
CLOCS: Contrastive Learning of Cardiac Signals Across Space, Time, and Patients

A. Datasets
A.1. Data Preprocessing

For all of the datasets, frames consisted of 2500 samples and consecutive frames had no overlap with one another. Data
splits were always performed at the patient-level.

PhysioNet 2020 (Perez Alday et al., 2020). Each ECG recording varied in duration from 6 seconds to 60 seconds with a
sampling rate of 500Hz. Each ECG frame in our setup consisted of 2500 samples (5 seconds). We assign multiple labels to
each ECG recording as provided by the original authors. These labels are: AF, I-AVB, LBBB, Normal, PAC, PVC, RBBB,
STD, and STE. The ECG frames were normalized in amplitude between the values of 0 and 1.

Chapman (Zheng et al., 2020). Each ECG recording was originally 10 seconds with a sampling rate of 500Hz. We
downsample the recording to 250Hz and therefore each ECG frame in our setup consisted of 2500 samples. We follow
the labelling setup suggested by (Zheng et al., 2020) which resulted in four classes: Atrial Fibrillation, GSVT, Sudden
Bradychardia, Sinus Rhythm. The ECG frames were normalized in amplitude between the values of 0 and 1.

Cardiology (Hannun et al., 2019). Each ECG recording was originally 30 seconds with a sampling rate of 200Hz. Each
ECG frame in our setup consisted of 256 samples resampled to 2500 samples. Labels made by a group of physicians were
used to assign classes to each ECG frame depending on whether that label coincided in time with the ECG frame. These
labels are: AFIB, AVB, BIGEMINY, EAR, IVR, JUNCTIONAL, NOISE, NSR, SVT, TRIGEMINY, VT, and WENCK-
EBACH. Sudden bradycardia cases were excluded from the data as they were not included in the original formulation by
the authors. The ECG frames were not normalized.

PhysioNet 2017 (Clifford et al., 2017). Each ECG recording originally varied in length between 9 and 30 seconds with a
sampling rate of 300Hz. Each ECG frames in our setup consisted of 2500 samples. We use the original labels, resulting in
four classes: Normal, AF, Other, and Noisy. The ECG frames were not normalized.
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A.2. Data Samples

A.2.1. SELF-SUPERVISED PRE-TRAINING

In this section, we outline the dimension of the inputs used for the various pre-training methods. They are expressed in the
form of N × S × L where N is the total number of instances, S is the frame length of each instance, and L (if applicable)
is the number of leads used. Where L is not explicitly mentioned, we report values with four leads as this was primarily
used for all experiments conducted.

Table 3. Dimension of the input data, N × S × L, used during the training and validation phases of the various self-supervised pre-
training methods. S = 2500 is the number of samples in each instance fed to the network. L is the number of leads (projections) used
during pre-training.

Dataset Method Train Validation

PhysioNet 2020

BYOL 51,880 ×S 12,948 ×S
SimCLR 51,880 ×S 12,948 ×S
CMSC 24,080 ×2S 6,076 ×2S
CMLC 24,080 ×S × L 6,076 ×S × L

CMSMLC 6,020 ×2S × L 1,519 ×2S × L

Chapman

BYOL 25,543 ×S 8,512 ×S
SimCLR 25,543 ×S 8,512 ×S
CMSC 25,543 ×2S 8,512 ×2S
CMLC 25,543 ×S × L 8,512 ×S × L

CMSMLC 6,382 ×2S × L 2125 ×2S × L

A.2.2. SUPERVISED TRAINING

In this section, we outline the number of instances used during supervised training on the downstream tasks. For multi-lead
datasets, we report these values having used four leads. A simple multiplicative factor can be used to deduce the number
of instances used with a different number of leads.

Table 4. Number of instances (number of patients) used during the supervised training of the downstream tasks. For multi-lead datasets*,
these represent sample sizes for the four leads (II, V2, aVL, aVR).

Dataset Train Validation Test

PhysioNet 2020* 51,880 (4,402) 12,948 (1,100) 15,820 (1,375)
Chapman* 25,543 (6,387) 8,512 (2,129) 8,520 (2,130)
Cardiology 4,584 (201) 1,109 (50) 1,386 (62)

PhysioNet 2017 18,256 (5,459) 4,581 (1,364) 5,824 (1,705)
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B. Visualization of Data Augmentations
In this section, we outline the various data augmentations applied to the time-series signals and provide exemplar visual-
izations for the reader. In Fig. 7a, We present a single, unperturbed ECG frame for illustration purposes. To that original
frame, we apply the following transformations:

1. Gaussian Noise: Gaussian noise, ε ∼ N (0, σ) is added to the original frame. We chose the value of σ in order to
preserve the class of the original frame. More concretely, for the Chapman dataset, σ = 10, whereas for the PTB-XL
dataset, σ = 0.01. The difference in the magnitude of σ across datasets is attributed to the difference in the magnitude
of the original signals from each dataset. Although it can be argued that such noise is trivial for a contrastive learning
setup, recent work has shown the effect of additive noise on ECG signals (Han et al., 2020).

2. FlipY : we perturb the original frame by flipping it along the temporal dimension. In other words, the signal is read
in reverse. In designing this perturbation, we were motivated by the self-supervision task proposed by () that revolves
around reversing the ’arrow of time’.

3. FlipX : we perturb the original frame by negating the magnitude of the signal. This perturbation was motivated by
the fact that ECG recordings made by physical leads that are connected to the patient’s body incorrectly could lead to
such ’inverted’ signals.

4. SpecAugment: we perturb the original frame by masking spectral or temporal components of the signal. To do so, we
follow a similar setup to that introduced in SpecAugment (Park et al., 2019). We take the Short-time Fourier transform
(STFT) of the signal, randomly choose the number and width of spectral or temporal bins to mask. As the resultant
STFT is a matrix of complex numbers, we set masked values to zero. Lastly, we perform the Inverse STFT (ISTFT)
to obtain the signal in the time-domain. We provide step-by-step instructions on how to apply this perturbation in the
next section.

B.1. Perturbations

(a) Original (b) Gaussian Noise (c) FlipY

(d) FlipX

Figure 7. ECG segment a) without any perturbations, b) with additive Gaussian noise, c) after being flipped temporally, FlipY , and d)
after being flipped along the x-axis, FlipX .
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B.2. SpecAugment

To apply the SpecAugment perturbations, we followed these steps:

1. Apply the Short-time Fourier transform (STFT) to the time-series signal. This splits the signal into Nf spectral and
Nt temporal bins.

2. Depending on whether a spectral or temporal mask is desired, the bin width, w ∈ [0, 1], defines the fraction of the
total number of bins to mask. For example, w = 0.5 means that 50% of the bins are masked. The total number of
bins to mask is thus Nm = w ×Nf or Nm = w ×Nt.

3. Now that we have the number of bins to mask, we need to identify which bins to mask. We formulate this as identifying
the bin to start the masking and do so by uniformly sampling a number, start, from 0 to Nf −Nm. The masked bins
range from start to start +Nm.

4. As the STFT of a time-series signal is a complex number, masking involves setting the complex-valued entries to
zero, i.e., 0 + 0j.

5. This process is repeated R times until all desired components are masked.

6. We convert the masked STFT back to the time-domain by taking its inverse (ISTFT).

In following the aforementioned steps, several hyperparameters exist. In our implementation, we chosew = 0.2 andR = 1
to balance between masking too many components which might violate the assumption of a shared context and masking
too few components which would make the contrastive learning task quite trivial.

(a) Spectrogram with spectral mask, SAf (b) Frame with spectral mask

(c) Sepctrogram with temporal mask, SAt (d) Frame with temporal mask

Figure 8. Illustration of SpecAugment perturbations applied to the original ECG segment shown in Fig. 7. (a), (c) spectrograms with
spectral and temporal masks, respectively. (b), (d) time-series representations of the masked spectrograms. Note that the time-series
segments only span seconds 4-6.
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C. Implementation Details
C.1. Network Architecture

In this section, we outline the architecture of the neural network used for all experiments. For pre-training, the final layer
(Layer 5) was removed and representations with dimension E were learned. During training on the downstream tasks, the
final layer was introduced.

Table 5. Network architecture used for all experiments. K, Cin, and Cout represent the kernel size, number of input channels, and
number of output channels, respectively. A stride of 3 was used for all convolutional layers. E represents the dimension of the final
representation.

Layer Number Layer Components Kernel Dimension

1

Conv 1D 7 x 1 x 4 (K x Cin x Cout)
BatchNorm

ReLU
MaxPool(2)
Dropout(0.1)

2

Conv 1D 7 x 4 x 16
BatchNorm

ReLU
MaxPool(2)
Dropout(0.1)

3

Conv 1D 7 x 16 x 32
BatchNorm

ReLU
MaxPool(2)
Dropout(0.1)

4 Linear 320 x E
ReLU

5 Linear E x C (classes)

C.2. Experiment Details

Table 6. Batchsize and learning rates used for training with different datasets. The Adam optimizer was used for all experiments.

Dataset Batchsize Learning Rate

PhysioNet 2020 256 10-4

Chapman 256 10-4

Cardiology 16 10-4

PhysioNet 2017 256 10-4
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C.3. Baseline Implementations

C.3.1. SUPERVISED PRE-TRAINING

In this implementation, we pre-train on the specified dataset under the assumption that 100% of the data is labelled and
available for training (i.e., F = 1). Given the presence of labels, pre-training involves solving a supervised classification
task to diagnose the cardiac arrhythmia that corresponds to each ECG recording. In our context, supervised pre-training
is expected to generate the best downstream generalization performance due to the availability of labels and the high
similarity between the upstream and downstream tasks, namely cardiac arrhythmia classification.

