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Abstract

The healthcare industry generates troves of unla-
belled physiological data. This data can be ex-
ploited via contrastive learning, a self-supervised
pre-training method that encourages representa-
tions of instances to be similar to one another. We
propose a family of contrastive learning methods,
CLOCS, that encourages representations across
space, time, and patients to be similar to one an-
other. We show that CLOCS consistently outper-
forms the state-of-the-art methods, BYOL and
SimCLR, when performing a linear evaluation
of, and fine-tuning on, downstream tasks. We
also show that CLOCS achieves strong general-
ization performance with only 25% of labelled
training data. Furthermore, our training pro-
cedure naturally generates patient-specific rep-
resentations that can be used to quantify patient-
similarity.

1. Introduction

At present, the healthcare system struggles to sufficiently
leverage the abundant, unlabelled datasets that it generates
on a daily basis. This is partially due to the dependence of
deep learning algorithms on high quality labels for strong
generalization performance. However, procuring such high
quality labels in a clinical setting, where physicians are
squeezed for time and attention, is practically infeasible.
Self-supervised methods offer a way to overcome such an
obstacle. For example, they can exploit unlabelled datasets
to formulate pretext tasks such as predicting the rotation
of images (Gidaris et al., 2018), their corresponding col-
ourmap (Larsson et al., 2017), and the arrow of time (Wei
et al., 2018). More recently, contrastive learning was in-
troduced as a way to learn representations of instances that
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share some context. By capturing this high-level shared
context (e.g., medical diagnosis), representations become
invariant to the differences (e.g., input modalities) between
the instances.

Contrastive learning can be characterized by three main
components: 1) a positive and negative set of examples,
2) a set of transformation operators, and 3) a variant of the
noise contrastive estimation loss. Most research in this do-
main has focused on curating a positive set of examples by
exploiting data temporality (Oord et al., 2018), data aug-
mentations (Chen et al., 2020), and multiple views of the
same data instance (Tian et al., 2019). These methods are
predominantly catered to the image-domain and central to
their implementation is the notion that shared context arises
from the same instance. We believe this precludes their
applicability to the medical domain where physiological
time-series are plentiful. Moreover, their interpretation of
shared context is limited to data from a common source,
where that source is the individual data instance. In medi-
cine, however, shared context can occur at a higher level,
the patient level. This idea is central to our contributions
and will encourage the development of representations that
are patient-specific. Such representations have the poten-
tial to be used in tasks that exploit patient similarity such
as disease subgroup clustering and discovery. As a result
of the process, medical practitioners may receive more in-
terpretable outputs from networks.

In this work, we leverage electrocardiogram (ECG) sig-
nals to learn patient-specific representations via contrastive
learning. In the process, we exploit both temporal and spa-
tial information present in the ECG, with the latter referring
to projections of the same electrical signal of the heart onto
multiple axes, also known as leads.

Contributions. Our contributions are the following:

1. We propose a family of patient-specific contrastive
learning methods, entitled CLOCS, that exploit both
temporal and spatial information present in ECG sig-
nals.

2. We show that CLOCS outperforms state-of-the-art
methods, BYOL and SimCLR, when performing a lin-
ear evaluation of, and fine-tuning on, downstream tasks
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involving cardiac arrhythmia classification.

2. Related Work

Contrastive learning. In contrastive predictive coding,
Oord et al. (2018) use representations of current segments
to predict those of future segments. More recently, Tian
et al. (2019) propose contrastive multi-view coding where
multiple views of the same image are treated as ‘shared
context’. He et al. (2019); Chen et al. (2020); Grill et al.
(2020) exploit the idea of instance discrimination (Wu
et al.,, 2018) and interpret multiple views as stochastic-
ally augmented forms of the same instance. They explore
the benefit of sequential data augmentations and show that
cropping and colour distortions are the most important.
These augmentations, however, do not trivially extend to
the time-series domain. Shen et al. (2020) propose to cre-
ate mixtures of images to smoothen the output distribution
and thus prevent the model from being overly confident.
Time Contrastive Learning (Hyvarinen & Morioka, 2016)
performs contrastive learning over temporal segments in a
signal and illustrate the relationship between their approach
and ICA. In contrast to our work, they formulate their task
as prediction of the segment index within a signal and per-
form limited experiments that do not exploit the noise con-
trastive estimation (NCE) loss. Bachman et al. (2019) Time
Contrastive Networks (Sermanet et al., 2017) attempt to
learn commonalities across views and differences across
time. In contrast, our work focuses on identifying com-
monalities across both spatial and temporal components of
data.

