
Representational aspects of depth and conditioning in normalizing flows

A. Universal approximation with ill-conditioned affine coupling networks
A.1. Simpler universality under zero-padding.

First (as a warmup), we give a much simpler proof than (Huang et al., 2020) that affine coupling networks are universal
approximators in Wasserstein under zero-padding, which moreover shows that only a small number of affine coupling
layers are required. For Q a probability measure over Rn satisfying weak regularity conditions (see Theorem 8 below), by
Brenier’s Theorem (Villani, 2003) there exists a W2 optimal transport map

ϕ : Rn → Rn

such that if X ∼ N(0, In×n), then the pushforward ϕ#(X) is distributed according to Q, and a corresponding transport
map in the opposite direction which we denote ϕ−1. If we allow for arbitrary functions t in the affine coupling network,
then we can implement the zero-padded transport map (X, 0) 7→ (ϕ(X), 0) as follows:

(X, 0) 7→ (X,ϕ(X)) 7→ (ϕ(X), ϕ(X)) 7→ (ϕ(X), 0). (2)

Explicitly, in the first layer the translation map is t1(x) = ϕ(x), in the second layer the translation map is t2(x) = x−ϕ−1(x),
and in the third layer the translation map is t3(x) = −x. Note that no scaling maps are required: with zero-padding the
basic NICE architecture can be universal, unlike in the unpadded case where NICE can only hope to implement volume
preserving maps. This is because every map from zero-padded data to zero-padded data is volume preserving. Finally, if
we are required to implement the translation maps using neural networks, we can use standard approximation-theoretic
results for neural networks, combined with standard results from optimal transport, to show universality of affine coupling
networks in Wasserstein. First, we recall the formal statement of Brenier’s Theorem:

Theorem 8 (Brenier’s Theorem, Theorem 2.12 of (Villani, 2003)). Suppose that P and Q are probability measures on Rn
with densities continuous with respect to the Lebesgue measure. Then Q = (∇ψ)#P for ψ a convex function, and moreover
∇ψ is the unique W2-optimal transport map from P to Q.

It turns out that the transportation map ϕ := ∇ψ is not always a continuous function, however there are simple sufficient
conditions for the distribution Q under which the map is continuous (see e.g. (Caffarelli, 1992)). From these results (or by
directly smoothing the transport map), we know any distribution with bounded support can be approached in Wasserstein
distance by smooth pushforwards of Gaussians. So for simplicity, we state the following Theorem for distributions which
are the pushforward of smooth maps.

Theorem 9 (Universal approximation with zero-padding). Suppose that P is the standard Gaussian measure in Rn
and Q = ϕ#P is the pushforward of the Gaussian measure through ϕ and ϕ is a smooth map. Then for any ε > 0
there exists a depth 3 affine coupling network g with no scaling and feedforward ReLU net translation maps such that
W2(g#(P × δ0n), Q× δ0n) ≤ ε.

Proof. For any M > 0, let fM (x) = min(M,max(−M,x)) be the 1-dimensional truncation map to [−M,M ] and for a
vector x ∈ Rn let fM (x) ∈ [−M,M ]n be the result of applying fM coordinate-wise. Note that fM can be implemented
as a ReLU network with two hidden units per input dimension. Also, any continuous function on [−M,M ]n can be
approximated arbitrarily well in L∞ by a sufficiently large ReLU neural network with one hidden layer (Leshno et al., 1993).
Finally, note that if ‖f − g‖L∞ ≤ ε then for any distribution P we have W2(f#P, g#P ) ≤ ε by considering the natural
coupling that feeds the same input into f and g.

Now we show how to approximate the construction of (2) using these tools. For any ε > 0, if we choose M sufficiently
large and then take ϕ̃ and ϕ̃−1 to be sufficiently good approximations of ϕ and ϕ−1 on [−M,M ]n, we can construct an
affine coupling network with ReLU feedforward network translation maps t̃1(x) = fM (ϕ̃(fM (x))), t̃2(x) = x− ϕ̃−1(x),
and t̃3(x) = −x, such that the output has W2 distance at most ε from Q.