C.3.2. MT-SSL

In this implementation, we introduce six different pre-text tasks that are used for pre-training a network. We follow the
multi-task pre-training setup proposed by (Sarkar & Etemad, 2020) where six different classification heads are used to
solve each of the six tasks. These tasks comprise binary classification where the network is asked to discriminate between
ECG instances and their perturbed counterpart. Such perturbations take on the form of 1) Gaussian noise addition, 2)
scaling, 3) negation, 4) temporal inversion, 5) permutation, and 6) time-warping. For the Chapman dataset, we only pre-
train using scaling, negation, and temporal inversion since additional tasks prevented the network from converging. On the
PhysioNet2020 dataset, however, we pre-train using all of the aforementioned tasks.

C.3.3. BYOL

In this implementation, an instance is perturbed by applying two stochastic transformations. In our setup, these transform-
ations can include any of those outlined in Appendix B. This process results in two views of the same instance, each of
which is passed through an online network and a target network. The target network is an exponential moving average of
the online network, and is thus a delayed version of the online network. This delay is dictated by the decay rate, τd. We
chose τd = 0.9 with experiments to validate this decision in Appendix F. A key difference between the two networks is that
they are asymmetric, with the online network consisting of an additional prediction head. The goal is for the representation
from the online network to predict that from the target network. This is done by minimizing the mean squared error of the
two representations. In our setup, we introduce asymmetry by repeating Layer 4 shown in Appendix C.1. This is similar
to what was performed by (Grill et al., 2020).

C.3.4. SIMCLR

In this implementation, an instance is perturbed by applying two stochastic transformations. In our setup, these transform-
ations can include any of those outlined in Appendix B. This process results in two views of the same instance, each of
which is passed through the same network. The InfoNCE loss is used to attract representations that are similar to one
another and repel those that are different. Whether representations should be attracted to one another depends on whether
they belong to the same original instance.
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D. Linear Evaluation of Representations
In this section, we evaluate the utility of the representations learned as a result of self-supervised pre-training. We pre-
train on two different datasets, freeze the network parameters, and transfer them to a downstream task whereby a linear
multinomial logistic regression (MLR) model is trained. In doing so, we are evaluating the richness of the representations
learned. We perform these experiments under two scenarios. The first involves pre-training and evaluating using 4 leads
(II, V2, aVL, aVR) (see Sec. D.1). The second involves pre-training and evaluating using all 12 leads (see Sec. D.2). We
chose these two scenarios to help determine whether our findings generalize to domains where a different number of leads
is available.

D.1. Pre-training and Evaluating using 4 leads

We present Tables 7 - 10 which illustrate the test AUC of an MLR evaluated on Chapman and PhysioNet 2020 after having
pre-trained on these two datasets using only 4 of the 12 leads, respectively, These are presented for a range of embedding
dimensions, E = (32, 64, 128, 256), and available labelled training data, F = (0.25, 0.50, 0.75, 1).

D.1.1. EMBEDDING DIMENSION, E = 32

We show that CMSMLC outperforms all other methods when evaluating on Chapman, regardless of the available labelled
training data. This can be seen by the higher AUC achieved by this method relative to the remaining methods. For instance,
at F = 0.25, CMSMLC achieves an AUC = 0.844 compared to 0.665 for SimCLR. When evaluating on PhysioNet 2020,
we find that CMSC consistently outperforms the remaining methods, as seen by its higher test AUC values.
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Table 7. Comparison of self-supervised methods when using networks as feature extractors and performing linear evaluation on down-
stream datasets. Pre-training and evaluating multi-lead datasets* using 4 leads. Mean and standard deviation are shown across 5 seeds.

(a) F = 0.25

Dataset Chapman* PhysioNet 2020*

SimCLR 0.665 ± 0.014 0.564 ± 0.009
CMSC 0.831 ± 0.131 0.701 ± 0.046
CMLC 0.789 ± 0.020 0.563 ± 0.008

CMSMLC 0.844 ± 0.023 0.619 ± 0.019

(b) F = 0.5

Dataset Chapman* PhysioNet 2020*

SimCLR 0.666 ± 0.015 0.587 ± 0.009
CMSC 0.831 ± 0.131 0.707 ± 0.038
CMLC 0.801 ± 0.016 0.572 ± 0.008

CMSMLC 0.850 ± 0.022 0.636 ± 0.020

(c) F = 0.75

Dataset Chapman* PhysioNet 2020*

SimCLR 0.670 ± 0.013 0.591 ± 0.010
CMSC 0.833 ± 0.129 0.709 ± 0.039
CMLC 0.805 ± 0.018 0.585 ± 0.009

CMSMLC 0.850 ± 0.021 0.643 ± 0.020

(d) F = 1

Dataset Chapman* PhysioNet 2020*

SimCLR 0.670 ± 0.013 0.594 ± 0.010
CMSC 0.831 ± 0.131 0.709 ± 0.038
CMLC 0.807 ± 0.017 0.593 ± 0.009

CMSMLC 0.852 ± 0.021 0.645 ± 0.021



CLOCS: Contrastive Learning of Cardiac Signals Across Space, Time, and Patients

D.1.2. EMBEDDING DIMENSION, E = 64

We find that the conclusions arrived at with E = 32 are similar to those in this scenario. Namely, CMSMLC outperforms
all remaining methods when evaluating on Chapman. On the other hand, CMSC outperforms all methods when evaluating
on PhysioNet 2020. This can be seen by the bold test AUC values in Table 8.

Table 8. Comparison of self-supervised methods when using networks as feature extractors and performing linear evaluation on down-
stream datasets. Pre-training and evaluating multi-lead datasets* using 4 leads. Mean and standard deviation are shown across 5 seeds.

(a) F = 0.25

Dataset Chapman* PhysioNet 2020*

SimCLR 0.709 ± 0.019 0.574 ± 0.005
CMSC 0.829 ± 0.130 0.720 ± 0.012
CMLC 0.842 ± 0.020 0.592 ± 0.019

CMSMLC 0.856 ± 0.022 0.641 ± 0.023

(b) F = 0.5

Dataset Chapman* PhysioNet 2020*

SimCLR 0.722 ± 0.025 0.599 ± 0.010
CMSC 0.830 ± 0.132 0.721 ± 0.013
CMLC 0.850 ± 0.02 0.607 ± 0.018

CMSMLC 0.861 ± 0.02 0.662 ± 0.020

(c) F = 0.75

Dataset Chapman* PhysioNet 2020*

SimCLR 0.726 ± 0.023 0.604 ± 0.010
CMSC 0.831 ± 0.126 0.725 ± 0.009
CMLC 0.854 ± 0.021 0.619 ± 0.017

CMSMLC 0.861 ± 0.021 0.671 ± 0.018

(d) F = 1

Dataset Chapman* PhysioNet 2020*

SimCLR 0.727 ± 0.025 0.608 ± 0.010
CMSC 0.832 ± 0.126 0.726 ± 0.009
CMLC 0.855 ± 0.020 0.627 ± 0.015

CMSMLC 0.862 ± 0.020 0.673 ± 0.018
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D.1.3. EMBEDDING DIMENSION = 128

In this scenario and in contrast to conclusions arrived at with E = 32 and 64, we find that CMSC outperforms all methods
when evaluated on both datasets, Chapman and PhysioNet 2020. This can be seen by the bold test AUC values in Table 13.
For instance, at F = 0.25, CMSC achieves an AUC = 0.895 compared to 0.727 achieved by SimCLR. That is a 16.8%
improvement relative to the state-of-the-art.

Table 9. Comparison of self-supervised methods when using networks as feature extractors and performing linear evaluation on down-
stream datasets. Pre-training and evaluating multi-lead datasets* using 4 leads. Mean and standard deviation are shown across 5 seeds.

(a) F = 0.25

Dataset Chapman* PhysioNet 2020*

BYOL 0.671 ± 0.042 0.587 ± 0.021
SimCLR 0.727 ± 0.032 0.585 ± 0.016
CMSC 0.895 ± 0.004 0.713 ± 0.032
CMLC 0.863 ± 0.026 0.580 ± 0.007

CMSMLC 0.842 ± 0.021 0.661 ± 0.010

(b) F = 0.5

Dataset Chapman* PhysioNet 2020*

BYOL 0.643 ± 0.043 0.595 ± 0.018
SimCLR 0.738 ± 0.034 0.615 ± 0.014
CMSC 0.896 ± 0.005 0.715 ± 0.033
CMLC 0.870 ± 0.022 0.596 ± 0.008

CMSMLC 0.847 ± 0.024 0.680 ± 0.008

(c) F = 0.75

Dataset Chapman* PhysioNet 2020*

BYOL 0.666 ± 0.032 0.598 ± 0.022
SimCLR 0.742 ± 0.033 0.620 ± 0.015
CMSC 0.898 ± 0.002 0.717 ± 0.033
CMLC 0.872 ± 0.022 0.606 ± 0.008

CMSMLC 0.848 ± 0.023 0.685 ± 0.008

(d) F = 1

Dataset Chapman* PhysioNet 2020*

BYOL 0.653 ± 0.026 0.602 ± 0.015
SimCLR 0.742 ± 0.033 0.623 ± 0.014
CMSC 0.897 ± 0.003 0.718 ± 0.033
CMLC 0.873 ± 0.021 0.612 ± 0.010

CMSMLC 0.849 ± 0.022 0.686 ± 0.008
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D.1.4. EMBEDDING DIMENSION, E = 256

In this scenario, we find that CMLC consistently outperforms all methods when evaluated on Chapman. Similar to findings
at lower embedding dimensions, CMSC outperforms all methods on PhysioNet 2020. These claims are supported by the
bold test AUC values in Table 10.

Table 10. Comparison of self-supervised methods when using networks as feature extractors and performing linear evaluation on down-
stream datasets. Pre-training and evaluating multi-lead datasets* using 4 leads. Mean and standard deviation are shown across 5 seeds.

