al., 2019; Sharma et al., 2020b). Finally,
discovered skills could help better understand environments
by providing interpretable sets of behaviors.

Unsupervised skill discovery can be formalized with the
options framework (Sutton et al., 1999), which generalizes
primitive actions with the notion of options. For ease of
learning, options, or synonymously skills, are often formu-
lated by introducing a skill latent parameter z to an ordinary
policy, resulting in a skill policy with a form of π(a|s, z)
keeping the same z for multiple steps or the full episode
horizon (Gregor et al., 2016; Achiam et al., 2018; Eysen-
bach et al., 2019; Sharma et al., 2020b). In recent research
on the unsupervised skill discovery problem, information-
theoretic approaches have been prevalent (Gregor et al.,
2016; Achiam et al., 2018; Eysenbach et al., 2019; Sharma
et al., 2020b).

In this work, we propose a novel unsupervised skill discov-
ery method named Information Bottleneck Option Learning
(IBOL), whose two major novelties over existing approaches
are (i) the linearizer and (ii) the information bottleneck-
based skill learning. First, the linearizer is a kind of low-
level policy to be suitable for skill discovery by converting
a given environment into one with simplified dynamics. It
reduces the skill discovery algorithm’s burden to learn how
to make transitions to diverse states in a given environment
without any external rewards, which is not a straightfor-
ward job with fairly complex dynamics such as Ant and
Humanoid from MuJoCo (Todorov et al., 2012). Once the
linearizer is trained, it can be reused for multiple training
sessions with different skill discovery approaches. Figure 1
compares the qualitative visualization of the skills learned
by different methods in the locomotion (i.e. x-y) plane, in
Ant. As shown, DIAYN (Eysenbach et al., 2019), VALOR
(Achiam et al., 2018) and DADS (Sharma et al., 2020b) with
the linearizer (with suffix ‘-L’) learn far more diverse skills
than the same methods without the linearizer.

Leveraging the environment simplified with the linearizer,

https://vision.snu.ac.kr/projects/ibol
https://vision.snu.ac.kr/projects/ibol


Unsupervised Skill Discovery with Bottleneck Option Learning

DIAYN-L DADS-LVALOR-LIBOL VALOR-XYDIAYN-XY DADS-XYSeCTAR-L-XY EDL-LSeCTAR-L Skill color scheme
in the latent space

Figure 1. Visualization of the x-y traces of skills discovered by each algorithm in Ant, where the colors represent the two-dimensional
skill latents used for the sampling of the skills (see the color scheme on the right). (Top) Trajectories of the six roll-outs from each of the
eight different skill latents. (Bottom) Trajectories of 2000 skill latents sampled from the standard normal distribution.

IBOL discovers and learns skills based on the information
bottleneck (IB) framework (Tishby et al., 2000; Alemi et al.,
2017). Compared to prior approaches, IBOL can introduce
some desirable properties to the learned skills. It discovers
and learns skills with the skill latent variable Z in a more
disentangled way, which makes the learned skills better in-
terpretable with respect to Z. Interpretable models help
understand their behaviors and provide intuition about their
further uses (Adel et al., 2018). Figure 1 demonstrates that
the skill trajectories instantiated by IBOL have a visually
simpler and more predictable mapping with the skill latents,
which is one of the main requirements for increasing inter-
pretability (Adel et al., 2018). Moreover, the skills learned
by IBOL cover the locomotion plane more uniformly and
widely. Finally, with the IB-style objective, the skill latent
variable Z is learned to be not only informative about the
discovered skills but also parsimonious to keep unrelated
information about the skills.

Our key contributions can be summarized as follows.

• To the best of our knowledge, our method is the first to
separate the problem of making transitions in the state
space from skill discovery, simplifying the environ-
ment dynamics with independent pre-training, whose
learning cost is amortized across multiple skill discov-
ery trainings. It aids skill discovery methods to learn
diverse skills by making the environment dynamics as
linear as possible.

• We propose a novel skill discovery method with infor-
mation bottleneck, which provides multiple benefits
including learning skills in a more disentangled and
interpretable way with respect to skill latents and being
robust to nuisance information.

• Our method shows superior performance to various
state-of-the-art unsupervised skill discovery methods
including DADS (Sharma et al., 2020b), DIAYN (Ey-
senbach et al., 2019) and VALOR (Achiam et al., 2018)
in multiple MuJoCo (Todorov et al., 2012) environ-

ments. To verify this, we measure the information-
theoretic metrics and the performance on four down-
stream tasks.

2. Preliminaries and Related Work
We review previous information-theoretic approaches to
unsupervised skill discovery and discuss their limitations.