Universality without padding. We now show that universality in Wasserstein can be proved even if we don’t have
zero-padding, using a lattice-based encoding and decoding scheme. Let ε > 0 be a small constant, to be taking sufficiently
small. Let ε′ ∈ (0, ε) be a further constant, taken sufficiently small with respect to ε and similar for ε′′ wrt ε′. Suppose
the input dimension is 2n, and let X = (X1, X2) with independent X1 ∼ N(0, In×n) and X2 ∼ N(0, In×n) be the input
the the affine coupling network. Let f(x) be the map which rounds x ∈ Rn to the closest grid point in εZn and define
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g(x) = x− f(x). Note that for a point of the form z = f(x) + ε′y for y which is not too large, we have that f(z) = f(x)
and g(z) = y. Let ϕ1, ϕ2 be the desired transportation maps guaranteed by Brenier’s theorem, so that the distribution
of ϕ1(X) is the target distribution Q and ϕ2(X) is a standard Gaussian independent of ϕ1(X). (In other words, ϕ1, ϕ2

correspond to the first half and second half of the output coordinates of the transport map from the 2n dimensional standard
Gaussian to the desired padded distribution.) Now we consider the following sequence of maps:

(X1, X2) 7→ (X1, ε
′X2 + f(X1)) (3)

7→ (f(ϕ1(f(X1), X2)) + ε′ϕ2(f(X1), X2) +O(ε′′), ε′X2 + f(X1)) (4)
7→ (f(ϕ1(f(X1), X2)) + ε′ϕ2(f(X1), X2) +O(ε′′), ϕ2(f(X1), X2) +O(ε′′/ε′)). (5)

More explicitly, in the first step we take s1(x) = log(ε′)~1 and t1(x) = f(x). In the second step, we take s2(x) = log(ε′′)~1
and t2 is defined by t2(x) = f(ϕ1(f(x), g(x))) + ε′ϕ2(f(x), g(x)). In the third step, we take s3(x) = log(ε′′)~1 and define
t3(x) = g(x)

ε′ .

Again, taking sufficiently good approximations to all of the maps allows us to approximate this map with neural networks,
which we formalize below.

Proof of Theorem 1. Turning (3),(4), and (5) into a universal approximation theorem for ReLU-net based feedforward
networks just requires us to modify the proof of Theorem 9 for this scenario.

Fix δ > 0, the above argument shows we can choose ε, ε′, ε′′ > 0 sufficiently small so that if h is map defined by composing
(3),(4), and (5), then W2(h#P,Q) ≤ ε/4. The layers defining h may not be continuous, since f is only continuous almost
everywhere. Using that continuous functions are dense in L2, we can find a function fε which is continuous and such that if
we define hε by replacing each application of f by fε, then W2(hε#P,Q) ≤ ε/2.

Finally, since fε is an affine coupling network with continuous s and t functions, we can use the same truncation-and-
approximation argument from Theorem 9 to approximate it by an affine coupling network g with ReLU feedforward s and t
functions such that W2(g#P,Q) ≤ ε, which proves the result.

B. Missing proofs for Section 5
B.1. Upper Bound

First, we recall a folklore result about permutations. Let Sn denote the symmetric group on n elements, i.e. the set of
permutations of {1, . . . , n} equipped with the multiplication operation of composition. Recall that the order of a permutation
π is the smallest positive integer k such that πk is the identity permutation.

Lemma 5. For any permutation π ∈ Sn, there exists σ1, σ2 ∈ Sn of order at most 2 such that

π = σ1σ2.

Proof. This result is folklore. We include a proof of it for completeness6.

First, recall that every permutation π has a unique decomposition π = c1 · · · ck as a product of disjoint cycles. Therefore if
we show the result for a single cycle, so ci = σi1σi2 for every i, then taking σ1 =

∏k
i=1 σi1 and σ2 =

∏k
i=1 σi2 proves the

desired result since π = σ1σ2 and σ1, σ2 are both of order at most 2.