(a) F = 0.25

Dataset Chapman* PhysioNet 2020*

SimCLR 0.742 ± 0.031 0.591 ± 0.007
CMSC 0.832 ± 0.128 0.721 ± 0.016
CMLC 0.883 ± 0.009 0.607 ± 0.027

CMSMLC 0.828 ± 0.040 0.652 ± 0.023

(b) F = 0.5

Dataset Chapman* PhysioNet 2020*

SimCLR 0.749 ± 0.032 0.615 ± 0.010
CMSC 0.833 ± 0.130 0.722 ± 0.017
CMLC 0.887 ± 0.008 0.619 ± 0.026

CMSMLC 0.831 ± 0.042 0.670 ± 0.018

(c) F = 0.75

Dataset Chapman* PhysioNet 2020*

SimCLR 0.752 ± 0.033 0.619 ± 0.010
CMSC 0.833 ± 0.130 0.723 ± 0.017
CMLC 0.889 ± 0.007 0.626 ± 0.026

CMSMLC 0.831 ± 0.040 0.675 ± 0.018

(d) F = 1

Dataset Chapman* PhysioNet 2020*

SimCLR 0.753 ± 0.033 0.621 ± 0.010
CMSC 0.833 ± 0.132 0.724 ± 0.017
CMLC 0.890 ± 0.006 0.633 ± 0.026

CMSMLC 0.832 ± 0.039 0.677 ± 0.018
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D.2. Pre-training and Evaluating using 12 leads

We present Tables 11 - 14 which illustrate the test AUC of an MLR evaluated on Chapman and PhysioNet 2020 after having
pre-trained on these two datasets using all 12 leads, respectively, These are presented for a range of embedding dimensions,
E = (32, 64, 128, 256), and available labelled training data, F = (0.25, 0.50, 0.75, 1). Overall, we find that pre-training
and evaluating with all 12 leads results in a clearly superior self-supervised method, CMSC. We support this claim with
the results presented in the subsequent sections. This finding is in contrast to what we observed when pre-training and
evaluating on only 4 of the 12 leads. In that scenario, although our proposed methods outperform SimCLR, CMSC does
not consistently outperform the other methods.

D.2.1. EMBEDDING DIMENSION, E = 32

We show that CMSC consistently outperforms all other pre-training methods when evaluated on both the Chapman and
PhysioNet 2020 dataset. This can be seen by the higher AUC achieved by this method relative to the remaining methods.
For instance, when evaluating on the Chapman dataset using only 25% of the labels (F = 0.25) during training, CMSC
achieves an AUC = 0.899 compared to 0.667 for SimCLR.

Table 11. Comparison of self-supervised methods when using networks as feature extractors and performing linear evaluation on down-
stream datasets. Pre-training and evaluating multi-lead datasets* using all 12 leads. Mean and standard deviation are shown across 5
seeds.

(a) F = 0.25

Dataset Chapman* PhysioNet 2020*

SimCLR 0.667 ± 0.019 0.585 ± 0.013
CMSC 0.899 ± 0.003 0.744 ± 0.011
CMLC 0.728 ± 0.021 0.627 ± 0.037

CMSMLC 0.838 ± 0.015 0.644 ± 0.026

(b) F = 0.5

Dataset Chapman* PhysioNet 2020*

SimCLR 0.667 ± 0.021 0.585 ± 0.015
CMSC 0.898 ± 0.004 0.741 ± 0.011
CMLC 0.729 ± 0.019 0.627 ± 0.038

CMSMLC 0.838 ± 0.018 0.641 ± 0.030

(c) F = 0.75

Dataset Chapman* PhysioNet 2020*

SimCLR 0.667 ± 0.020 0.589 ± 0.014
CMSC 0.897 ± 0.004 0.747 ± 0.012
CMLC 0.730 ± 0.019 0.635 ± 0.034

CMSMLC 0.843 ± 0.018 0.652 ± 0.025

(d) F = 1

Dataset Chapman* PhysioNet 2020*

SimCLR 0.667 ± 0.019 0.589 ± 0.013
CMSC 0.897 ± 0.004 0.745 ± 0.013
CMLC 0.726 ± 0.019 0.632 ± 0.038

CMSMLC 0.844 ± 0.015 0.649 ± 0.027
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D.2.2. EMBEDDING DIMENSION, E = 64

We find that the conclusions arrived at with E = 32 are similar to those in this scenario. Namely, CMSC outperforms all
remaining methods when evaluating on both Chapman and PhysioNet 2020. Moreover, our other proposed pre-training
methods (CMLC and CMSMLC) also outperform the state-of-the-art method, SimCLR. This can be seen by the bold test
AUC values in Table 12.

Table 12. Comparison of self-supervised methods when using networks as feature extractors and performing linear evaluation on down-
stream datasets. Pre-training and evaluating multi-lead datasets* using all 12 leads. Mean and standard deviation are shown across 5
seeds.

(a) F = 0.25

Dataset Chapman* PhysioNet 2020*

SimCLR 0.752 ± 0.045 0.611 ± 0.009
CMSC 0.904 ± 0.005 0.764 ± 0.022
CMLC 0.734 ± 0.021 0.650 ± 0.039

CMSMLC 0.852 ± 0.024 0.669 ± 0.016

(b) F = 0.5

Dataset Chapman* PhysioNet 2020*

SimCLR 0.753 ± 0.046 0.613 ± 0.011
CMSC 0.905 ± 0.005 0.759 ± 0.024
CMLC 0.735 ± 0.020 0.650 ± 0.039

CMSMLC 0.851 ± 0.023 0.665 ± 0.016

(c) F = 0.75

Dataset Chapman* PhysioNet 2020*

SimCLR 0.753 ± 0.046 0.617 ± 0.008
CMSC 0.904 ± 0.005 0.770 ± 0.019
CMLC 0.735 ± 0.020 0.661 ± 0.035

CMSMLC 0.854 ± 0.018 0.675 ± 0.016

(d) F = 1

Dataset Chapman* PhysioNet 2020*

SimCLR 0.754 ± 0.045 0.616 ± 0.009
CMSC 0.905 ± 0.005 0.770 ± 0.019
CMLC 0.735 ± 0.020 0.654 ± 0.040

CMSMLC 0.853 ± 0.017 0.674 ± 0.016
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D.2.3. EMBEDDING DIMENSION, E = 128

In this scenario, the same conclusions as those arrived at with smaller embedding dimensions still hold. Although CMSC
continues to outperform all other methods, the performance gap between such methods decreases when compared to
results obtained at smaller embedding dimensions. For instance, when evaluating on the Chapman dataset at F = 0.25
with E = 128, CMSC achieves an AUC = 0.903 whereas SimCLR achieves an AUC = 0.771, a performance gap of
13.2%. In contrast, at E = 64, the performance gap between these two methods was 15.2%.

Table 13. Comparison of self-supervised methods when using networks as feature extractors and performing linear evaluation on down-
stream datasets. Pre-training and evaluating multi-lead datasets* using all 12 leads. Mean and standard deviation are shown across 5
seeds.

(a) F = 0.25

Dataset Chapman* PhysioNet 2020*

SimCLR 0.771 ± 0.012 0.605 ± 0.013
CMSC 0.903 ± 0.002 0.7600 ± 0.019
CMLC 0.779 ± 0.018 0.667 ± 0.030

CMSMLC 0.846 ± 0.024 0.659 ± 0.016

(b) F = 0.5

Dataset Chapman* PhysioNet 2020*

SimCLR 0.773 ± 0.012 0.606 ± 0.013
CMSC 0.902 ± 0.003 0.758 ± 0.019
CMLC 0.783 ± 0.020 0.665 ± 0.032

CMSMLC 0.850 ± 0.022 0.659 ± 0.016

(c) F = 0.75

Dataset Chapman* PhysioNet 2020*

SimCLR 0.774 ± 0.012 0.611 ± 0.012
CMSC 0.902 ± 0.003 0.763 ± 0.019
CMLC 0.788 ± 0.018 0.671 ± 0.032

CMSMLC 0.851 ± 0.019 0.669 ± 0.013

(d) F = 1

Dataset Chapman* PhysioNet 2020*

SimCLR 0.775 ± 0.012 0.610 ± 0.013
CMSC 0.902 ± 0.003 0.761 ± 0.019
CMLC 0.787 ± 0.020 0.672 ± 0.028

CMSMLC 0.853 ± 0.017 0.669 ± 0.013
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D.2.4. EMBEDDING DIMENSION, E = 256

In this scenario, and similar to findings at lower embedding dimensions, CMSC outperforms all methods on both the
Chapman and PhysioNet 2020 datasets. Pre-training and evaluating multi-lead datasets* using all 12 leads. These claims
are supported by the bold test AUC values in Table 14.

Table 14. Comparison of self-supervised methods when using networks as feature extractors and performing linear evaluation on down-
stream datasets. Pre-training and evaluating multi-lead datasets* using all 12 leads. Mean and standard deviation are shown across 5
seeds.

(a) F = 0.25

Dataset Chapman* PhysioNet 2020*

SimCLR 0.769 ± 0.028 0.614 ± 0.007
CMSC 0.904 ± 0.002 0.761 ± 0.011
CMLC 0.784 ± 0.013 0.672 ± 0.033

CMSMLC 0.852 ± 0.013 0.672 ± 0.013

(b) F = 0.5

Dataset Chapman* PhysioNet 2020*

SimCLR 0.770 ± 0.027 0.617 ± 0.008
CMSC 0.906 ± 0.002 0.756 ± 0.010
CMLC 0.790 ± 0.016 0.668 ± 0.036

CMSMLC 0.852 ± 0.010 0.672 ± 0.012

(c) F = 0.75

Dataset Chapman* PhysioNet 2020*

SimCLR 0.770 ± 0.026 0.619 ± 0.008
CMSC 0.905 ± 0.003 0.764 ± 0.011
CMLC 0.793 ± 0.019 0.680 ± 0.029

CMSMLC 0.854 ± 0.012 0.680 ± 0.012

(d) F = 1

Dataset Chapman* PhysioNet 2020*

SimCLR 0.771 ± 0.027 0.619 ± 0.008
CMSC 0.906 ± 0.003 0.764 ± 0.010
CMLC 0.797 ± 0.016 0.677 ± 0.029

CMSMLC 0.858 ± 0.011 0.679 ± 0.011
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E. Transfer Capabilities of Representations
In this section, we evaluate the utility of self-supervised pre-training in generating a favourable parameter initialization
for a downstream task. After pre-training, we transfer the parameters to a downstream task and allow all parameters to be
updated. In doing so, we are evaluating the benefit brought about by the inductive bias of self-supervised pre-training.