Preliminaries. We consider a Markov Decision Process
(MDP) M = (S,A, p) without external rewards. S and
A respectively denote the state and action spaces, and
p(st+1|st, at) is the transition function where st, st+1 ∈
S and at ∈ A. Given a policy π(at|st), a trajectory
τ = (s0, a0, . . . , sT ) follows the distribution τ ∼ p(τ) =

p(s0)
∏T−1
t=0 π(at|st)p(st+1|st, at). Within the options

framework (Sutton et al., 1999), we formulate the un-
supervised skill discovery problem as learning a latent-
conditioned skill policy π(at|st, z) where z ∈ Z represents
the skill latent. We consider continuous skill latents z ∈ Rd.
h(·) and I(·; ·) denote differential entropy and mutual infor-
mation, respectively.

We introduce existing skill discovery methods in two groups:
latent-first and trajectory-first methods.

Latent-first methods. Skill discovery methods in this cate-
gory, such as VIC (Gregor et al., 2016), DIAYN (Eysenbach
et al., 2019), VALOR (Achiam et al., 2018), DADS (Sharma
et al., 2020b) and HIDIO (Zhang et al., 2021), first sample a
skill latent z and then trajectories conditioned on z, as illus-
trated in Figure 2a. They aim to increase I(Z;S), the mu-
tual information between the skill latent and state variables.
VALOR (Achiam et al., 2018), which incorporates VIC and
DIAYN as its special forms (Achiam et al., 2018), optimizes
a lower bound of the identity I(Z;S) = h(Z) − h(Z|S).
Its objective is to maximize

Ez∼p(z)

[
Eτ∼p(τ |z)[log pD(z|s0:T )] + β·

T−1∑
t=0

h(At)

]
,

where At is the action variable that follows π(at|st, z), β is
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Figure 2. Architecture overview of (a) latent-first methods, (b) trajectory-first methods and (c) IBOL.

the entropy coefficient, p(z) is the prior distribution over z,
and pD(z|s0:T ) is a trainable decoder that reconstructs the
original z given s0:T . Achiam et al. (2018) show that this
objective has an equivalency to β-VAE (Higgins et al., 2017)
with the structure of z (input)→ τ (latent)→ z (reconstruc-
tion). However, this objective does not take advantage of
the benefits that the VAE formulations can provide, such as
the theoretical connection to more disentangled and inter-
pretable z (Achille & Soatto, 2018b;a; Chen et al., 2018).
DADS (Sharma et al., 2020b) optimizes the other identity
I(Z;S) = h(S) − h(S|Z), using a skill dynamics model
q(st+1|st, z) that predicts the next state conditioned on z.
While the learned dynamics model enables model-based
planning, it lacks an explicit mapping from states to skill
latents, and thus hardly obtains disentangled skill latents z.

Trajectory-first methods. Another group of methods first
samples trajectories and then encodes them into skill la-
tents using the variational autoencoder (VAE) (Kingma
& Welling, 2014), as visualized in Figure 2b. This cate-
gory includes SeCTAR (Co-Reyes et al., 2018), EDL (Cam-
pos Camúñez et al., 2020) and OPAL (Ajay et al., 2020).
SeCTAR and EDL have separate objectives for their ex-
ploratory policies to sample diverse trajectories by maxi-
mizing h(p(τ)) or h(S). OPAL assumes an offline RL set-
ting where a fixed set of trajectories is priorly given. While
these methods employ the VAE with the usual direction
of τ → z → τ (EDL has s → z → s) that encourages
disentangled representations, they have a limitation that the
exploratory policy only maximizes the diversity of trajecto-
ries. On the contrary, our IBOL method, which also falls
into this category, jointly maximizes both the diversity and
discriminability of trajectories (Section 3.3), which leads to
a significant improvement in performance (Section 4).

Finally, all of the prior works learn the skill policies on
top of raw environment dynamics. Although dealing with
raw dynamics is not highly demanding in simple environ-
ments, it could hinder the skill learning in environments
with complex dynamics such as Ant and Humanoid from
MuJoCo (Todorov et al., 2012). IBOL solves the issue by
linearizing the environment dynamics ahead of skill discov-
ery so that it can acquire diverse skills by reaching different
states more easily in the simplified environment dynamics.

Furthermore, we find that the linearization benefits other
existing skill discovery methods too (Section 4).

3. Information Bottleneck Option Learning
(IBOL)

We decompose the skill discovery problem into two separate
phases. Firstly, IBOL trains the linearizer that lifts the bur-
den from the skill discovery algorithm to generate diverse
states and trajectories under complex environment dynamics
(Section 3.1). Secondly, on top of the pre-trained linearizer,
IBOL learns to map trajectories into the continuous skill la-
tent space, with the information bottleneck principle (Tishby
et al., 2000; Alemi et al., 2017) (Section 3.2). Figure 2c
provides the conceptual illustration of IBOL. Algorithm 1
overviews the training of the linearizer in the first phase
and Algorithm 2 describes the skill discovery process in the
second.