It remains to prove the result for a single cycle c of length r. The cases r ≤ 2 are trivial. Without loss of generality, we
assume c = (1 · · · r). Let σ1(1) = 2, σ1(2) = 1, and otherwise σ1(s) = r + 3− s. Let σ2(1) = 3, σ2(2) = 2, σ2(3) = 1,
and otherwise σ2(s) = r + 4− s. It’s easy to check from the definition that both of these elements are order at most 2.

We now claim c = σ2 ◦ σ1. To see this, we consider the following cases:

1. σ2(σ1(1)) = σ2(2) = 2.

6This proof, given by HH Rugh, and some other ways to prove this result can be found at https://math.stackexchange.
com/questions/1871783/every-permutation-is-a-product-of-two-permutations-of-order-2 .

https://math.stackexchange.com/questions/1871783/every-permutation-is-a-product-of-two-permutations-of-order-2
https://math.stackexchange.com/questions/1871783/every-permutation-is-a-product-of-two-permutations-of-order-2
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2. σ2(σ1(2)) = σ2(1) = 3.

3. σ2(σ1(r)) = σ2(3) = 1.

4. For all other s, σ2(σ1(s)) = σ2(r + 3− s) = s+ 1.

In all cases we see that c(s) = σ2(σ1(s)) which proves the result.

Next, we supply the proof of Lemma 1

Proof of Lemma 1. It is easy to see that swapping two elements is possible in a fashion that doesn’t affect other dimensions
by the following ‘signed swap’ procedure requiring 3 matrices:

(x, y) 7→ (x, y − x) 7→ (y, y − x) 7→ (y,−x). (6)

Next, let L = {1, . . . , d} and R = {d + 1, . . . , 2d}. There will be an equal number of elements which in a particular
permutation will be permuted from L to R as those which will be permuted from R to L. We can choose an arbitrary
bijection between the two sets of elements and perform these ‘signed swaps’ in parallel as they are disjoint, using a total of 3
matrices. The result of this will be the elements partitioned into L and R that would need to be mapped there.

We can also (up to sign) transpose elements within a given set L or R via the following computation using our previous
‘signed swaps’ that requires one ‘storage component’ in the other set:

([x, y], z) 7→ ([z, y],−x) 7→ ([z, x], y) 7→ ([y, x],−z).

So, up to sign, we can in 9 matrices compute any transposition in L or R separately. In fact, since any permutation can
be represented as the product of two order-2 permutations (Lemma 5) and any order-2 permutation is a disjoint union of
transpositions, we can implement an order-2 permutation up to sign using 9 matrices and an arbitrary permutation up to sign
using 18 matrices.

In total, we used 3 matrices to move elements to the correct side and 18 matrices to move them to their correct position, for
a total of 21 matrices.

Lemma 6. SupposeA ∈ Rn×n is a matrix with n distinct real eigenvalues. Then there exists an invertible matrix S ∈ Rn×n
such that A = SDS−1 where D is a diagonal matrix containing the eigenvalues of A.

Proof. Observe that for every eigenvalue λi of A, the matrix (A− λiI) has rank n− 1 by definition, hence there exists a
corresponding real eigenvector vi by taking a nonzero solution of the real linear system (A− λI)v = 0. Taking S to be the
linear operator which maps ei to standard basis vector vi, and D = diag(λ1, . . . , λn) proves the result.

Next, we give the proof of Lemma 2

Proof of Lemma 2. Let

D = (M − I)E−1,

H = (M−1 − I)E−1,

E = −AM,
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where A is an invertible matrix that will be specified later. We can multiply out with these values giving[
I 0
A I

] [
I D
0 I

] [
I 0
E I

] [
I H
0 I

]
=

[
I 0
A I

] [
I (I −M)M−1A−1

0 I

] [
I 0

−AM I

] [
I (I −M−1)M−1A−1

0 I

]
=

[
I (M−1 − I)A−1

A AM−1A−1

] [
I 0

−AM I

] [
I (I −M−1)M−1A−1

0 I

]
=

[
M (M−1 − I)A−1

0 AM−1A−1

] [
I (I −M−1)M−1A−1

0 I

]
=

[
M 0
0 AM−1A−1

]
Here what remains is to guarantee AM−1A−1 = S. Since S and M−1 have the same eigenvalues, by Lemma 6
there exist real matrices U, V such that S = UXU−1 and M−1 = V XV −1 for the same diagonal matrix X , hence
S = UV −1M−1V U−1. Therefore taking A = UV −1 gives the result.