We perform these experiments under two scenarios. The first involves pre-training, fine-tuning, and evaluating using
4 leads (II, V2, aVL, aVR) (see Sec. E.1). The second involves pre-training, fine-tuning, and evaluating using all 12
leads (see Sec. E.2). We chose these two scenarios for several reasons. Firstly, they will help determine whether our
findings generalize to domains where a different number of leads is available. For example, expensive hospital equipment
may record all 12 leads of an ECG, whereas low-cost wearable sensors may only collect data from a subset of leads.
Secondly, we wanted to evaluate whether or not contrastive-learning with more views (leads) would improve generalization
performance on the downstream task. Previous studies in computer vision have shown this to be the case.
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E.1. Pre-training, Fine-Tuning, and Evaluating using 4 Leads

We present Tables 15 - 18 which illustrate the test AUC on downstream datasets after having pre-trained on Chapman or
PhysioNet 2020. These are shown for a range of embedding dimensions, E = (32, 64, 128, 256), and available labelled
training data, F = (0.25, 0.50, 0.75, 1.00).

E.1.1. EMBEDDING DIMENSION, E = 32

In this section, we show that in 18/24 (75%) of all experiments conducted, our family of contrastive learning methods
outperforms the state-of-the-art method, SimCLR. This can be seen by the bold test AUC results in Table 15. The majority
of these positive results can be attributed to CMSC. Such a finding illustrates the robustness of our methods to the pre-
training and downstream dataset used for evaluation, especially given the diversity of the tasks at hand.

Table 15. Comparison of self-supervised methods when used as parameter initializations before fine-tuning on downstream datasets.
Pre-training, fine-tuning, and evaluating multi-lead datasets* using 4 leads. Mean and standard deviation are shown across 5 seeds.

(a) F = 0.25

Pre-training Dataset Chapman* PhysioNet 2020*

Downstream Dataset Cardiology PhysioNet 2017 PhysioNet 2020* Cardiology PhysioNet 2017 Chapman*

Random Init. 0.631 ± 0.006 0.738 ± 0.014 0.766 ± 0.005 0.631 ± 0.006 0.738 ± 0.014 0.898 ± 0.002
SimCLR 0.649 ± 0.012 0.731 ± 0.017 0.790± 0.008 0.642 ± 0.020 0.738 ± 0.009 0.907 ± 0.013
CMSC 0.661 ± 0.018 0.770 ± 0.012 0.801 ± 0.013 0.658 ± 0.018 0.748 ± 0.027 0.908 ± 0.011
CMLC 0.652 ± 0.014 0.767 ± 0.012 0.768 ± 0.004 0.635 ± 0.017 0.753 ± 0.013 0.906 ± 0.009

CMSMLC 0.669 ± 0.020 0.758 ± 0.008 0.761 ± 0.015 0.652 ± 0.013 0.733 ± 0.004 0.900 ± 0.009

(b) F = 0.5

Pre-training Dataset Chapman* PhysioNet 2020*

Downstream Dataset Cardiology PhysioNet 2017 PhysioNet 2020* Cardiology PhysioNet 2017 Chapman*

Random Init. 0.669 ± 0.007 0.782 ± 0.011 0.811 ± 0.011 0.669 ± 0.007 0.782 ± 0.011 0.907 ± 0.011
SimCLR 0.691 ± 0.008 0.748 ± 0.018 0.829 ± 0.003 0.679 ± 0.012 0.767 ± 0.012 0.933 ± 0.010
CMSC 0.687 ± 0.018 0.771 ± 0.030 0.822 ± 0.011 0.689 ± 0.025 0.769 ± 0.010 0.926 ± 0.010
CMLC 0.680 ± 0.003 0.772 ± 0.007 0.812 ± 0.013 0.677 ± 0.013 0.764 ± 0.027 0.918 ± 0.008

CMSMLC 0.708 ± 0.017 0.769 ± 0.015 0.799 ± 0.011 0.684 ± 0.011 0.761 ± 0.022 0.923 ± 0.012

(c) F = 0.75

Pre-training Dataset Chapman* PhysioNet 2020*

Downstream Dataset Cardiology PhysioNet 2017 PhysioNet 2020* Cardiology PhysioNet 2017 Chapman*

Random Init. 0.682 ± 0.016 0.764 ± 0.011 0.824 ± 0.013 0.682 ± 0.016 0.764 ± 0.011 0.925 ± 0.009
SimCLR 0.699 ± 0.010 0.782 ± 0.015 0.839 ± 0.003 0.691 ± 0.009 0.795 ± 0.017 0.938 ± 0.012
CMSC 0.712 ± 0.011 0.760 ± 0.032 0.835 ± 0.006 0.704 ± 0.024 0.780 ± 0.015 0.941 ± 0.006
CMLC 0.682 ± 0.011 0.769 ± 0.020 0.826 ± 0.014 0.665 ± 0.016 0.764 ± 0.020 0.930 ± 0.013

CMSMLC 0.715 ± 0.009 0.789 ± 0.014 0.820 ± 0.004 0.703 ± 0.010 0.778 ± 0.019 0.936 ± 0.007

(d) F = 1

Pre-training Dataset Chapman* PhysioNet 2020*

Downstream Dataset Cardiology PhysioNet 2017 PhysioNet 2020* Cardiology PhysioNet 2017 Chapman*

Random Init. 0.700 ± 0.019 0.771 ± 0.018 0.832 ± 0.006 0.700 ± 0.019 0.771 ± 0.018 0.937 ± 0.005
SimCLR 0.715 ± 0.005 0.804 ± 0.020 0.844 ± 0.001 0.704 ± 0.009 0.785 ± 0.025 0.938 ± 0.011
CMSC 0.723 ± 0.004 0.803 ± 0.033 0.841 ± 0.007 0.724 ± 0.015 0.795 ± 0.009 0.945 ± 0.004
CMLC 0.699 ± 0.025 0.778 ± 0.015 0.837 ± 0.006 0.707 ± 0.014 0.780 ± 0.023 0.933 ± 0.014

CMSMLC 0.719 ± 0.016 0.798 ± 0.018 0.830 ± 0.006 0.715 ± 0.014 0.775 ± 0.009 0.940 ± 0.006
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E.1.2. EMBEDDING DIMENSION, E = 64

In this section, we show that in 20/24 (83%) of all experiments conducted, our family of contrastive learning methods
outperforms the state-of-the-art method, SimCLR. This can be seen by the bold test AUC results in Table 16.

Table 16. Comparison of self-supervised methods when used as parameter initializations before fine-tuning on downstream datasets.
Pre-training, fine-tuning, and evaluating multi-lead datasets* using 4 leads. Mean and standard deviation are shown across 5 seeds.

(a) F = 0.25

Pre-training Dataset Chapman* PhysioNet 2020*

Downstream Dataset Cardiology PhysioNet 2017 PhysioNet 2020* Cardiology PhysioNet 2017 Chapman*

Random Init. 0.632 ± 0.018 0.746 ± 0.009 0.775 ± 0.010 0.632 ± 0.018 0.746 ± 0.009 0.895 ± 0.001
SimCLR 0.652 ± 0.010 0.744 ± 0.013 0.784 ± 0.022 0.641 ± 0.006 0.739 ± 0.019 0.911 ± 0.007
CMSC 0.663 ± 0.019 0.765 ± 0.023 0.794 ± 0.022 0.659 ± 0.032 0.755 ± 0.018 0.910 ± 0.007
CMLC 0.650 ± 0.007 0.753 ± 0.012 0.786 ± 0.008 0.644 ± 0.014 0.762 ± 0.009 0.904 ± 0.007

CMSMLC 0.675 ± 0.010 0.755 ± 0.009 0.767 ± 0.008 0.660 ± 0.012 0.743 ± 0.016 0.901 ± 0.003

(b) F = 0.5

Pre-training Dataset Chapman* PhysioNet 2020*

Downstream Dataset Cardiology PhysioNet 2017 PhysioNet 2020* Cardiology PhysioNet 2017 Chapman*

Random Init. 0.685 ± 0.004 0.768 ± 0.010 0.817 ± 0.009 0.685 ± 0.004 0.768 ± 0.010 0.906 ± 0.003
SimCLR 0.676 ± 0.019 0.778 ± 0.008 0.822 ± 0.011 0.678 ± 0.009 0.771 ± 0.018 0.927 ± 0.009
CMSC 0.695 ± 0.011 0.786 ± 0.017 0.816 ± 0.016 0.701 ± 0.023 0.772 ± 0.009 0.928 ± 0.004
CMLC 0.679 ± 0.016 0.775 ± 0.010 0.824 ± 0.004 0.677 ± 0.021 0.775 ± 0.010 0.918 ± 0.014

CMSMLC 0.717 ± 0.005 0.773 ± 0.011 0.808 ± 0.009 0.699 ± 0.011 0.769 ± 0.009 0.934 ± 0.004

(c) F = 0.75

Pre-training Dataset Chapman* PhysioNet 2020*

Downstream Dataset Cardiology PhysioNet 2017 PhysioNet 2020* Cardiology PhysioNet 2017 Chapman*

Random Init. 0.680 ± 0.015 0.7600 ± 0.011 0.830 ± 0.007 0.680 ± 0.015 0.7600 ± 0.011 0.916 ± 0.011
SimCLR 0.698 ± 0.008 0.790 ± 0.010 0.832 ± 0.007 0.689 ± 0.016 0.783 ± 0.015 0.934 ± 0.006
CMSC 0.708 ± 0.006 0.790 ± 0.027 0.834 ± 0.004 0.715 ± 0.008 0.779 ± 0.013 0.940 ± 0.007
CMLC 0.688 ± 0.016 0.777 ± 0.017 0.837 ± 0.003 0.678 ± 0.019 0.777 ± 0.011 0.926 ± 0.016