Self-supervision for medical time-series. Miotto et al.
(2016) propose DeepPatient, a 3-layer stacked denoising
autoencoder that attempts to learn a patient representation
using electronic health record (EHR) data. Although per-
formed on a large proprietary dataset, their approach is fo-
cused on EHRs and does not explore contrastive learning
for physiological signals. Sarkar & Etemad (2020) use
ECG signals and define pretext classification tasks in the
context of affective computing. These include tasks such
as temporal inversion, negation, and time-warping. Their
work is limited to affective computing, does not explore
contrastive learning, and does not exploit multi-lead data
as we do. Lyu et al. (2018); Li et al. (2020) explore a
sequence to sequence model to learn representations from
EHR data in the eICU dataset. In the process, they minim-
ize the reconstruction error of the input time-series. Cheng
et al. (2020) explore contrastive learning for biosignals on
small-scale datasets. In contrast, we develop a family of
patient-specific contrastive learning methods and evaluate
them on four distinct datasets.

3. Background
3.1. Contrastive Learning

Let us assume the presence of a learner fy : © € RP —
h € R, parameterized by 6, which maps a D-dimensional
input, z, to an F-dimensional representation, h. Further
assume the presence of an unlabelled dataset, X € RNxD
where N is the total number of instances.

Each unlabelled instance, ¢ € X, is exposed to a set of
transformations, T4 and T, such that %y = T4 (z") and
2%y = T(x"). Such transformations can consist of two dif-
ferent data augmentation procedures such as random crop-
ping and flipping. These transformed instances now belong
to an augmented dataset, X’ € RV*P*V where V is equal
to the number of applied transformations. In contrastive
learning, representations, h'y = fo(z4) and hy = fo(z%),
are said to share context. As a result of this shared context,
these representations constitute a positive pair because (a)
they are derived from the same original instance, zt, and
(b) the transformations applied to the original instance are
class-preserving. Representations within a positive pair are
encouraged to be similar to one another and dissimilar to
representations of all other instances, h’y,h}; Vj j # i.
The similarity of these representations, s(h’y, h%;), is quan-
tified via a metric, s, such as cosine similarity. Encouraging
a high degree of similarity between representations in the
positive pair can result in representations that are invariant
to different transformations of the same instance.

4. Methods

4.1. Positive and Negative Pairs of Representations

Representations that are derived from the same instance
are typically assumed to share context. This approach,
however, fails to capture commonalities present across in-
stances. In the medical domain, for example, multiple
physiological recordings from the same patient may share
context. It is important to note that if such recordings were
collected over large time-scales (e.g., on the order of years)
and in drastically different scenarios (e.g., at rest vs. during
a stress test), then the shared context across these record-
ings is likely to diminish. This could be due to changing
patient demographics and disease profiles. With the previ-
ous caveat in mind, we propose to leverage commonalities
present in multiple physiological recordings by redefining
a positive pair to refer to representations of transformed in-
stances that belong to the same patient. We outline how to
arrive at these transformed instances next.

4.2. Transformation Operators

When choosing the transformation operators, 7', that are
applied to each instance, the principal desideratum is that
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Figure 1. ECG recordings reflect both temporal and spatial information. This is because they measure the electrical activity of the heart
using different leads (views) over time. Temporal Invariance. Abrupt changes to the ECG recording are unlikely to occur on the order
of seconds, and therefore adjacent segments of shorter duration will continue to share context. Spatial Invariance. Recordings from
different leads (at the same time) will reflect the same cardiac function, and thus share context.

they capture invariances in the ECG recording. Motivated
by the observation that ECG recordings reflect both tem-
poral and spatial information, we propose to exploit both
temporal and spatial invariances. We provide an intuition
for such invariances in Fig. 1.