3.1. Linearization of Environments

The linearizer πlin is a pre-trained low-level policy that
aims to “linearize” the environment dynamics. It takes as
input goals produced by IBOL’s policies for skill discovery
(will be discussed in Section 3.2), and translates them into
raw actions in the direction of a given goal while interacting
with the environment. We define the linearizer πlin(at|st, gt)
as a goal-conditioned policy (Schaul et al., 2015), which
takes both a state st ∈ S and a goal gt ∈ G as input and
outputs a probability distribution over actions at ∈ A. The
goal space G is defined as G = [−1, 1]dim(S), which has
the same dimensionality as the state space (up to 47 in our
experiments). Each goal dimension provides a signal for the
direction in the corresponding state dimension. We assume
that a goal gt ∈ G is given at every `-th time step such that
t ≡ 0 (mod `) (called a macro time step), and otherwise
kept fixed, i.e. gt = gt−1 for t 6≡ 0 (mod `).

We sample goals (g0, g`, g2`, . . .) at the beginning of each
roll-out and train the linearizer with a reward function of

Rlin(st, gt, at, st+1) =
1

`
(s(c+1)·` − sc·`)>gt, (1)

where c =
⌊
t
`

⌋
. It corresponds to the inner product of the

goal gt and the state difference between macro time steps:
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Algorithm 1 (Phase 1) Training Linearizer

Initialize linearizer πlin.
while not converged do

for i = 1 to n do
Sample goals (g(i)0 , g

(i)
` , g

(i)
2` , . . .).

Sample trajectory using πlin and goals.
Compute linearizer reward Rlin using Equa-
tion (1).
Add trajectory to replay buffer.

end for
Update πlin using collected samples from replay
buffer with SAC (Haarnoja et al., 2018).

end while

Algorithm 2 (Phase 2) Skill Discovery

Load pre-trained linearizer πlin.
Initialize sampling policy πθs , trajectory encoder pφ, skill
policy πθz .
while not converged do

for i = 1 to n do
Sample trajectory using πθs on top of πlin.

end for
Compute objective from Equation (5).
Compute its gradient w.r.t. φ, θz.
Compute its policy gradient w.r.t. θs.
Jointly update πθs , pφ, πθz with gradients.

end while

(s(c+1)·` − sc·`). Intuitively, each goal dimension value
(ranging from −1 to +1) indicates the desired direction and
the degree of change in the corresponding state dimension.

The inner product in the reward function has several advan-
tages for skill discovery compared to the Euclidean distance
in prior approaches (Nachum et al., 2018; 2019). First, un-
like the Euclidean distance that needs to specify the valid
range of each state dimension, the inner product only takes
care of directions in the state space. Thus, training of the
linearizer requires no additional supervision on specifying
valid goal spaces or state ranges. Second, by setting some
dimensions of a goal to be (near-)zero values, we can ignore
changes in the corresponding state dimensions, which is not
achievable with the Euclidean distance. This enables IBOL’s
policies for skill discovery to ignore nuisance dimensions
without manually specifying them (Section 3.2).

We find that the linearizer benefits not only IBOL but also
other skill discovery methods since it can promote reaching
diverse and distant states easier, as shown in Figure 1.

3.2. Skill Discovery with Bottleneck Learning

On top of the pre-trained and fixed linearizer πlin, we learn
policies that produce goals and acquire a continuous set of
skills that is not only distinguishable and diverse but also
disentangled and interpretable. The linearizer alone is highly
limited to discovery abstractive and informative skills, since
it is trained with the inner product reward function and thus
optimized for transitioning to distant states rather than the
mapping with the latent space. Additionally, IBOL can
fix possibly imperfect linearization with the linearizer by
combining appropriate high-level goals. In Section 4, we
will demonstrate that how such limitations of the linearizer
can be resolved by the following skill discovery process.

In contrast to previous skill discovery methods that maxi-
mize I(S;Z) (Gregor et al., 2016; Eysenbach et al., 2019;

Achiam et al., 2018; Sharma et al., 2020b), IBOL consists
of the following three learnable components based on the
information bottleneck:

1. The sampling policy πθs(gt|st) produces diverse and
easily mappable trajectories.

2. The trajectory encoder pφ(z|s0:T ) encodes the state
trajectories into the skill latent space.

3. The skill policy πθz(gt|st, z) learns to imitate the skills
given their latents.

Note that the sampling and skill policies produce goals
gt instead of raw actions a, as they operate on top of the
linearizer. We will first start with the sampling policy πθs

and introduce our IB objective for the trajectory encoder
pφ. We then show that it naturally leads to the emergence
of the skill policy πθz as a variational approximation to the
sampling policy πθs .