Now that we have the Lemmas, we prove the upper bound.

Proof of Theorem 6. Recall that our goal is to show that GL+(2d,R) ⊂ AK for an absolute constant K > 0. To show
this, we consider an arbitrary matrix T ∈ GL+(2d,R), i.e. an arbitrary matrix T : 2d× 2d with positive determinant, and
show how to build it as a product of a bounded number of elements from A. As T is a square matrix, it admits an LUP
decomposition (Horn & Johnson, 2012): i.e. a decomposition into the product of a lower triangular matrix L, an upper
triangular matrix U , and a permutation matrix P . This proof proceeds essentially by showing how to construct the L, U ,
and P components in a constant number of our desired matrices.

By Lemma 1, we can produce a matrix P̃ with det P̃ > 0 which agrees with P up to the sign of its entries using O(1)
linear affine coupling layers. Then T P̃−1 is a matrix which admits an LU decomposition: for example, given that we know
TP−1 has an LU decomposition, we can modify flip the sign of some entries of U to get an LU decomposition of T P̃−1.
Furthermore, since det(T P̃−1) > 0, we can choose an LU decomposition T P̃−1 = LU such that det(L),det(U) > 0
(for any decomposition which does not satisfy this, the two matrices L and U must both have negative determinant as
0 < det(T P̃−1) = det(L) det(U). In this case, we can flip the sign of column i in L and row i in U to make the two
matrices positive determinant).

It remains to show how to construct a lower/upper triangular matrix with positive determinant out of our matrices. We show
how to build such a lower triangular matrix L as building U is symmetrical.

At this point we have a matrix
[
A 0
B C

]
, where A and C are lower triangular. We can use column elimination to eliminate

the bottom-left block: [
A 0
B C

] [
I 0

−C−1B I

]
=

[
A 0
0 C

]
,

where A and C are lower-triangular.

Recall from (6) that we can perform the signed swap operation in R2 of taking (x, y) 7→ (y,−x) for x using 3 affine
coupling blocks. Therefore using 6 affine coupling blocks we can perform a sign flip map (x, y) 7→ (−x,−y). Note that
because det(L) > 0, the number of negative entries in the first d diagonal entries has the same parity as the number of
negative entries in the second d diagonal entries. Therefore, using these sign flips in parallel, we can ensure using 6 affine
coupling layers that that the first d and last d diagonal entries of L have the same number of negative elements. Now that the
number of negative entries match, we can apply two diagonal rescalings to ensure that:

1. The first d diagonal entries of the matrix are distinct.

2. The last d diagonal entries contain the multiplicative inverses of the first d entries up to reordering. Here we use that
the number of negative elements in the first d and last d elements are the same, which we ensured earlier.
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At this point, we can apply Lemma 2 to construct this matrix from four of our desired matrices. Since this shows we can
build L and U , this shows we can build any matrix with positive determinant.

Now, let’s count the matrices we needed to accomplish this. In order to construct P̃ , we needed 21 matrices. To construct L,
we needed 1 for column elimination, 6 for the sign flip, 2 for the rescaling of diagonal elements, and 4 for Lemma 2 giving a
total of 13. So, we need 21 + 13 + 13 = 47 total matrices to construct the whole LUP decomposition.

B.2. Lower Bound

Finally, we proceed to give the proof of Lemma 3.

Proof of Lemma 3. We explicitly solve the block matrix equations. Multiplying out the LHS gives[
C D
AC AD +B

] [
G H
EG EH + F

]
=

[
CG+DEG CH +DEH +DF

ACG+ADEG+BEG ACH +ADEH +ADF +BEH +BF

]
.

Say

T =

[
X Y
Z W

]
.