As is pertains to temporal invariance (Fig. 1 left), we as-
sume that upon splitting an ECG recording, associated with
Class 1, into sub-segments, each of the sub-segments re-
main associated with Class 1. We justify this assumption
based on human physiology where abrupt changes in car-
diac function (on the order of seconds) are unlikely to oc-
cur. If these sub-segments were collected years apart, for
example, our assumption may no longer hold. As for spa-
tial invariance (Fig. 1 right), we leverage the hexiaxial dia-
gram which illustrates the location of the leads relative to
the heart. We assume that temporally-aligned ECG record-
ings from different leads (views) are associated with the
same class. This is based on the idea that multiple leads
(collected at the same time) will reflect the same underly-
ing cardiac function. Occasionally, this assumption may
not hold, if, for example, a cardiac condition affects a spe-
cific part of the heart, making it detectable by only a few
leads. We now describe how to exploit these invariances
for contrastive learning.

Contrastive Multi-segment Coding (CMSC). Given an
ECG recording, xt, with duration S seconds, we can ex-
tract V non-overlapping temporal segments, each with dur-
ation S/V seconds. If V' = 2, for example, z}; = T};(z?)
and xi, = Ty (x") where t indicates the timestamp of the
temporal segment (see Fig. 1 left). We exploit temporal in-
variances in the ECG by defining representations of these
adjacent and non-overlapping temporal segments as posit-
ive pairs.

Contrastive Multi-lead Coding (CMLC). Different pro-
jections of the same electrical signal emanating from the

heart are characterized by different leads, L. For example,
with two leads, L1 and L2, then 2%, = Tpi(z') and
2, = Tra(a") (see Fig. 1 right). We exploit spatial in-
variances in the ECG by defining representations of these
different temporally-aligned projections as positive pairs.

Contrastive =~ Multi-segment  Multi-lead  Coding
(CMSMLC). We simultaneously exploit both tem-
poral and spatial invariances in the ECG by defining
representations of non-overlapping temporal segments and
different projections as positive pairs. For example, in
the presence of two temporal segments with timestamps,
tl and t2, that belong to two leads, L1 and L2, then
Ty 1 = Ty1,c1(2*) and Tyo 1o = Ti2,r2(2").

4.3. Patient-Specific Noise Contrastive Estimation Loss

Given our patient-centric definition of positive pairs, we
propose to optimize a patient-specific noise contrastive es-
timation loss. More formally, Given a mini-batch of K in-
stances, we apply a pair of transformation operators and
generate 2K transformed instances (a subset of which is
shown in Fig. 2). We encourage a pair of representations,

i and h%, i,k € P, from the same patient, P, to be sim-
ilar to one another and dissimilar to representations from
other patients. We quantify this similarity using the cosine
similarity, s, with a temperature scaling parameter, 7, (see
Eq. 1) as is performed in (Tian et al., 2019; Chen et al.,
2020). We extend this to all representations in the mini-
batch to form a similarity matrix of dimension K x K. In
this matrix, we identify positive pairs by associating each
instance with its patient ID. By design, this includes the di-
agonal elements and results in the loss shown in Eq. 2. If
the same patient reappears within the mini-batch, then we
also consider off-diagonal elements, resulting in the loss
shown in Eq. 3. The frequency of these off-diagonals is
inconsistent due to the random shuffling of data. We op-



CLOCS: Contrastive Learning of Cardiac S

ignals Across Space, Time, and Patients

Pairwise CMSC CMLC
Similarity Segment 2 — Lead Il
Matrices

1

Segment 1 — Lead Il

Segment 1 — Lead aVR

CMSMLC
Segment 2 — Lead aVR

50

K

50

Figure 2. Similarity matrix for a mini-batch of K instances in (Left) Contrastive Multi-segment Coding, (Centre) Contrastive Multi-
lead Coding, and (Right) Contrastive Multi-segment Multi-lead Coding. Additional matrices would be generated based on all pairs of
applied transformation operators, 7’4 and T's. Exemplar transformed ECG instances are illustrated along the edges. To identify positive
pairs, we associate each instance with its patient ID. By design, diagonal elements (green) correspond to the same patient, contributing
to Eq. 2. Similarly, instances 1 and 50 (yellow) belong to the same patient, contributing to Eq. 3. The blue area corresponds to negative

examples as they pertain to instances from different patients.