CMSMLC 0.720 ± 0.004 0.795 ± 0.008 0.829 ± 0.009 0.704 ± 0.007 0.775 ± 0.013 0.932 ± 0.005

(d) F = 1

Pre-training Dataset Chapman* PhysioNet 2020*

Downstream Dataset Cardiology PhysioNet 2017 PhysioNet 2020* Cardiology PhysioNet 2017 Chapman*

Random Init. 0.692 ± 0.023 0.778 ± 0.017 0.840 ± 0.004 0.692 ± 0.023 0.778 ± 0.017 0.932 ± 0.008
SimCLR 0.718 ± 0.010 0.797 ± 0.014 0.837 ± 0.009 0.706 ± 0.008 0.789 ± 0.023 0.944 ± 0.004
CMSC 0.708 ± 0.022 0.800 ± 0.020 0.842 ± 0.003 0.726 ± 0.007 0.797 ± 0.009 0.941 ± 0.005
CMLC 0.691 ± 0.007 0.780 ± 0.013 0.841 ± 0.003 0.696 ± 0.022 0.786 ± 0.016 0.931 ± 0.018

CMSMLC 0.732 ± 0.003 0.810 ± 0.012 0.837 ± 0.010 0.722 ± 0.010 0.792 ± 0.006 0.940 ± 0.007
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E.1.3. EMBEDDING DIMENSION, E = 128

In this section, we show that in 21/24 (88%) of all experiments conducted, our family of contrastive learning methods
outperforms the state-of-the-art method, SimCLR. This can be seen by the bold test AUC results in Table 17.
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Table 17. Comparison of self-supervised methods when used as parameter initializations before fine-tuning on downstream datasets.
Pre-training, fine-tuning, and evaluating multi-lead datasets* using 4 leads. Mean and standard deviation are shown across 5 seeds.

(a) F = 0.25

Pre-training Dataset Chapman* PhysioNet 2020*

Downstream Dataset Cardiology PhysioNet 2017 PhysioNet 2020* Cardiology PhysioNet 2017 Chapman*

Random Init. 0.625 ± 0.015 0.746 ± 0.006 0.764 ± 0.016 0.625 ± 0.015 0.746 ± 0.006 0.894 ± 0.002
Supervised 0.671 ± 0.009 0.786 ± 0.012 0.804 ± 0.005 0.679 ± 0.011 0.805 ± 0.005 0.942 ± 0.011

Self-supervised Pre-training

BYOL 0.620 ± 0.013 0.726 ± 0.013 0.764 ± 0.013 0.624 ± 0.021 0.752 ± 0.011 0.904 ± 0.006
SimCLR 0.634 ± 0.014 0.738 ± 0.006 0.777 ± 0.015 0.631 ± 0.022 0.727 ± 0.014 0.903 ± 0.007
CMSC 0.691 ± 0.015 0.768 ± 0.005 0.813 ± 0.007 0.671 ± 0.018 0.756 ± 0.009 0.911 ± 0.016
CMLC 0.639 ± 0.010 0.745 ± 0.012 0.770 ± 0.006 0.641 ± 0.014 0.746 ± 0.014 0.897 ± 0.003

CMSMLC 0.671 ± 0.016 0.755 ± 0.011 0.781 ± 0.012 0.668 ± 0.011 0.751 ± 0.007 0.903 ± 0.009

(b) F = 0.5

Pre-training Dataset Chapman* PhysioNet 2020*

Downstream Dataset Cardiology PhysioNet 2017 PhysioNet 2020* Cardiology PhysioNet 2017 Chapman*

Random Init. 0.678 ± 0.011 0.763 ± 0.005 0.803 ± 0.008 0.678 ± 0.011 0.763 ± 0.005 0.907 ± 0.006
Supervised 0.684 ± 0.015 0.799 ± 0.008 0.827 ± 0.001 0.730 ± 0.002 0.810 ± 0.009 0.954 ± 0.003

Self-supervised Pre-training

BYOL 0.678 ± 0.021 0.748 ± 0.014 0.802 ± 0.013 0.674 ± 0.022 0.757 ± 0.01 0.916 ± 0.009
SimCLR 0.676 ± 0.011 0.772 ± 0.010 0.823 ± 0.011 0.658 ± 0.027 0.762 ± 0.009 0.923 ± 0.010
CMSC 0.695 ± 0.024 0.773 ± 0.013 0.830 ± 0.002 0.714 ± 0.014 0.760 ± 0.013 0.932 ± 0.008
CMLC 0.665 ± 0.016 0.767 ± 0.013 0.810 ± 0.011 0.675 ± 0.013 0.762 ± 0.007 0.910 ± 0.012

CMSMLC 0.717 ± 0.006 0.774 ± 0.004 0.814 ± 0.009 0.698 ± 0.011 0.774 ± 0.012 0.930 ± 0.012

(c) F = 0.75

Pre-training Dataset Chapman* PhysioNet 2020*

Downstream Dataset Cardiology PhysioNet 2017 PhysioNet 2020* Cardiology PhysioNet 2017 Chapman*

Random Init. 0.675 ± 0.020 0.775 ± 0.005 0.831 ± 0.011 0.675 ± 0.020 0.775 ± 0.005 0.937 ± 0.008
Supervised 0.712 ± 0.017 0.799 ± 0.014 0.837 ± 0.005 0.731 ± 0.007 0.815 ± 0.007 0.958 ± 0.004

Self-supervised Pre-training

BYOL 0.671 ± 0.022 0.754 ± 0.009 0.825 ± 0.009 0.700 ± 0.02 0.751 ± 0.033 0.930 ± 0.005
SimCLR 0.694 ± 0.019 0.776 ± 0.013 0.834 ± 0.009 0.686 ± 0.019 0.785 ± 0.011 0.931 ± 0.013
CMSC 0.700 ± 0.012 0.801 ± 0.013 0.840 ± 0.004 0.707 ± 0.015 0.777 ± 0.016 0.942 ± 0.012
CMLC 0.670 ± 0.019 0.771 ± 0.010 0.831 ± 0.004 0.682 ± 0.005 0.772 ± 0.009 0.917 ± 0.011

CMSMLC 0.719 ± 0.011 0.792 ± 0.014 0.837 ± 0.008 0.711 ± 0.011 0.777 ± 0.017 0.938 ± 0.010

(d) F = 1

Pre-training Dataset Chapman* PhysioNet 2020*

Downstream Dataset Cardiology PhysioNet 2017 PhysioNet 2020* Cardiology PhysioNet 2017 Chapman*

Random Init. 0.702 ± 0.016 0.773 ± 0.010 0.843 ± 0.002 0.702 ± 0.016 0.773 ± 0.010 0.930 ± 0.013
Supervised 0.712 ± 0.017 0.799 ± 0.011 0.844 ± 0.003 0.732 ± 0.008 0.821 ± 0.006 0.961 ± 0.004

Self-supervised Pre-training

BYOL 0.697 ± 0.006 0.774 ± 0.017 0.834 ± 0.011 0.709 ± 0.017 0.771 ± 0.022 0.935 ± 0.008
SimCLR 0.705 ± 0.008 0.810 ± 0.016 0.844 ± 0.005 0.700 ± 0.012 0.795 ± 0.021 0.941 ± 0.006
CMSC 0.715 ± 0.018 0.804 ± 0.018 0.846 ± 0.002 0.725 ± 0.020 0.779 ± 0.024 0.942 ± 0.009
CMLC 0.698 ± 0.007 0.781 ± 0.014 0.836 ± 0.003 0.681 ± 0.005 0.785 ± 0.011 0.933 ± 0.014

CMSMLC 0.732 ± 0.003 0.793 ± 0.012 0.844 ± 0.005 0.716 ± 0.010 0.778 ± 0.025 0.945 ± 0.005
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E.1.4. EMBEDDING DIMENSION, E = 256

In this section, we show that in 16/24 (66%) of all experiments conducted, our family of contrastive learning methods
outperforms the state-of-the-art method, SimCLR. This can be seen by the bold test AUC results in Table 18.

Table 18. Comparison of self-supervised methods when used as parameter initializations before fine-tuning on downstream datasets.
Pre-training, fine-tuning, and evaluating multi-lead datasets* using 4 leads. Mean and standard deviation are shown across 5 seeds.

(a) F = 0.25

Pre-training Dataset Chapman* PhysioNet 2020*

Downstream Dataset Cardiology PhysioNet 2017 PhysioNet 2020* Cardiology PhysioNet 2017 Chapman*

Random Init. 0.630 ± 0.014 0.737 ± 0.008 0.765 ± 0.004 0.630 ± 0.014 0.737 ± 0.008 0.896 ± 0.002
SimCLR 0.647 ± 0.014 0.727 ± 0.007 0.791 ± 0.014 0.636 ± 0.009 0.736 ± 0.008 0.902 ± 0.006
CMSC 0.656 ± 0.031 0.756 ± 0.011 0.789 ± 0.019 0.682 ± 0.024 0.750 ± 0.014 0.905 ± 0.009
CMLC 0.649 ± 0.012 0.743 ± 0.005 0.784 ± 0.009 0.645 ± 0.017 0.741 ± 0.008 0.898 ± 0.004

CMSMLC 0.686 ± 0.008 0.752 ± 0.010 0.768 ± 0.017 0.652 ± 0.023 0.758 ± 0.014 0.896 ± 0.002

(b) F = 0.5

Pre-training Dataset Chapman* PhysioNet 2020*

Downstream Dataset Cardiology PhysioNet 2017 PhysioNet 2020* Cardiology PhysioNet 2017 Chapman*

Random Init. 0.659 ± 0.012 0.758 ± 0.021 0.817 ± 0.008 0.659 ± 0.012 0.758 ± 0.021 0.901 ± 0.003
SimCLR 0.667 ± 0.019 0.758 ± 0.002 0.825 ± 0.014 0.659 ± 0.010 0.769 ± 0.017 0.924 ± 0.012
CMSC 0.667 ± 0.030 0.765 ± 0.003 0.819 ± 0.002 0.709 ± 0.028 0.762 ± 0.015 0.914 ± 0.011
CMLC 0.679 ± 0.014 0.768 ± 0.006 0.826 ± 0.005 0.669 ± 0.027 0.768 ± 0.012 0.906 ± 0.007