IBOL’s objective. Assuming trajectories generated by the
sampling policy, {τ (1), τ (2), . . . , τ (n)}, our objective is to
embed the state trajectories {s(1)0:T , . . . , s

(n)
0:T } into the skill

latent space Z . We encode the state trajectory s0:T , not the
whole trajectory τ , because an outside observer can only
see the agent’s state, not its underlying actions or goals.
However, the encoded skill latent z should contain sufficient
information about the underlying goals so that the whole
trajectory is reproducible from z. Furthermore, since raw
states often contain nuisance information not pertaining
to skill discovery, z is encouraged to minimally contain
unnecessary or noisy information in the states irrelevant to
the goals. This leads to the Information Bottleneck objective
(Tishby et al., 2000; Alemi et al., 2017) over the structure
of S0:T (input)→ Z (latent)→ G0:T−1 (target).

Formally, let us first define the sampling policy parame-
terized by θs as πθs(gt|st) : S → P(G), which maps a
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state to a probability distribution over goals. A trajectory
τ = (s0, g0, s1, . . . , gT−1, sT ) obtained by the sampling
policy is acquired from the distribution τ ∼ pθs(τ) =

p(s0)
∏T−1
t=0 πθs(gt|st)p(st+1|st, gt). Under the distribu-

tion pθs(τ), let St be a random variable corresponding to st
andGt be a random variable for gt. We define the trajectory
encoder parameterized by φ as pφ(z|s0:T ) : ST+1 → P(Z)
that maps a state trajectory to a probability distribution over
skill latents z in the skill space Z . Let Z be a random
variable for z.

We formulate our IB objective as follows. First, given St,
the skill latent Z should be informative about the goal Gt
that the sampling policy has produced, which leads to the
prediction term I(Z;Gt|St). Second, Z should be penal-
ized for preserving information about the state trajectory
but unrelated to the goals, which corresponds to the com-
pression term I(Z;S0:T ). Summing these up, we obtain the
following objective:

maximize Et[I(Z;Gt|St)− β · I(Z;S0:T )], (2)

where Et is the expectation over {0, 1, . . . , T − 1}, and β is
a constant that controls the weight of the compression term.

Lower bound optimization. Since the objective is practi-
cally intractable, we derive its lower bound (Alemi et al.,
2017) as follows (see Appendix B for the full derivation):

Et[I(Z;Gt|St)− β · I(Z;S0:T )] (3)

= E τ∼pθs (τ),t,
z∼pφ(z|s0:T )

[
log

pθs(gt|st, z)
πθs(gt|st)

− β log pφ(z|s0:T )
pφ(z)

]
≥ Eτ∼pθs (τ)

[
Ez∼pφ(z|s0:T ),t

[
log πθz(gt|st, z) (4)

− log πθs(gt|st)
]
− β ·DKL(pφ(Z|s0:T )‖r(Z))

]
,

where DKL denotes the Kullback-Leibler (KL) divergence.
Here we use two variational approximations: the skill pol-
icy’s output distribution πθz(gt|st, z) is a variational approxi-
mation of pθs(gt|st, z) and r(z) is that of the marginal distri-
bution pφ(z). In Equation (4), the first term log πθz(gt|st, z)
makes the skill policy πθz(gt|st, z) imitate the sampling pol-
icy’s output given the skill latent z; thus we call this the
imitation term. The third term −βDKL(pφ(Z|s0:T )‖r(Z))
is the compression term that forces the output distributions
of the trajectory encoder to be close to r(z). We will revisit
the second term − log πθs(gt|st) later.

We fix r(z) to N (0, I) as in Alemi et al. (2017) for the fol-
lowing reasons. First, it enables us to analytically compute
the KL divergence. Second, more importantly, it induces
disentanglement between the dimensions of z (Achille &
Soatto, 2018b;a; Chen et al., 2018). Disentangled represen-
tations lead to more interpretable skills with respect to their

skill latents z. In Appendix C, we provide further details on
how the compression term encourages the disentanglement
of skill latent dimensions.

It is worth noting that the first and third terms in Equation (4)
are related to the β-VAE objective (Kingma & Welling,
2014; Higgins et al., 2017; Alemi et al., 2017) and previous
skill discovery methods that use trajectory VAEs (Co-Reyes
et al., 2018; Ajay et al., 2020). The first and the third term
correspond to the reconstruction loss and the KL divergence
loss in β-VAEs, respectively. One important difference is
that we reconstruct not the original state trajectories but their
underlying goals. It eliminates the need for state decoders
or sampling with the skill policy during training.

3.3. Training

The trajectory encoder and the skill policy can be trained
using the reparameterization trick as in VAEs (Kingma &
Welling, 2014); we optimize those two terms in Equation (4)
with respect to their parameters, θz and φ. Note that the
skill policy does not interact with the environment during
training and the second term− log πθs(gt|st) is independent
of these parameters.