timize the objective function in Eq. 4 for all pairwise com-
binations of transformation operators, 74 and Tz, where
we include Eq. 2 and Eq. 3 twice to consider negative pairs
in both views.
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5. Experimental Design
5.1. Datasets

We conduct our experiments' using PyTorch (Paszke et al.,
2019) on four ECG datasets that include cardiac arrhythmia
labels. PhysioNet 2020 (Perez Alday et al., 2020) consists
of 12-lead ECG recordings from 6,877 patients alongside 9
different classes of cardiac arrhythmia. Each recording can
be associated with multiple labels. Chapman (Zheng et al.,

!Code can be accessed at:
danikiyasseh/CLOCS

https://github.com/

2020) consists of 12-lead ECG recordings from 10,646 pa-
tients alongside 11 different classes of cardiac arrhythmia.
As is suggested by (Zheng et al., 2020), we group these la-
bels into 4 major classes. PhysioNet 2017 (Clifford et al.,
2017) consists of 8,528 single-lead ECG recordings along-
side 4 different classes. Cardiology (Hannun et al., 2019)
consists of single-lead ECG recordings from 328 patients
alongside 12 different classes of cardiac arrhythmia. An
in-depth description of these datasets can be found in Ap-
pendix A.1.

All datasets were split into training, validation, and test sets
according to patient ID using a 60, 20, 20 configuration.
In other words, patients appeared in only one of the sets.
The exact number of instances used during self-supervised
pre-training and supervised training can be found in Ap-
pendix A.2.

5.2. Pre-training Implementation

We conduct our pre-training experiments on the training set
of two of the four datasets: PhysioNet 2020 and Chapman.
We chose these datasets as they contain multi-lead data.
In CMSC, we extract a pair of non-overlapping temporal
segments of S = 2500 samples. This is equivalent to 10
and 5 seconds worth of ECG data from the Chapman and
PhysioNet 2020 datasets, respectively. We choose this seg-
ment length so that the assumption of temporal invariance
is more likely to hold and because segments < 10 seconds
in duration align with in-hospital ECG recording norms.
Therefore, our model is presented with a mini-batch of di-
mension K x S x 2 where K is the batchsize, and S is the
number of samples. In CMLC, we explore two scenarios
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with a different number of leads corresponding to the same
instance. Our mini-batch dimension is KX x S x L, where
L is the number of leads. Lastly, in CMSMLC, we incor-
porate an additional temporal segment in each mini-batch.
Therefore, our mini-batch dimension is K x 25 x L. To
ensure a fair comparison between all methods, we expose
them to an equal number of patients and instances during
training. In CMLC or CMSMLC, we pre-train using either
4 leads (II, V2, aVL, aVR) or all 12 leads. We chose these
4 leads as they cover a large range of axes.

5.3. Evaluation on Downstream Task

The downstream task of interest is that of cardiac ar-
rhythmia classification; the diagnosis of abnormalities in
the functioning of the heart. Such a procedure can be con-
ducted in hospital and ambulatory settings, has widespread
clinical applications from screening and guiding medical
treatment to determining patient eligibility for surgery. We
focus on this task due to its ubiquity and potential impact
on a multitude of clinical workflows.

We evaluate our pre-trained methods in two scenarios. In
Linear Evaluation of Representations, we are interested
in evaluating the utility of the fixed feature extractor in
learning representations. Therefore, the pre-trained para-
meters are frozen and multinomial logistic regression is
performed on the downstream supervised task. In Transfer
Capabilities of Representations, we are interested in eval-
uating the inductive bias introduced by pre-training. There-
fore, the pre-trained parameters are used as an initialization
for training on the downstream supervised task.