Starting with the top-left block gives that
X = (C +DE)G

D = (XG−1 − C)E−1 (7)

Next, the top-right block gives that

Y = (C +DE)H +DF = XG−1H +DF

H = GX−1(Y −DF ). (8)

Equivalently,
D = (Y −XG−1H)F−1 (9)

Combining (8) and (7) gives
H = GX−1(Y − (XG−1 − C)E−1F )

H = GX−1Y − (I −GX−1C)E−1F (10)

The bottom-left and (7) gives
Z = ACG+ADEG+BEG

ZG−1 = AC + (AD +B)E

E = (AD +B)−1(ZG−1 −AC) (11)

E = (A(XG−1 − C)E−1 +B)−1(ZG−1 −AC)

E−1 = (ZG−1 −AC)−1(A(XG−1 − C)E−1 +B)

(ZG−1 −AC) = (A(XG−1 − C)E−1 +B)E = A(XG−1 − C) +BE

E = B−1((ZG−1 −AC)−A(XG−1 − C))

E = B−1(ZG−1 −AXG−1) (12)

Taking the bottom-right block and substituting (11) gives

W = ACH + (AD +B)(EH + F ) = ACH + (ZG−1 −AC)H + (AD +B)F
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W = ZG−1H +ADF +BF. (13)

Substituting (7) into (13) gives

W = ZG−1H +A(Y −XG−1H) +BF = (Z −AX)G−1H +AY +BF.

Substituting (10) gives

W = (Z −AX)G−1(GX−1Y − (I −GX−1C)E−1F ) +AY +BF

= (Z −AX)(X−1Y − (G−1 −X−1C)E−1F ) +AY +BF.

Substituting (12) gives

W = (Z −AX)(X−1Y − (G−1 −X−1C)(ZG−1 −AXG−1)−1BF ) +AY +BF

W − ZX−1Y −BF = (Z −AX)(X−1C −G−1)((Z −AX)G−1)−1BF

= (Z −AX)(X−1C −G−1)G(Z −AX)−1BF

= (Z −AX)X−1C(Z −AX)−1 −BF

W − ZX−1Y = (Z −AX)X−1C(Z −AX)−1 (14)

Here we notice that W −ZX−1Y is similar to X−1C, where we get to choose values along the diagonal of C. In particular,
this means that W − ZX−1Y and X−1C must have the same eigenvalues.

Proof of Theorem 7. First, note that element inA4 can be written in either the form L1R1L2R2 or R1L1R2L2 for L1, L2 ∈
AL and R1, R2 ∈ AR. We construct an explicit matrix which cannot be written in either form.

Consider an invertible matrix of the form

T =

[
X 0
0 W

]
and observe that the Schur complement T/X is simply W . Therefore Lemma 3 says that this matrix can only be in
ALARALAR if W is similar to X−1C for some diagonal matrix C. Now consider the case where W is a permutation
matrix encoding the permutation (1 2 · · · d) and X is a diagonal matrix with nonzero entries. Then X−1C is a diagonal
matrix as well, hence has real eigenvalues, while the eigenvalues of W are the d-roots of unity. (The latter claim follows
because for any ζ with ζd = 1, the vector (1, ζ, · · · , ζd−1) is an eigenvector of W with eigenvalue ζ). Since similar matrices
must have the same eigenvalues, it is impossible that X−1C and W are similar.

The remaining possibility we must consider is that this matrix is in ARALARAL. In this case by applying the symmetrical
version of Lemma 3 (which follows by swapping the first n and last n coordinates), we see that W−1C and X must be
similar. Since Tr(W−1C) = 0 and Tr(X) > 0, this is impossible.

B.3. Exact Representation of Nonlinear Functions

Finally, we give the proof of Corollary 4, which shows that there exist functions which cannot be exactly represented by 4
composed (nonlinear) affine couplings.

Proof of Corollary 4. Let T ∈ R2d×2d be the matrix given by Theorem 3 for some d. Let f(x) = Tx. If g is any depth-4
affine coupling with nonlinear s and t functions its Jacobian at zero cannot be T , since its Jacobian can be calculated by
precisely the matrix multiplication given in Theorem 3 with matrices which are the Jacobians of the affine coupling layers.
So, g and f will not have matching Taylor expansions at zero. Hence, f cannot be exactly represented by any depth-4 affine
coupling.
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B.4. Maximum Likelihood Estimation

In this section, we elaborate on the consequences of Theorem 2 for Maximum Likelihood Estimation with linear affine
coupling networks.