CMSMLC 0.702 ± 0.017 0.776 ± 0.011 0.812 ± 0.014 0.694 ± 0.011 0.762 ± 0.009 0.917 ± 0.011

(c) F = 0.75

Pre-training Dataset Chapman* PhysioNet 2020*

Downstream Dataset Cardiology PhysioNet 2017 PhysioNet 2020* Cardiology PhysioNet 2017 Chapman*

Random Init. 0.680 ± 0.018 0.764 ± 0.006 0.834 ± 0.004 0.680± 0.018 0.764 ± 0.006 0.916 ± 0.015
SimCLR 0.677 ± 0.016 0.790 ± 0.015 0.834 ± 0.011 0.684 ± 0.008 0.787 ± 0.015 0.933 ± 0.013
CMSC 0.698 ± 0.015 0.784 ± 0.015 0.827 ± 0.014 0.717 ± 0.010 0.780 ± 0.018 0.935 ± 0.007
CMLC 0.677 ± 0.023 0.773 ± 0.006 0.841 ± 0.001 0.681 ± 0.012 0.779 ± 0.012 0.917 ± 0.012

CMSMLC 0.715 ± 0.008 0.785 ± 0.004 0.827 ± 0.015 0.697 ± 0.016 0.784 ± 0.010 0.930 ± 0.004

(d) F = 1

Pre-training Dataset Chapman* PhysioNet 2020*

Downstream Dataset Cardiology PhysioNet 2017 PhysioNet 2020* Cardiology PhysioNet 2017 Chapman*

Random Init. 0.696 ± 0.015 0.763 ± 0.012 0.842 ± 0.005 0.696 ± 0.015 0.763 ± 0.012 0.918 ± 0.015
SimCLR 0.711 ± 0.008 0.798 ± 0.014 0.841 ± 0.006 0.703 ± 0.007 0.806 ± 0.012 0.943 ± 0.004
CMSC 0.704 ± 0.023 0.794 ± 0.018 0.840 ± 0.007 0.718 ± 0.012 0.792 ± 0.016 0.944 ± 0.007
CMLC 0.705 ± 0.009 0.781 ± 0.005 0.844 ± 0.002 0.690 ± 0.020 0.779 ± 0.007 0.926 ± 0.015

CMSMLC 0.731 ± 0.007 0.789 ± 0.020 0.839 ± 0.007 0.709 ± 0.013 0.791 ± 0.007 0.943 ± 0.004
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E.2. Pre-training, Fine-tuning, and Evaluating using 12 Leads

We present Tables 19 - 22 which illustrate the test AUC on downstream datasets after having pre-trained on Chapman or
PhysioNet 2020 using all 12 leads. These are shown for a range of embedding dimensions, E = (32, 64, 128, 256), and
available labelled training data, F = (0.25, 0.50, 0.75, 1.00). Overall, we find that encouraging the representations of a
large and diverse set of leads to be similar to one another might be detrimental. This is shown in the subsequent sections
by the consistently poorer performance (↓ AUC) of CMLC and CMSMLC relative to CMSC where the latter method does
not enforce the aforementioned similarity.

E.2.1. EMBEDDING DIMENSION, E = 32

In this section, we show that in 22/24 (92%) of all experiments conducted, CMSC outperforms the state-of-the-art method,
SimCLR. This can be seen by the bold test AUC results in Table 19. Such a finding illustrates the robustness of our methods
to the pre-training and downstream dataset used for evaluation, especially given the diversity of the tasks at hand.

The performance gap between CMSC and SimCLR widens as the fraction of available labelled training data decreases.
For instance, when evaluating on the Cardiology dataset, as F = 1 −→ 0.25, CMSC’s AUC = 0.723 −→ 0.689 whereas
SimCLR’s AUC = 0.694 −→ 0.636. Therefore, the performance gap widens by almost a factor of 2 from 2.9% to 5.3%.
This suggests that CMSC is better equipped to deal with downstream tasks that lack a sufficient amount of labelled data.
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Table 19. Comparison of self-supervised methods when used as parameter initializations before fine-tuning on downstream datasets.
Pre-training, fine-tuning, and evaluating multi-lead datasets* using all 12 leads. Mean and standard deviation are shown across 5 seeds.

(a) F = 0.25

Pre-training Dataset Chapman* PhysioNet 2020*

Downstream Dataset Cardiology PhysioNet 2017 PhysioNet 2020* Cardiology PhysioNet 2017 Chapman*

Random Init. 0.631 ± 0.006 0.738 ± 0.014 0.823 ± 0.007 0.631 ± 0.006 0.738 ± 0.014 0.907 ± 0.006
SimCLR 0.636 ± 0.019 0.724 ± 0.016 0.826 ± 0.011 0.616 ± 0.011 0.727 ± 0.020 0.921 ± 0.011
CMSC 0.689 ± 0.017 0.782 ± 0.005 0.833 ± 0.002 0.681 ± 0.017 0.769 ± 0.015 0.936 ± 0.011
CMLC 0.639 ± 0.023 0.744 ± 0.018 0.827 ± 0.003 0.630 ± 0.022 0.744 ± 0.022 0.912 ± 0.007

CMSMLC 0.644 ± 0.026 0.740 ± 0.019 0.818 ± 0.015 0.647 ± 0.022 0.745 ± 0.015 0.920 ± 0.011

(b) F = 0.5

Pre-training Dataset Chapman* PhysioNet 2020*

Downstream Dataset Cardiology PhysioNet 2017 PhysioNet 2020* Cardiology PhysioNet 2017 Chapman*

Random Init. 0.669 ± 0.007 0.782 ± 0.011 0.814 ± 0.009 0.669 ± 0.007 0.782 ± 0.011 0.938 ± 0.009
SimCLR 0.659 ± 0.011 0.764 ± 0.003 0.820 ± 0.032 0.669 ± 0.023 0.766 ± 0.015 0.936 ± 0.014
CMSC 0.686 ± 0.024 0.800 ± 0.013 0.836 ± 0.004 0.719 ± 0.014 0.778 ± 0.019 0.951 ± 0.003
CMLC 0.674 ± 0.012 0.773 ± 0.018 0.831 ± 0.002 0.667 ± 0.011 0.758 ± 0.017 0.933 ± 0.008

CMSMLC 0.691 ± 0.007 0.759 ± 0.020 0.831 ± 0.009 0.684 ± 0.028 0.763 ± 0.024 0.942 ± 0.005

(c) F = 0.75

Pre-training Dataset Chapman* PhysioNet 2020*

Downstream Dataset Cardiology PhysioNet 2017 PhysioNet 2020* Cardiology PhysioNet 2017 Chapman*

Random Init. 0.682 ± 0.016 0.764 ± 0.011 0.845 ± 0.001 0.682 ± 0.016 0.764 ± 0.011 0.937 ± 0.016
SimCLR 0.690 ± 0.023 0.786 ± 0.023 0.840 ± 0.006 0.668 ± 0.013 0.782 ± 0.007 0.945 ± 0.009
CMSC 0.702 ± 0.013 0.809 ± 0.009 0.847 ± 0.001 0.709 ± 0.010 0.806 ± 0.005 0.952 ± 0.010
CMLC 0.684 ± 0.027 0.774 ± 0.019 0.841 ± 0.015 0.680 ± 0.021 0.783 ± 0.018 0.933 ± 0.014

CMSMLC 0.719 ± 0.007 0.757 ± 0.025 0.843 ± 0.005 0.708 ± 0.011 0.787 ± 0.015 0.944 ± 0.006

(d) F = 1

Pre-training Dataset Chapman* PhysioNet 2020*

Downstream Dataset Cardiology PhysioNet 2017 PhysioNet 2020* Cardiology PhysioNet 2017 Chapman*

Random Init. 0.700 ± 0.019 0.771 ± 0.018 0.825 ± 0.016 0.700 ± 0.019 0.771 ± 0.018 0.945 ± 0.003
SimCLR 0.694 ± 0.010 0.790 ± 0.022 0.839 ± 0.008 0.691 ± 0.009 0.790 ± 0.020 0.942 ± 0.014
CMSC 0.723 ± 0.011 0.821 ± 0.013 0.845 ± 0.003 0.725 ± 0.017 0.798 ± 0.008 0.954 ± 0.007
CMLC 0.702 ± 0.011 0.762 ± 0.014 0.844 ± 0.003 0.708 ± 0.026 0.777 ± 0.019 0.948 ± 0.005

CMSMLC 0.722 ± 0.007 0.782 ± 0.013 0.845 ± 0.005 0.710 ± 0.020 0.768 ± 0.033 0.946 ± 0.005
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E.2.2. EMBEDDING DIMENSION, E = 64

In this section, we show that in 21/24 (88%) of all experiments conducted, CMSC outperforms the state-of-the-art method,
SimCLR. This can be seen by the bold test AUC results in Table 20.

Table 20. Comparison of self-supervised methods when used as parameter initializations before fine-tuning on downstream datasets.
Pre-training, fine-tuning, and evaluating multi-lead datasets* using all 12 leads. Mean and standard deviation are shown across 5 seeds.