5.4. Baselines

We compare our pre-training methods to networks that
are initialized randomly (Random Init.), via supervised
pre-training (Supervised), or via a multi-task pre-training
mechanism introduced specifically for ECG signals (MT-
SSL) (Sarkar & Etemad, 2020). We also compare to BYOL
(Grill et al., 2020) and SimCLR (Chen et al., 2020), which
encourage representations of instances and their perturbed
counterparts to be similar to one another, with the aim
of learning transformation-invariant representations that
transfer well.

As SimCLR has been shown to be highly dependent on
the choice of perturbations, we explore the following time-
series perturbations (see Appendix B for visualizations).
(a) Gaussian —we add ¢ ~ N (0, o) to the time-series sig-
nal where we chose o based on the amplitude of the signal.
This was motivated by the work of (Han et al., 2020) who
recently showed the effect of additive noise on ECG sig-
nals. (b) Flip —we flip the time-series signal temporally
(Flipy ), reversing the arrow of time, or we invert the time-
series signal along the x-axis (Flipy). (c) SpecAugment

—(Park et al., 2019) we take the short-time Fourier trans-
form of the time-series signal, generating a spectrogram.
We then mask either temporal (SA;) or spectral (SA y) bins
of varying widths before converting the spectrogram to the
time domain. We also explore the application of sequential
perturbations to the time-series signal.

5.5. Hyperparameters

During self-supervised pre-training, we chose the temper-
ature parameter, 7 = 0.1, as per (Chen et al., 2020). For
BYOL, we chose the decay rate, 74 = 0.90, after exper-
imenting with various alternatives (see Appendix F). For
all experiments, we use a neural architecture composed of
three 1D convolutional layers followed by two fully con-
nected layers. Further implementation details can be found
in Appendix C.

6. Experimental Results
6.1. Effect of Perturbations on Performance

Contrastive learning methods, and in particular SimCLR,
are notorious for their over-dependence on the choice of
perturbations. To begin exploring this dependence, we ap-
ply a diverse set of stochastic perturbations, G, (see Ap-
pendix B) during pre-training and observe its effect on gen-
eralization performance. We follow the setup introduced by
(Chen et al., 2020) and apply either a single perturbation
to each instance, z*, whereby i = G1(z%), or sequential
perturbations whereby z1 , = Go(G1(z")).

We apply such perturbations while pre-training with Sim-
CLR or CMSC on PhysioNet 2020 using 4 leads and, in
Fig. 3, illustrate the test AUC in the linear evaluation scen-
ario. We show that, regardless of the type and number
of perturbations, CMSC continues to outperform SimCLR.
For example, the worst-performing CMSC implementa-
tion (Flipy-) results in an AUC = 0.661 which is still
greater than the best-performing SimCLR implementation
(Gaussian — SA;) with an AUC = 0.636. In fact, we
find that pre-training with CMSC without applying any per-
turbations (next section; see Table 1) still outperforms the
best-performing SimCLR implementation. Such a finding
suggests that CMSC'’s already strong performance is more
likely to stem from its redefinition of the ‘shared context’
to include both time and patients than from the choice of
perturbations.

6.2. Linear Evaluation of Representations

In this section, we evaluate the utility of the self-supervised
representations learned using four leads on a downstream
linear classification task. In Table 1, we show the test AUC
on Chapman and PhysioNet 2020 using 50% of the labelled
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Figure 3. Effect of single (blue) and sequential (green) perturbations applied to the (top) SimCLR and (bottom) CMSC implementations
on linear evaluation. Sequential perturbations involve a Gaussian perturbation followed by one of the remaining four types. Pre-training
and evaluation was performed on PhysioNet 2020 using 4 leads. Evaluation was performed at F' = 0.5 and results are averaged across
5 seeds. We show that CMSC outperforms SimCLR regardless of the applied perturbation.

data (F' = 0.5) after having learned representations, with
dimension F = 128, using the same two datasets.