Recall that if {Pθ}θ is a class of densities parameterized by θ, then the Maximum Likelihood Estimate of θ given data points
x1, . . . , xn is any maximizer of the joint log likelihood of the data points xi, namely

n∑
i=1

logPθ(xi).

By Theorem 2, ∃k ≤ 47 such that a linear affine coupling model with this many layers can implement an arbitrary
orientation-preserving invertible linear map. This means that for this choice of k, the class of distributions writeable as the
pushforward of N(0, I) through a linear affine coupling layer with k layers is exactly the set of distributions N(0,Σ) with
Σ invertible. This follows since:
(1) The pushforward of N(0, I) through a linear affine coupling network is a Gaussian distribution of the form N(0, ATA)
where A is the linear map that the network computes, and
(2) Any distribution N(0,Σ) can be sampled from by outputting Σ1/2Z where Z ∼ N(0, I), and by the simulation result a
linear affine coupling model can exactly represent Σ1/2.

As is well known (e.g. Chapter 8 of (Rao et al., 1973)), for the class of Gaussian distributions with zero-mean the
maximum-likelihood estimate is the sample covariance matrix, i.e.

Σ̂ =
1

n

n∑
i=1

xix
T
i .

Since the MLE does not depend on the parameterization of the class of distributions, this also holds for the class of
pushforwards of linear affine coupling models which we proved is equivalent. This leads to the following result giving
consistency with Gaussian data.

Corollary 10. Let k ≤ 47 be as in Theorem 2, and suppose that x1, . . . , xn ∼ N(0,Σ) i.i.d. with Σ : d × d invertible.
Suppose that P̂ is the Maximum Likelihood Estimator given data x1, . . . , xn among the class of distributions which are
pushforwards of N(0, I) through a linear affine coupling network with k layers. Then P̂ → N(0,Σ) as the number of
samples n → ∞, i.e. maximum likelihood estimation is consistent. Moreover, for any ε > 0, n = poly(d, 1/ε) samples
suffice to ensure dTV (P̂ , N(0,Σ)) ≤ ε with high probability.

Proof. By the Law of Large Numbers, the sample covariance matrix is a consistent estimator for the true covariance matrix
so we also obtain convergence of distributions, showing the first claim. The total variation distance guarantee follows from
concentration of the sample covariance matrix about its mean, and from standard bounds on total variation distance between
Gaussians in terms of their covariance matrices (Devroye et al., 2018).

Note that this result is for the true MLE, i.e. the global maximum of the likelihood objective. When the log likelihood is
maximized using e.g. gradient descent, this may not necessarily reach the global maximum.

C. Missing proofs for Section 6
In this section we prove Theorem 5; for the reader’s convenience we repeat all details from the sketch here along with
providing the omitted proofs. The intuition behind the k/p bound on the depth relies on parameter counting: a depth k/p
invertible network will have k parameters in total (p per layer)—which is the size of the network we are trying to represent.
Of course, the difficulty is that we need more than fθ, g simply not being identical: we need a quantitative bound in various
probability metrics.

Proof of Theorem 5. The proof will proceed as follows. First, we will exhibit a large family of distributions (of size
exp(kd)), s.t. each pair of these distributions has a large pairwise Wasserstein distance between them. Moreover, each
distribution in this family will be approximately expressible as the pushforward of the Gaussian through a small neural
network. Since the family of distributions will have a large pairwise Wasserstein distance, by the triangle inequality, no
other distribution can be close to two distinct members of the family.
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Second, we can count the number of “approximately distinct” invertible networks of depth l: each layer is described by p
weights, hence there are lp parameters in total. The Lipschitzness of the neural network in terms of its parameters then
allows to argue about discretizations of the weights.