(a) F = 0.25

Pre-training Dataset Chapman* PhysioNet 2020*

Downstream Dataset Cardiology PhysioNet 2017 PhysioNet 2020* Cardiology PhysioNet 2017 Chapman*

Random Init. 0.632 ± 0.018 0.746 ± 0.009 0.822 ± 0.011 0.632 ± 0.018 0.746 ± 0.009 0.901 ± 0.004
SimCLR 0.632 ± 0.021 0.736 ± 0.019 0.833 ± 0.008 0.626 ± 0.008 0.734 ± 0.018 0.925 ± 0.013
CMSC 0.681 ± 0.024 0.798 ± 0.008 0.834 ± 0.006 0.658 ± 0.026 0.779 ± 0.012 0.942 ± 0.011
CMLC 0.626 ± 0.025 0.735 ± 0.011 0.825 ± 0.004 0.627 ± 0.016 0.739 ± 0.014 0.910 ± 0.007

CMSMLC 0.659 ± 0.024 0.738 ± 0.013 0.820 ± 0.016 0.647 ± 0.023 0.743 ± 0.012 0.912 ± 0.009

(b) F = 0.5

Pre-training Dataset Chapman* PhysioNet 2020*

Downstream Dataset Cardiology PhysioNet 2017 PhysioNet 2020* Cardiology PhysioNet 2017 Chapman*

Random Init. 0.685 ± 0.004 0.768 ± 0.010 0.831 ± 0.007 0.685 ± 0.004 0.768 ± 0.01 0.931 ± 0.016
SimCLR 0.672 ± 0.023 0.762 ± 0.021 0.833 ± 0.011 0.681 ± 0.011 0.767 ± 0.012 0.943 ± 0.006
CMSC 0.708 ± 0.010 0.804 ± 0.011 0.834 ± 0.010 0.709 ± 0.013 0.792 ± 0.015 0.954 ± 0.005
CMLC 0.680 ± 0.017 0.763 ± 0.010 0.832 ± 0.005 0.694 ± 0.019 0.748 ± 0.023 0.933 ± 0.009

CMSMLC 0.706 ± 0.007 0.759 ± 0.014 0.815 ± 0.025 0.699 ± 0.023 0.753 ± 0.017 0.940 ± 0.008

(c) F = 0.75

Pre-training Dataset Chapman* PhysioNet 2020*

Downstream Dataset Cardiology PhysioNet 2017 PhysioNet 2020* Cardiology PhysioNet 2017 Chapman*

Random Init. 0.68 ± 0.015 0.76 ± 0.011 0.841 ± 0.008 0.680 ± 0.015 0.760 ± 0.011 0.937 ± 0.009
SimCLR 0.695 ± 0.023 0.779 ± 0.012 0.844 ± 0.007 0.674 ± 0.017 0.775 ± 0.011 0.948 ± 0.009
CMSC 0.709 ± 0.014 0.809 ± 0.014 0.844 ± 0.007 0.714 ± 0.017 0.802 ± 0.012 0.953 ± 0.006
CMLC 0.690± 0.007 0.778 ± 0.010 0.844 ± 0.002 0.704 ± 0.021 0.768 ± 0.018 0.946 ± 0.003

CMSMLC 0.711 ± 0.011 0.763 ± 0.016 0.838 ± 0.006 0.689 ± 0.022 0.762 ± 0.019 0.946 ± 0.008

(d) F = 1

Pre-training Dataset Chapman* PhysioNet 2020*

Downstream Dataset Cardiology PhysioNet 2017 PhysioNet 2020* Cardiology PhysioNet 2017 Chapman*

Random Init. 0.692 ± 0.023 0.778 ± 0.017 0.846 ± 0.003 0.692 ± 0.023 0.778 ± 0.017 0.946 ± 0.005
SimCLR 0.715 ± 0.011 0.808 ± 0.009 0.842 ± 0.007 0.703 ± 0.006 0.797 ± 0.018 0.952 ± 0.008
CMSC 0.736 ± 0.016 0.810 ± 0.005 0.843 ± 0.005 0.731 ± 0.010 0.810 ± 0.015 0.958 ± 0.007
CMLC 0.706 ± 0.012 0.777 ± 0.017 0.846 ± 0.002 0.709 ± 0.012 0.779 ± 0.018 0.947 ± 0.005

CMSMLC 0.722 ± 0.008 0.780 ± 0.015 0.842 ± 0.008 0.701 ± 0.023 0.779 ± 0.015 0.943 ± 0.009
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E.2.3. EMBEDDING DIMENSION, E = 128

In this section, we show that in 24/24 (100%) of all experiments conducted, CMSC outperforms the the state-of-the-art
method, SimCLR. This can be seen by the bold test AUC results in Table 21.

Table 21. Comparison of self-supervised methods when used as parameter initializations before fine-tuning on downstream datasets.
Pre-training, fine-tuning, and evaluating multi-lead datasets* using all 12 leads. Mean and standard deviation are shown across 5 seeds.

(a) F = 0.25

Pre-training Dataset Chapman* PhysioNet 2020*

Downstream Dataset Cardiology PhysioNet 2017 PhysioNet 2020* Cardiology PhysioNet 2017 Chapman*

Random Init. 0.625 ± 0.015 0.746 ± 0.006 0.819 ± 0.008 0.625 ± 0.015 0.746 ± 0.006 0.909 ± 0.006
SimCLR 0.630 ± 0.011 0.735 ± 0.012 0.833 ± 0.008 0.624 ± 0.007 0.729 ± 0.018 0.918 ± 0.015
CMSC 0.678 ± 0.010 0.790 ± 0.012 0.833 ± 0.008 0.680 ± 0.011 0.777 ± 0.027 0.940 ± 0.007
CMLC 0.639 ± 0.012 0.740 ± 0.007 0.831 ± 0.003 0.639 ± 0.019 0.743 ± 0.016 0.913 ± 0.012

CMSMLC 0.661 ± 0.029 0.748 ± 0.005 0.813 ± 0.024 0.646 ± 0.023 0.736 ± 0.007 0.918 ± 0.012

(b) F = 0.5

Pre-training Dataset Chapman* PhysioNet 2020*

Downstream Dataset Cardiology PhysioNet 2017 PhysioNet 2020* Cardiology PhysioNet 2017 Chapman*

Random Init. 0.678 ± 0.011 0.763 ± 0.005 0.832 ± 0.003 0.678 ± 0.011 0.763 ± 0.005 0.931 ± 0.014
SimCLR 0.667 ± 0.021 0.768 ± 0.012 0.835 ± 0.010 0.659 ± 0.012 0.754 ± 0.024 0.939 ± 0.007
CMSC 0.716 ± 0.010 0.802 ± 0.007 0.840 ± 0.003 0.718 ± 0.005 0.791 ± 0.025 0.944 ± 0.008
CMLC 0.690 ± 0.012 0.763 ± 0.009 0.840 ± 0.003 0.663 ± 0.040 0.752 ± 0.016 0.927 ± 0.013

CMSMLC 0.699 ± 0.013 0.751 ± 0.013 0.815 ± 0.014 0.695 ± 0.020 0.748 ± 0.013 0.931 ± 0.011

(c) F = 0.75

Pre-training Dataset Chapman* PhysioNet 2020*

Downstream Dataset Cardiology PhysioNet 2017 PhysioNet 2020* Cardiology PhysioNet 2017 Chapman*

Random Init. 0.675 ± 0.020 0.775 ± 0.005 0.844 ± 0.006 0.675 ± 0.020 0.775 ± 0.005 0.945 ± 0.004
SimCLR 0.682 ± 0.023 0.775 ± 0.009 0.843 ± 0.007 0.681 ± 0.020 0.764 ± 0.019 0.946 ± 0.010
CMSC 0.719 ± 0.008 0.813 ± 0.006 0.847 ± 0.002 0.711 ± 0.004 0.810 ± 0.020 0.955 ± 0.005
CMLC 0.684 ± 0.008 0.777 ± 0.021 0.846 ± 0.001 0.700 ± 0.016 0.755 ± 0.016 0.942 ± 0.005

CMSMLC 0.711 ± 0.011 0.782 ± 0.006 0.839 ± 0.007 0.694 ± 0.028 0.769 ± 0.014 0.941 ± 0.007

(d) F = 1

Pre-training Dataset Chapman* PhysioNet 2020*

Downstream Dataset Cardiology PhysioNet 2017 PhysioNet 2020* Cardiology PhysioNet 2017 Chapman*

Random Init. 0.702 ± 0.016 0.773 ± 0.01 0.842 ± 0.008 0.702 ± 0.016 0.773 ± 0.01 0.942 ± 0.006
SimCLR 0.703 ± 0.020 0.801 ± 0.014 0.845 ± 0.009 0.703 ± 0.014 0.784 ± 0.009 0.948 ± 0.008
CMSC 0.731 ± 0.022 0.819 ± 0.004 0.847 ± 0.003 0.718 ± 0.012 0.809 ± 0.021 0.959 ± 0.004
CMLC 0.705 ± 0.010 0.777 ± 0.011 0.845 ± 0.002 0.713 ± 0.023 0.789 ± 0.012 0.946 ± 0.005

CMSMLC 0.719 ± 0.005 0.764 ± 0.010 0.837 ± 0.007 0.711 ± 0.013 0.779 ± 0.013 0.947 ± 0.003
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E.2.4. EMBEDDING DIMENSION, E = 256

In this section, we show that in 22/24 (92%) of all experiments conducted, CMSC outperforms the state-of-the-art method,
SimCLR. This can be seen by the bold test AUC results in Table 22.

Table 22. Comparison of self-supervised methods when used as parameter initializations before fine-tuning on downstream datasets.
Pre-training, fine-tuning, and evaluating multi-lead datasets* using all 12 leads. Mean and standard deviation are shown across 5 seeds.