The sampling policy πθs(gt|st) can be trained with the same
objective of Equation (4). This is the key difference with
prior trajectory-first methods that employ similar VAE ar-
chitectures (Campos Camúñez et al., 2020; Co-Reyes et al.,
2018; Ajay et al., 2020) (Section 2). They either have a
separate objective for training their sampling policies (Cam-
pos Camúñez et al., 2020; Co-Reyes et al., 2018) or assume
the offline RL setting (Ajay et al., 2020). In contrast, we
jointly train all the components with the same objective.

There are several merits of using the same objective. First,
the second term − log πθs(gt|st), referred to as the entropy
term, encourages the sampling policy to produce diverse
trajectories. In deterministic environments, maximizing this
term is equivalent to maximizing the entropy of whole tra-
jectories, as h(pθs(τ)) = T ·Eτ∼pθs (τ),t

[− log πθs(gt|st)]+
(const). Note that this entropy term often remains constant
in IB literature (Alemi et al., 2017), assuming that the train-
ing data (e.g. images) are given, whereas we can diversify
the “training data” too. Second, optimizing the whole Equa-
tion (4) makes the sampling policy generate trajectories that
are not only diverse but also easily encoded into the skill
space for the trajectory encoder and skill policy thanks to
the first and third terms, which helps the learning of the two
components as well. This is not achievable when the sam-
pling policy is trained with a diversity maximizing objective
only. In Section 4, we will demonstrate how taking into
account both diversity and encodability leads to a huge dif-
ference in performance, comparing with baselines without
such consideration.
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Practical training. Since the expectation in Equation (4)
involves the sampling policy’s roll-outs in the environment,
we optimize the sampling policy via the policy gradient
method. However, there exists one practical difficulty when
training IBOL. Since the sampling policy πθs(gt|st) lacks
a variable about the context (e.g. z) compared to the skill
policy πθz(gt|st, z), πθs is less expressive than πθz , which
could end up with a suboptimal convergence. To solve
this issue, we introduce a new context parameter u ∈ U
with its prior p(u) to the sampling policy, redefining it as
πθs(gt|st, u) : S × U → P(G). The new parameter u for
πθs plays a similar role to the skill latent z for πθz . We also
fix p(u) = N (0, I) as in r(z). To obtain roll-outs from the
sampling policy, we first sample u from its prior, and then
keep sampling goals with the fixed u.

Given that r(z) and p(u) are identical, we additionally in-
clude an auxiliary term Eu∼p(u),τ∼pθs (τ |u)[λ·pφ(u|s0:T )] to
further stabilize the training. This term guides the output of
the trajectory encoder pφ to u, which is from p(u) = r(z),
operating compatibly with the compression term.

Finally, with the revised sampling policy, we approximate
the second term in Equation (4) as done in DADS (Sharma
et al., 2020b): πθs(gt|st) =

∫
u
πθs(gt|st, u)p(u|st)du ≈∫

u
πθs(gt|st, u)p(u)du ≈ 1

L

∑L
i=1 πθs(gt|st, ui) for ui

i.i.d.∼
p(u), where L is the number of samples from the prior.
Therefore, the final objective of our method is

E u∼p(u),
τ∼pθs (τ |u)

[
Ez∼pφ(z|s0:T ),t

ui
i.i.d.∼ p(u)

[
JP]− β·JC + λ·pφ(u|s0:T )

]

where JP = log πθz(gt|st, z)− log

(
1

L

L∑
i=1

πθs(gt|st, ui)
)

JC = DKL(pφ(Z|s0:T )‖r(Z)). (5)

4. Experiments
We compare our IBOL with other state-of-the-art methods
in multiple aspects. First, we visualize the learned skills
with the trajectory plots and the rendered scenes from envi-
ronments (Section 4.1). Second, we quantitatively evaluate
the skill discovery methods in terms of multiple information-
theoretic metrics (Section 4.2). Third, we evaluate the
trained policies on the downstream tasks with different con-
figurations (Section 4.3). Finally, we present additional
behaviors of IBOL in the absence of the locomotion signals
and with the distorted goal space (Section 4.4). Please refer
to Appendix for additional results.

Experiment setup and baselines. We experiment with Mu-
JoCo environments (Todorov et al., 2012) for multiple tasks:
Ant, HalfCheetah, Hopper and Humanoid from OpenAI
Gym (Brockman et al., 2016) with the setups by Sharma

et al. (2020b) and D’Kitty from ROBEL (Ahn et al., 2020)
adopting the configurations by Sharma et al. (2020a). We
use D’Kitty with the random dynamics setting; in each
episode, multiple properties of the environment, such as its
joint dynamics, friction and height field, are randomized,
which provides an additional challenge to agents. We mainly
compare our method with recent information-theoretic un-
supervised skill discovery methods, VALOR (Achiam et al.,
2018), DIAYN (Eysenbach et al., 2019) and DADS (Sharma
et al., 2020b). Since IBOL operates on top of the linearized
environments, we also consider a variant of each algorithm
that uses the same linearizer, denoted with the suffix ‘-L’
(e.g. VALOR-L). In Ant experiments, we use the suffix
‘-XY’ to refer to the methods with the x-y prior (Sharma
et al., 2020b), which forces them to focus exclusively on the
locomotion skills by restricting the observation space of the
trajectory encoder (or the skill dynamics model in DADS)
to the x-y coordinates.