Table 1. Test AUC of the linear evaluation of the representations
at I' = 0.5, after having pre-trained on Chapman or PhysioNet
2020 with EF = 128. Pre-training and evaluating multi-lead data-
sets* using 4 leads (II, V2, aVL, aVR). Mean and standard devi-
ation are shown across 5 seeds. Bold reflects the top-performing
method.

Dataset | Chapman* PhysioNet 2020%*
MT-SSL 0.677 £+ 0.024 0.665 £+ 0.015
BYOL 0.643 £+ 0.043 0.595 + 0.018
SimCLR 0.738 £+ 0.034 0.615 + 0.014
CMSC 0.896 £ 0.005 0.715 + 0.033
CMLC 0.870 £ 0.022 0.596 + 0.008
CMSMLC | 0.847 £+ 0.024 0.680 £ 0.008

We show that CMSC outperforms BYOL and SimCLR
on both datasets. On the Chapman dataset, CMSC and
SimCLR achieve an AUC = 0.896 and 0.738, respect-
ively, illustrating a 15.8% improvement. Such a finding im-
plies that the representations learned by CMSC are richer
and thus allow for improved generalization. We hypo-
thesize that this is due to the setup of CMSC whereby
the shared context is across segments (temporally) and pa-
tients. Moreover, we show that CLOCS (all 3 proposed
methods) outperforms SimCLR in 100% of all conducted
experiments, even when pre-training and evaluating with
all 12 leads (see Appendix D).

6.3. Transfer Capabilities of Representations

In this section, we evaluate the utility of initializing a net-
work for a downstream task with parameters learned via
self-supervision using four leads. In Table 2, we show the
test AUC on downstream datasets at /' = 0.5 for the vari-
ous self-supervised methods with ¥ = 128.

We show that, with a few exceptions, self-supervision is
advantageous relative to a Random Initialization. This can
be seen by the higher AUC achieved by the former rel-
ative to the latter. We also show that, depending on the
downstream dataset, either CMSC or CMSMLC outper-
form BYOL and SimCLR. For example, when pre-training
on Chapman and fine-tuning on Cardiology, CMSMLC
achieves an AUC = 0.717, a 4.1% improvement compared
to SimCLR. This implies that by encouraging representa-
tions across space, time, and patients to be similar to one
another, networks are nudged into a favourable parameter
space.

We also find that CMLC performs consistently worse than
CMSC and CMSMLC. We hypothesize that this is because
the underlying physiological phenomenon, although the
same at a particular time-point, may not manifest equival-
ently across the leads. For example, an arrhythmia in the
right ventricle of the heart may be more apparent in Lead
V1 than in Lead I. Therefore, attracting representations of
such leads, as is done with CMLC, may confuse the net-
work. In Appendix E.1, we extend these findings and illus-
trate that CLOCS outperforms SimCLR in at least 75% of
all experiments conducted, on average. When pre-training,
fine-tuning, and evaluating using all 12 leads, we show that
CMSC outperforms all other methods in at least 90% of all
experiments conducted (see Appendix E.2).

6.4. Doing More With Less Labelled Data

Having established that self-supervision can nudge net-
works to a favourable parameter space, we set out to in-
vestigate whether such a space can lead to strong general-
ization with less labelled data in the downstream task. In
Fig. 4, we illustrate the validation AUC of networks initial-
ized randomly, with access to 100% of the labels, or via
CMSC, with access to fewer labels, and fine-tuned on two
different datasets.
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Table 2. Test AUC in the fine-tuning scenario at F' = 0.5, after having pre-trained on Chapman or PhysioNet 2020 with £ = 128.
Pre-training, fine-tuning, and evaluating multi-lead datasets* using 4 leads. Mean and standard deviation are shown across 5 seeds. We
show that, depending on the downstream dataset, either CMSC or CMSMLC outperform BYOL and SimCLR.