Formally, we show the following lemma:

Lemma 7 (Large family of well-separated distributions). For every k = o(exp(d)), for d sufficiently large and γ > 0 there
exists a family D of distributions, s.t. |D| ≥ exp(kd/20) and:

1. Each distribution p ∈ D is a mixture of k Gaussians with means {µi}ki=1, ‖µi‖2 = 20γ2d and covariance γ2Id.

2. ∀p ∈ D and ∀ε > 0, we have W1(p, g#N ) ≤ ε for a neural network g with at most O(k) parameters.7

3. For any p, p′ ∈ D,W1(p, p′) ≥ 20γ2d.

Proof of Lemma 7. The proof of this lemma will rely on two ideas: first, we will show that there is a family of distributions
consisting of mixtures of Gaussians with k components – s.t. each pair of members of this family is far in W1 distance, and
each member in the family can be approximated by the pushforward of a network of size O(k).

The reason for choosing mixtures is that it’s easy to lower bound the Wasserstein distance between two mixtures with equal
weights and covariance matrices in terms of the distances between the means. This is done in Lemma 8 below.

Lemma 8. Let µ and ν be two mixtures of k spherical Gaussians in d dimensions with mixing weights 1/k, means
(µ1, µ2, . . . , µk) and (ν1, ν2, . . . , νk) respectively, and with all of the Gaussians having spherical covariance matrix γ2I
for some γ > 0. Suppose that there exists a set S ⊆ [k] with |S| ≥ k/10 such that for every i ∈ S,

min
1≤j≤k

‖µi − νj‖2 ≥ 20γ2d.

Then W1(µ, ν) = Ω(γ
√
d).

Proof. By the dual formulation of Wasserstein distance (Kantorovich-Rubinstein Theorem) (Villani, 2003), we have
W1(µ, ν) = supϕ

[∫
ϕdµ−

∫
ϕdν

]
where the supremum is taken over all 1-Lipschitz functions ϕ. Towards lower

bounding this, consider ϕ(x) = max(0, 2γ
√
d−mini∈S ‖xi − µi‖) and note that this function is 1-Lipschitz and always

valued in [0, 2γ
√
d]. For a single Gaussian Z ∼ N (0, γ2Id×d), observe that

EZ∼N (0,γ2I)[max(0, 2γ
√
d− ‖Z‖)] ≥ 2γ

√
d− EZ)[‖Z‖] ≥ 2γ

√
d−

√
EZ∼N [‖Z‖2] ≥ γ

√
d.

Therefore, we see that
∫
ϕdµ = Ω(γ

√
d) by combining the above calculation with the fact that at least 1/10 of the centers

for µ are in S. On the other hand, for Z ∼ N (0, γ2Id×d) we have

Pr(‖Z‖2 ≥ 10γ2d) ≤ 2e−10d

(e.g. by Bernstein’s inequality (Vershynin, 2018), as ‖Z‖2 is a sum of squares of Gaussians, i.e. a χ2-random variable). In
particular, since the points in S do not have a close point in {νi}ki=1, we similarly have

∫
ϕdν = O(e−10dγ

√
d) = o(γ

√
d),

since very little mass from each Gaussian in νi lands in the support of ϕ by the separation assumption. Combining the
bounds gives the result.

Given this, to design a family of mixtures of Gaussians with large pairwise Wasserstein distance, it suffices to construct a large
family of k-tuples for the means, s.t. for each pair of k-tuples ({µi}ki=1, {νi}ki=1), there exists a set S ⊆ [k], |S| ≥ k/10, s.t.
∀i ∈ S,min1≤j≤k ‖µi − νj‖2 ≥ 20γ2d. We do this by leveraging ideas from coding theory (the Gilbert-Varshamov bound
(Gilbert, 1952; Varshamov, 1957)). Namely, we first pick a set of exp(Ω(d)) vectors of norm 20γ2d, each pair of which has
a large distance; second, we pick a large number (exp(Ω(kd))) of k-tuples from this set at random, and show with high
probability, no pair of tuples intersect in more than k/10 elements.

Concretely, first, by elementary Chernoff bounds, we show there exists a large family of well-separated points in Lemma 9
below.

7The size of g doesn’t indeed depend on ε. The weights in the networks will simply grow as ε becomes small.
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Lemma 9 (Large family of well-separated points). Let ε > 0. There exists a set {v1, v2, . . . , vN} of vectors vi ∈ Rd, ‖vi‖ =
1 with N = exp(dε2/4), s.t. ‖vi − vj‖2 ≥ 2(1− ε) for all i 6= j.