Implementation. For experiments, we use pre-trained lin-
earizers with two different random seeds on each environ-
ment. When training the linearizers, we sample a goal g at
the beginning of each roll-out and fix it within that episode
to learn consistent behaviors, as in SNN4HRL (Florensa
et al., 2016). We consider continuous priors for skill dis-
covery methods. Especially, we use the standard normal
distribution for p(u) and r(z) in IBOL and for p(z) in other
methods. Further details are described in Appendix I.

4.1. Visualization of Learned Skills

Figure 3 shows that IBOL, with no extrinsic rewards, dis-
covers diverse locomotion skills for Ant and Humanoid and
multiple skills with various speeds and poses in both direc-
tions for HalfCheetah and Hopper. We present the discovery
of orientation primitives for Ant in Section 4.4 and addi-
tional results including the videos of the discovered skills at
https://vision.snu.ac.kr/projects/ibol.

Figure 1 demonstrates that while all the algorithms mainly
discover locomotion skills, IBOL discovers visually less
entangled primitives with the most diverse directions com-
pared to the latent-first and trajectory-first baselines. We
train IBOL, DIAYN-L, VALOR-L, DADS-L, SeCTAR-L,
SeCTAR-L-XY and EDL-L on Ant with the skill latent vari-
ables of d = 2, where SeCTAR-L-XY is equipped with the
x-y prior (Sharma et al., 2020b). We qualitatively examine
their trajectories in the x-y plane; since the x-y dimensions
are interpretable and have a large range of values, they can
illustrate the characteristic differences between skill discov-
ery algorithms well. We also train DIAYN-XY, VALOR-XY
and DADS-XY to enforce them to discover skills on the x-y
plane without the linearizer. We observe that the linearizer
significantly improves not only the diversity of trajectories
but also the correspondence between skill latents and trajec-

https://vision.snu.ac.kr/projects/ibol
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(a) Ant (b) Humanoid (c) HalfCheetah (d) Hopper

Figure 3. Examples of rendered scenes illustrating the skills that IBOL discovers with no rewards in MuJoCo environments. (a) Ant
moving in various directions. (b) Humanoid running in different directions. (c) (Top to Bottom) HalfCheetah running forward, rolling
forward, running backward and flipping backward. (d) (Top to Bottom) Hopper hopping forward, crawling forward, jumping backward
and flipping backward.

tories by reducing the burden of making transitions in the
x-y dimensions.

4.2. Information-Theoretic Evaluations

We present the metrics that evaluate the unsupervised skill
discovery methods without the need for external tasks.
While the quantities between skill latents Z and state se-
quences S0:T generated with πθz are attractive, the high
dimensionality of S0:T makes it a less viable choice. One
workaround is to examine only the last states ST instead
of the whole sequences, as ST still characterizes skills
in environments to some degree. That is, we can sim-
ply estimate I(Z;ST ) instead of I(Z;S0:T ) to measure
how informative Z is. This can also be viewed as fol-
lows: in I(Z;S0:T ) = I(Z;ST ) +

∑T−1
i=0 I(Z;Si|Si+1:T ),

only the first term I(Z;ST ) is taken into account, as
I(Z;Si|Si+1:T ) = h(Z|Si+1:T ) − h(Z|Si:T ) and adding
Si to Si+1:T to the condition would change only little en-
tropy of Z.

We also consider metrics for measuring the disentanglement
of Z. We find Do & Tran (2020) provide a helpful view-
point to our evaluation. They suggest that the concept of
disentanglement has three considerations: informativeness,
separability and interpretability. Informativeness denotes
how much information each latent dimension contains about
the data, and separability is a concept about no information
sharing between two latent dimensions on the data. Inter-
pretability considers the alignment between the ground-truth
and learned factors. Among them, we do not employ the
interpretability measure because the lack of supervision in
unsupervised skill discovery prevents achieving a high value
(Locatello et al., 2019). For example, if data points are uni-
formly distributed in a two-dimensional circle, there can
be infinite equally good ways to disentangle the data into
two axes. To measure informativeness and separability, we
use the SEPIN@k and WSEPIN metrics (Do & Tran, 2020)
evaluated for skill latents and the last states (detailed in

Appendix E).