Pre-training Dataset ‘ Chapman* PhysioNet 2020*
Downstream Dataset ‘ Cardiology PhysioNet 2017  PhysioNet 2020* Cardiology PhysioNet 2017 Chapman*
Random Init. 0.678 £0.011  0.763 £ 0.005 0.803 £0.008 | 0.678 =0.011  0.763 £ 0.005  0.907 £ 0.006
Supervised 0.684 £ 0.015  0.799 £ 0.008 0.827 £ 0.001 0.730 £0.002  0.810 £0.009  0.954 + 0.003
Self-supervised Pre-training
MT-SSL 0.650 £ 0.009  0.741 £ 0.012 0.774 £0.010 | 0.661 £0.011  0.746 £0.016  0.923 £+ 0.007
BYOL 0.678 £0.021  0.748 £0.014 0.802 £0.013 | 0.674 £0.022 0.757 £0.010  0.916 £ 0.009
SimCLR 0.676 £0.011  0.772 £+ 0.010 0.823 £ 0.011 0.658 £0.027 0.762 +£0.009  0.923 £ 0.010
CMSC 0.695 £0.024  0.773 £ 0.013 0.830 = 0.002 | 0.714 +=0.014 0.760 = 0.013  0.932 £ 0.008
CMLC 0.665 £ 0.016  0.767 £ 0.013 0.810 £ 0.011 0.675£0.013  0.762 £0.007 0.910 £ 0.012
CMSMLC 0.717 £ 0.006  0.774 £ 0.004 0.814 £0.009 | 0.698 +0.011  0.774 £ 0.012  0.930 £+ 0.012

0.700

0.675

0.650

0.625
8 0.600
<

0.575

0.550

0.525 = Random, F =1
- = CMSC, F=0.25

0 5 10 15 20 25 30
Epochs

0.500

(a) PhysioNet 2020 — Cardiology

0.80

0.75

0.70
8 0.65
<<

0.60

0.55
= Random, F =1
=== CMSC, F = 0.5

0 10 20 30 40 50 60
Epochs

0.50

(b) Chapman — PhysioNet 2017

Figure 4. Validation AUC of a network initialized randomly or
via CMSC and which is exposed to different amounts of labelled
training data, F'. Results are averaged across 5 seeds. Shaded area
represents one standard deviation. We show that a network initial-
ized with CMSC and exposed to less data (F' < 1) outperforms
one randomly initialized and exposed to all data (/' = 1).

We find that fine-tuning a network based on a CMSC ini-
tialization drastically improves data-efficiency. In Fig. 4a,

we show that a network initialized with CMSC and exposed
to only 25% of the labelled data outperforms one that is
initialized randomly and exposed to 100% of the labelled
data. This can be seen by the consistently higher AUC dur-
ing, and at the end of, training. A similar outcome can
be seen in Fig. 4b. This suggests that self-supervised pre-
training exploits data efficiently such that networks can do
more with less on downstream classification tasks.

6.5. Effect of Embedding Dimension, F, and
Availability of Labelled Data, F’

The dimension of the representation learned during self-
supervision and the availability of labelled training data can
both have an effect on model performance. In this section,
we investigate these claims. In Figs. 5a and 5b, we illustrate
the test AUC for all pre-training methods as a function of
E = (32,64,128,256) and F' = (0.25,0.50,0.75,1).

In Fig. 5a, we show that networks initialized randomly or
via SimCLR are not significantly affected by the embed-
ding dimension. This can be seen by the AUC ~ 0.63 and
~ 0.65, for these two methods across all values of E. In
contrast, the embedding dimension has a greater effect on
CMSC where AUC ~ 0.66 — 0.69 as £ = 32 — 128.
This implies that CMSC is still capable of achieving strong
generalization performance despite the presence of few la-
belled data (F' = 0.25). We hypothesize that the strong
performance of CMSC, particularly at £ = 128, is driven
by its learning of patient-specific representations (see Ap-
pendix G) that cluster tightly around one another, a posit-
ive characteristic especially when such representations are
class-discriminative.