(a) F = 0.25

Pre-training Dataset Chapman* PhysioNet 2020*

Downstream Dataset Cardiology PhysioNet 2017 PhysioNet 2020* Cardiology PhysioNet 2017 Chapman*

Random Init. 0.630 ± 0.014 0.737 ± 0.008 0.809 ± 0.023 0.630 ± 0.014 0.737 ± 0.008 0.903 ± 0.005
SimCLR 0.620 ± 0.028 0.729 ± 0.013 0.830 ± 0.007 0.621 ± 0.016 0.726 ± 0.008 0.933 ± 0.007
CMSC 0.692 ± 0.007 0.792 ± 0.014 0.832 ± 0.009 0.689 ± 0.013 0.782 ± 0.010 0.940 ± 0.010
CMLC 0.618 ± 0.004 0.733 ± 0.006 0.831 ± 0.009 0.648 ± 0.018 0.743 ± 0.010 0.912 ± 0.006

CMSMLC 0.666 ± 0.012 0.741 ± 0.010 0.820 ± 0.013 0.666 ± 0.008 0.736 ± 0.012 0.922 ± 0.011

(b) F = 0.5

Pre-training Dataset Chapman* PhysioNet 2020*

Downstream Dataset Cardiology PhysioNet 2017 PhysioNet 2020* Cardiology PhysioNet 2017 Chapman*

Random Init. 0.659 ± 0.012 0.758 ± 0.021 0.831 ± 0.011 0.659 ± 0.012 0.758 ± 0.021 0.929 ± 0.010
SimCLR 0.670 ± 0.021 0.764 ± 0.008 0.830 ± 0.011 0.663 ± 0.007 0.762 ± 0.009 0.942 ± 0.005
CMSC 0.706 ± 0.024 0.809 ± 0.004 0.835 ± 0.009 0.714 ± 0.006 0.798 ± 0.009 0.953 ± 0.007
CMLC 0.668 ± 0.006 0.762 ± 0.005 0.837 ± 0.007 0.700 ± 0.013 0.768 ± 0.011 0.935 ± 0.010

CMSMLC 0.704 ± 0.012 0.763 ± 0.009 0.829 ± 0.009 0.713 ± 0.006 0.748 ± 0.011 0.940 ± 0.003

(c) F = 0.75

Pre-training Dataset Chapman* PhysioNet 2020*

Downstream Dataset Cardiology PhysioNet 2017 PhysioNet 2020* Cardiology PhysioNet 2017 Chapman*

Random Init. 0.680 ± 0.018 0.764 ± 0.006 0.844 ± 0.004 0.68 ± 0.018 0.764 ± 0.006 0.936 ± 0.014
SimCLR 0.675 ± 0.016 0.782 ± 0.014 0.842 ± 0.007 0.678 ± 0.007 0.786 ± 0.010 0.953 ± 0.002
CMSC 0.714 ± 0.013 0.816 ± 0.003 0.843 ± 0.006 0.722 ± 0.015 0.805 ± 0.011 0.958 ± 0.003
CMLC 0.678 ± 0.011 0.777 ± 0.009 0.841 ± 0.006 0.705 ± 0.013 0.775 ± 0.013 0.936 ± 0.008

CMSMLC 0.701 ± 0.014 0.775 ± 0.009 0.842 ± 0.007 0.705 ± 0.004 0.763 ± 0.009 0.946 ± 0.005

(d) F = 1

Pre-training Dataset Chapman* PhysioNet 2020*

Downstream Dataset Cardiology PhysioNet 2017 PhysioNet 2020* Cardiology PhysioNet 2017 Chapman*

Random Init. 0.696 ± 0.015 0.763 ± 0.012 0.839 ± 0.009 0.696 ± 0.015 0.763 ± 0.012 0.943 ± 0.002
SimCLR 0.708 ± 0.019 0.789 ± 0.006 0.844 ± 0.007 0.707 ± 0.009 0.792 ± 0.008 0.951 ± 0.005
CMSC 0.735 ± 0.006 0.822 ± 0.004 0.843 ± 0.006 0.729 ± 0.010 0.807 ± 0.012 0.957 ± 0.004
CMLC 0.705 ± 0.006 0.795 ± 0.014 0.843 ± 0.007 0.719 ± 0.003 0.793 ± 0.016 0.942 ± 0.006

CMSMLC 0.722 ± 0.008 0.778 ± 0.013 0.842 ± 0.008 0.722 ± 0.003 0.767 ± 0.013 0.946 ± 0.003
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F. Effect of τd on BYOL Implementation
In the BYOL implementation, two networks exist; an online network and a target network. The latter is a delayed version
of the former where its parameters are an exponential moving average of the parameters of the online network. This
exponential moving average is a function of the hyperparameter, τd. In this section, we outline the effect of τd on the
downstream generalization performance of networks both in the linear and transfer evaluation scenarios. This can be found
in Figs 23 and 24, respectively. We find that the results associated with τd = 0.900 lead to the best performance, and are
thus quoted in the main manuscript.

F.1. Linear Evaluation of Representations

Table 23. Effect of the value of τd during BYOL pre-training on the downstream generalization performance of a linear evaluation
scenario. Pre-training, fine-tuning, and evaluating multi-lead datasets* using 4 leads. Mean and standard deviation are shown across 5
seeds.

(a) F = 0.25

Dataset Chapman* PhysioNet 2020*

τd = 0.500 0.602 ± 0.072 0.581 ± 0.010
τd = 0.900 0.671 ± 0.042 0.587 ± 0.021
τd = 0.990 0.597 ± 0.068 0.571 ± 0.028

(b) F = 0.5

Dataset Chapman* PhysioNet 2020*

τd = 0.500 0.618 ± 0.087 0.590 ± 0.010
τd = 0.900 0.643 ± 0.043 0.595 ± 0.018
τd = 0.990 0.604 ± 0.079 0.578 ± 0.033

(c) F = 0.75

Dataset Chapman* PhysioNet 2020*

τd = 0.500 0.635 ± 0.075 0.597 ± 0.008
τd = 0.900 0.666 ± 0.032 0.598 ± 0.022
τd = 0.990 0.613 ± 0.085 0.586 ± 0.026

(d) F = 1

Dataset Chapman* PhysioNet 2020*

τd = 0.500 0.637 ± 0.082 0.601 ± 0.008
τd = 0.900 0.653 ± 0.026 0.602 ± 0.015
τd = 0.990 0.619 ± 0.088 0.592 ± 0.026
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F.2. Transfer Capabilities of Representations

Table 24. Effect of the value of τd during BYOL pre-training on the downstream generalization performance in the fine-tuning evaluation
scenario. Pre-training, fine-tuning, and evaluating multi-lead datasets* using 4 leads. Mean and standard deviation are shown across 5
seeds.

(a) F = 0.25

Pre-training Dataset Chapman* PhysioNet 2020*

Downstream Dataset Cardiology PhysioNet 2017 PhysioNet 2020* Cardiology PhysioNet 2017 Chapman*

τd = 0.500 0.614 ± 0.026 0.738 ± 0.023 0.765 ± 0.015 0.609 ± 0.015 0.724 ± 0.027 0.900 ± 0.003
τd = 0.900 0.620 ± 0.013 0.726 ± 0.013 0.764 ± 0.013 0.624 ± 0.021 0.752 ± 0.011 0.904 ± 0.006
τd = 0.990 0.612 ± 0.009 0.732 ± 0.022 0.767 ± 0.018 0.617 ± 0.022 0.729 ± 0.015 0.901 ± 0.003

(b) F = 0.5

Pre-training Dataset Chapman* PhysioNet 2020*

Downstream Dataset Cardiology PhysioNet 2017 PhysioNet 2020* Cardiology PhysioNet 2017 Chapman*

τd = 0.500 0.685 ± 0.015 0.763 ± 0.011 0.797 ± 0.019 0.658 ± 0.046 0.739 ± 0.027 0.913 ± 0.009
τd = 0.900 0.678 ± 0.021 0.748 ± 0.014 0.802 ± 0.013 0.674 ± 0.022 0.757 ± 0.010 0.916 ± 0.009
τd = 0.990 0.671 ± 0.013 0.748 ± 0.014 0.802 ± 0.017 0.658 ± 0.017 0.755 ± 0.021 0.910 ± 0.009

(c) F = 0.75

Pre-training Dataset Chapman* PhysioNet 2020*

Downstream Dataset Cardiology PhysioNet 2017 PhysioNet 2020* Cardiology PhysioNet 2017 Chapman*

τd = 0.500 0.689 ± 0.007 0.766 ± 0.014 0.824 ± 0.014 0.693 ± 0.015 0.758 ± 0.030 0.919 ± 0.013
τd = 0.900 0.671 ± 0.022 0.754 ± 0.009 0.825 ± 0.009 0.700 ± 0.020 0.751 ± 0.033 0.930 ± 0.005
τd = 0.990 0.678 ± 0.019 0.764 ± 0.009 0.822 ± 0.011 0.662 ± 0.026 0.763 ± 0.01 0.925 ± 0.010

(d) F = 1

Pre-training Dataset Chapman* PhysioNet 2020*

Downstream Dataset Cardiology PhysioNet 2017 PhysioNet 2020* Cardiology PhysioNet 2017 Chapman*

τd = 0.500 0.709 ± 0.013 0.754 ± 0.008 0.826 ± 0.015 0.691 ± 0.038 0.770 ± 0.017 0.931 ± 0.007
τd = 0.900 0.697 ± 0.006 0.774 ± 0.017 0.834 ± 0.011 0.709 ± 0.017 0.771 ± 0.022 0.935 ± 0.008
τd = 0.990 0.701 ± 0.014 0.761 ± 0.020 0.833 ± 0.008 0.679 ± 0.042 0.756 ± 0.013 0.936 ± 0.011
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G. Intra and Inter-Patient Representation Distances
G.1. Effect of Embedding Dimension, E, on Learning Patient-specific Representations

In Fig. 9, we show that, when using a low embedding dimension (E = 32), the intra-patient distances are the lowest with
a mean of around 1. As E = 32 −→ 256, the distributions begin to shift to higher values. Such high pairwise distances
imply that maintaining similar representations at higher dimensions is more difficult. Moreover, we clearly see two distinct
distributions belonging to intra-patient and inter-patient distances. This suggests that the training procedure worked as
expected, leading to representations that are more similar within patients than across patients.

(a) E = 32 (b) E = 64

(c) E = 128 (d) E = 256

Figure 9. Distribution of pairwise Euclidean distance between representations belonging to the same patient (Intra-Patient) and those
belonging to different patients (Inter-Patient). Representations are of instances present in the validation set of PhysioNet 2020. Self-
supervision was performed with CMSC on PhysioNet 2020 using 4 leads.