We compare the skill policies trained by IBOL, DIAYN-L,
VALOR-L and DADS-L with d = 2. We use the three evalu-
ation metrics, I(Z;S(loc)

T ), SEPIN@1 and WSEPIN on Ant,
HalfCheetah, Hopper and D’Kitty, keeping only the state
dimensions for the agent’s locomotion (i.e. x-y coordinates
for Ant and D’Kitty and x for the rest) denoted as (loc). One
rationale behind it is that the algorithms on the linearized
environments successfully discover the locomotion skills
(e.g. Figure 1). The locomotion coordinates are also suitable
for assessing skill discovery, since these values can vary in
large ranges.

Figure 4 shows the box plots of the results. With the
same linearizers, IBOL outperforms the three baselines,
DIAYN-L, VALOR-L and DADS-L, in all three information-
theoretic evaluation metrics on Ant, HalfCheetah, Hopper
and D’Kitty. The plots for I(Z;S(loc)

T ) show that IBOL can
stably discover diverse skills from the environments condi-
tioned on the skill latent parameter Z. Also, the results with
WSEPIN and SEPIN@1 suggest that IBOL outperforms the
baselines, with regard to both informativeness and separa-
bility of Z’s individual dimensions. Overall, IBOL shows
the lower average deviation compared to the other methods,
which demonstrates its stability in learning. For additional
analysis and details, please refer to Appendix.

4.3. Evaluation on Downstream Tasks

We demonstrate the effectiveness of the abstraction learned
by IBOL on downstream tasks. In Ant, we modify the envi-
ronment to obtain two tasks, AntGoal and AntMultiGoals,
inspired by Eysenbach et al. (2019); Sharma et al. (2020b).
In HalfCheetah, we test the methods on two tasks, Cheetah-
Goal and CheetahImitation.

AntGoal is a task for evaluating how capable the agent is
in reaching diverse goals. For every new episode, a goal
w = [w(x), w(y)] is randomly sampled in the x-y plane. The



Unsupervised Skill Discovery with Bottleneck Option Learning

IB
O

L

DIA
YN-L

VALOR-L

DADS-L

3.00

4.00

I
(Z

;S
(l

oc
)

T
)

IB
O

L

DIA
YN-L

VALOR-L

DADS-L

1.00

2.00

IB
O

L

DIA
YN-L

VALOR-L

DADS-L

0.50

1.00

1.50

IB
O

L

DIA
YN-L

VALOR-L

DADS-L

2.00

4.00

IB
O

L

DIA
YN-L

VALOR-L

DADS-L

1.50

2.00

W
S

E
P

IN

IB
O

L

DIA
YN-L

VALOR-L

DADS-L

1.00

2.00

IB
O

L

DIA
YN-L

VALOR-L

DADS-L

0.50

1.00

1.50

IB
O

L

DIA
YN-L

VALOR-L

DADS-L

1.00

2.00

IB
O

L

DIA
YN-L

VALOR-L

DADS-L

1.75

2.00

2.25

S
E

P
IN

@
1

(a) Ant

IB
O

L

DIA
YN-L

VALOR-L

DADS-L

1.00

2.00

(b) HalfCheetah

IB
O

L

DIA
YN-L

VALOR-L

DADS-L

0.50

1.00

1.50

(c) Hopper

IB
O

L

DIA
YN-L

VALOR-L

DADS-L

1.00

2.00

(d) D’Kitty

Figure 4. Comparison of IBOL (ours) with the baseline methods, DIAYN-L,
VALOR-L and DADS-L, in the evaluation metrics of I(Z;S(loc)

T ), WSEPIN and
SEPIN@1, on Ant, HalfCheetah, Hopper and D’Kitty. For each method, we use
the eight trained skill policies.
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Figure 5. Comparison of IBOL (ours) with the base-
line methods on the four downstream tasks. Each line
is the mean return over the last 100 epochs at each
time step, averaged over eight runs. The shaded areas
denote the 95% confidence interval.

agent can observe the goal w at every step, and receives a
reward of

(
− ‖w − [s

(x)
T , s

(y)
T ]‖2

)
where [s

(x)
T , s

(y)
T ] is the

agent’s final position, when each episode ends.

AntMultiGoals is a repeated version of AntGoal. At time
step t ≡ 0 (mod η) in each episode, a new goal w =
[w(x), w(y)] is sampled based on the agent’s current po-
sition, [s(x)t , s

(y)
t ], and is held for the next η steps. Sim-

ilarly to AntGoal, at the end of each η-sized chunk (be-
fore sampling of a new goal), the agent gains a reward of(
− ‖w − [s

(x)
t , s

(y)
t ]‖2

)
. We set η = 50.

CheetahGoal is a task similar to AntGoal but in HalfCheetah.
For each episode, a goal w(x) in the x axis is sampled and
observed by the agent at every step. At the end of the
episode, the agent receives a reward of

(
− |w(x) − s(x)T |

)
where s(x)T is the final position of the agent.