In Fig. 5b, we show that increasing the amount of labelled
training data benefits the generalization performance of all
methods. This can be seen by the increasing AUC val-
ues as F' = 0.25 — 1. We also show that at all fraction
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Figure 5. Effect of (a) embedding dimension, F, and (b) labelled
fraction, F', on the test AUC when pre-training on Chapman and
fine-tuning on Cardiology. Results are averaged across 5 seeds.
Error bars represent one standard deviation.

values, CMSMLC outperforms its counterparts. For ex-
ample, at ' = 1, CMSMLC achieves an AUC = 0.732
whereas SimCLR achieves an AUC = 0.718. Such be-
haviour still holds at F' = 0.25 where the two methods
achieve an AUC = 0.675 and 0.652, respectively. This
outcome emphasizes the robustness of CMSMLC to scarce,
labelled training data.

6.6. CLOCS Learns Patient-Specific Representations

We redefined ‘shared context’ to refer to representa-
tions from the same patient, which in turn should pro-
duce patient-specific representations. To validate this hy-
pothesis, we calculate the pairwise Euclidean distance
between representations of the same patient (Intra-Patient)
and those of different patients (Inter-Patient). On average,
the former should be smaller than the latter. In Fig. 6, we
illustrate the two distributions associated with the intra and
inter-patient distances at £ = 128. At higher embedding
dimensions, we find that these distributions are simply shif-
ted to higher values (see Appendix G).

Intra-Patient
0.25 Inter-Patient

0 2 4 6 8 10 12 14 16 18
Pairwise Euclidean Distance

(a) SimCLR

Intra-Patient
Inter-Patient

0 2 4 6 8 10 12 14 16 18
Pairwise Euclidean Distance

(b) CMSC

Figure 6. Distribution of pairwise Euclidean distance between
representations (£ = 128) belonging to the same patient (Intra-
Patient) and those belonging to different patients (Inter-Patient).
Self-supervision was performed on PhysioNet 2020. Notice the
lower average intra-patient distance and improved separability
between the two distributions with CMSC than with SimCLR.

We show that these two distributions have large mean val-
ues and overlap significantly when implementing SimCLR,
as seen in Fig. 6a. This is expected as SimCLR is blind
to the notion of a patient. In contrast, when implement-
ing CMSC, the intra-patient distances are lower than those
found in SimCLR, as seen in Fig. 6b. Moreover, the intra
and inter-patient distributions are more separable. This im-
plies that pre-training with CMSC leads to patient-specific
representations. We note that this phenomenon takes place
while concomitantly learning better representations, as ob-
served in previous sections.

7. Discussion and Future Work

In this paper, we proposed a family of self-supervised pre-
training mechanisms, entitled CLOCS, based on contrast-
ive learning for physiological signals. In the process, we
encouraged representations across segments (temporally)
and leads (spatially) that correspond to instances from the
same patient to be similar to one another. We showed
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that our methods outperform the state-of-the-art methods,
BYOL and SimCLR, when performing a linear evaluation
of, and fine-tuning on, downstream tasks. This conclu-
sion also holds when applying a range of perturbations and
when pre-training and evaluating with a different number
of leads. We now elucidate several avenues worth explor-
ing.

Quantifying patient similarity. We have managed to learn
patient-specific representations. These representations can
be used to quantify patient-similarity in order to assist with
diagnosis or gain a better understanding of a medical condi-
tion. Validation of these representations can be performed
by comparing patients known to be similar.

Multi-modal transfer. We transferred parameters from
one task to another that shared the same input modal-
ity, the ECG. Such data may not always be available for
self-supervision. An interesting path would be to explore
whether contrastive self-supervision on one modality can
transfer well to another modality.

Multi-modal contrastive learning. We exploited the
temporal and spatial invariance of a single modality, the
ECG, for contrastive learning. However, we also envi-
sion CLOCS being applied to other modalities (e.g., car-
diac ultrasound, brain MRI, and ICU vitals data). In the
last case, for example, oxygen saturation and respiratory
rate recorded over time can be interpreted as two spatial
‘views’ of the same physiological phenomenon and can
thus be exploited by CMLC. Furthermore, in a hospital set-
ting, ECG signals are typically recorded alongside other
modalities, such as the photoplethysmogram (PPG). One
potential multi-modal approach would be to attract repres-
entations of temporally-aligned ECG and PPG segments.
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