We also experiment with a different type of task, CheetahIm-
itation. Each of the skill policies learned by the four skill
discovery methods is used to sample 1000 random skill tra-
jectories, all of whose x traces are gathered to form a set of
imitation targets. For a new episode of CheetahImitation,
one imitation target w = [w

(x)
1 , . . . , w

(x)
T ], a sequence of

T positions in the x axis, is randomly sampled from the
set. The goal of this task is to imitate the target w in the
x axis; at the t-th step, a reward of

(
− (w

(x)
t − s(x)t )2

)
is

given, where the agent perceives the target w as part of its

observation. CheetahImitation can evaluate the diversity
and coverage of skill policies.

For comparison, we employ a meta-controller on top of each
skill policy learned by skill discovery methods. The meta-
controller iterates observing a state from the environment
and picking a skill with its own meta-policy, which invokes
the pre-trained skill policy with the same skill latent value
z for `m time steps. We employ Soft Actor-Critic (SAC)
(Haarnoja et al., 2018) to train the meta-controller, and also
compare a pure SAC agent as an additional baseline method.

Figure 5 compares the performance of IBOL with the base-
line methods on the four tasks: AntGoal, AntMultiGoals,
CheetahGoal and CheetahImitation. We set `m = 5 for
AntMultiGoals and `m = 20 for the others. Figures 5a and
5b suggest that the abstraction by IBOL is more effective for
the meta-controller to learn to reach a goal from the initial
state, in comparison to the baselines. They confirm that the
linearizer greatly helps different skill policies’ learning of
locomotion in Ant. Figure 5c shows that IBOL provides
better abstraction to the meta-controller for reaching goals
in HalfCheetah. Also, Figure 5d demonstrates that IBOL’s
skills can be used to imitate skills not only from itself but
also from the other baselines. It supports the improved di-
versity of skills learned by IBOL. Overall, IBOL presents
significantly smaller variances than the other baselines.
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Figure 6. Orientation trajectories from (a) the skill policy of IBOL
and (b) the linearizer. The skill latent value is interpolated from −4
(cyan) to 4 (magenta) for IBOL, while the orientation dimension
value of the goal is interpolated from −1 (cyan) to 1 (magenta) for
the linearizer (since it is trained with the goal range of [−1, 1]). (c)
Rendered scenes of IBOL’s trajectories from (a).

4.4. Additional Observations

We present more experiments on Ant to confirm that IBOL
can pick appropriate goals at different states for the lin-
earizer in order to learn skills with high distinguishability.

Learning non-locomotion skills. In the absence of locomo-
tion signals, IBOL can learn orientation primitives, which
is not easy unless the skill discovery algorithm produces
diverse goals for the linearizer. Figure 6a shows examples
of orientation skills by IBOL on Ant with d = 1. Figure 6b
depicts that using the linearizer alone fails to produce com-
parable results, while IBOL utilizes various goal dimensions
of the linearizer to obtain an interpolable skill set.

Overcoming goal space distortion. We conduct additional
experiments to validate IBOL’s capability of discovering
more discriminable trajectories even under harsh conditions.
We distort the linearizer’s goal space as Figure 7a, so that
reaching vertically distant states becomes more demand-
ing. We train IBOL-XY, DIAYN-L-XY, VALOR-L-XY and
DADS-L-XY with d = 2 on top of the modified linearizer.
Figure 7b suggests that IBOL discovers locomotion skills
in various angles including vertical directions in the most
visually disentangled manner.

5. Conclusion
We presented Information Bottleneck Option Learning
(IBOL) as a novel unsupervised skill discovery method.
It first deals with the environment dynamics using the lin-

After distortion

Before distortion DIAYN-L-XY

DADS-L-XYVALOR-L-XY

IBOL-XY

(a) Distortion scheme (b) Visualization of x-y traces

Figure 7. (a) Distortion scheme of the linearizer. It distorts the x
and y dimensions of goals, and produces the corresponding actions
for the modified goals. (b) Visualization of the x-y traces of the
skills discovered by each algorithm using the distorted linearizer.
The same skill latents are used with the top row of Figure 1.

earizer trained to transition in various directions in the state
space. It then discovers skills taking advantage of the in-
formation bottleneck framework, which learns the skill la-
tent parameter (or the parameter of the skill policy) as the
learned representations of the skills. Our quantitative evalu-
ation showed that the skill latent learned by IBOL provides
improved abstraction measured as the disentanglement. We
also confirmed that IBOL outperforms other skill discovery
methods with notably lower variances and the linearizer ben-
efits both IBOL and other baselines on downstream tasks.

One future challenge may be to deal with environments
whose state space is very high dimensional such as vision
environments, since goal directions of the linearizer in such
domains might not operate well as feasible signals. A possi-
ble solution could be adopting state representation learning
techniques for RL such as Nachum et al. (2019).
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