Proof. Recall that for a random unit vector v on the sphere in d dimensions, Pr(vi > t/
√
d) ≤ e−t2/2. (This is a basic fact

about spherical caps, see e.g. (Rao, 2011)). By spherical symmetry and the union bound, this means for two unit vectors
v, w sampled uniformly at random Pr(|〈v, w〉| > t/

√
d) ≤ 2e−t

2/2. Taking t = ε
√
d gives that the probability is 2e−dε

2/2;
therefore if draw N i.i.d. vectors, the probability that two have inner product larger than ε in absolute value is at most
N2e−dε

2/2 < 1 if N = edε
2/4, which in particular implies such a collection of vectors exists.

From this, we construct a large set of k-sized subsets of this family which have small overlap, essentially by choosing such
subsets uniformly at random. More precisely we use the following result:

Lemma 10 ((Rödl & Thoma, 1996)). There exists a set consisting of (N2k )k/10 subsets of size k of [N ], s.t. no pair of subsets
intersect in more than k/10 elements.

To handle part 2 of Lemma 7, we also show that a mixture of k Gaussians can be approximated as the pushforward of a
Gaussian through a network of size O(k). The idea is rather simple: the network will use a sample from a standard Gaussian
in Rd+1. We will subsequently use the first coordinate to implement a “mask” that most of the time masks all but one
randomly chosen coordinate in [k]. The remaining coordinates are used to produce a sample from each of the components in
the Gaussian, and the mask is used to select only one of them. This is done in Lemma 12 below.

With Lemma 7 in hand, we finish the Wasserstein lower bound with a standard epsilon-net argument, using the parameter
Lipschitzness of the invertible networks. Namely, the following lemma is immediate from standard covering number bounds
for the Euclidean ball (Vershynin, 2018):

Lemma 11. Suppose that Θ ⊂ Rd′ is contained in a ball of radius R > 0 and fθ is a family of invertible layerwise
networks which is L-Lipschitz with respect to its parameters. Then there exists a set of neural networks Sε = {fi}, s.t.

|Sε| = O
(

(LRε )d
′
)

and for every θ ∈ Θ there exists a fi ∈ Sε, s.t. Ex∼N(0,Id×d) ‖fθ(x)− fi(x)‖∞ ≤ ε.

The proof of Theorem 5 can then be finished by triangle inequality: since the family of distributions has large Wasserstein
distance, by the triangle inequality, no other distribution can be close to two distinct members of the family. Finally, KL
divergence bounds can be derived from the Bobkov-Götze inequality (Bobkov & Götze, 1999), which lower bounds KL
divergence by the squared Wasserstein distance. Concretely:

Theorem 11 ((Bobkov & Götze, 1999)). Let p, q : Rd → R+ be two distributions s.t. for every 1-Lipschitz f : Rd → R+

and X ∼ p, f(X) is c2-subgaussian. Then, we have KL(q, p) ≥ 1
2c2W1(p, q)2.

Then, to finish the two inequalities in the statement of the main theorem, we will show that:

• For any mixture of k Gaussians where the component means µi satisfy ‖µi‖ ≤ M , the condition of Theorem 11 is
satisfied with c2 = O(γ2 + M2). (In fact, we show this for the pushforward through g, the neural network which
approximates the mixture, which poses some non-trivial technical challenges). This is done in Appendix C, Lemma 12.

• A pushforward of the standard Gaussian through a L-Lipschitz generator f satisfies the conditions of Theorem 11 with
c2 = L2, which implies the second part of the claim. This follows from Theorem 5.2.2 in (Vershynin, 2018).

C.1. Simulating a mixture with a neural network

Lemma 12. Let p : Rd → R+ be a mixture of k Gaussians with means {µi}ki=1, ‖µi‖2 = 20γ2d and covariance γ2Id.
Then, ∀ε > 0, we have W1(p, g#N ) ≤ ε for a neural network g with O(k) parameters.8

Moreover, for every 1-Lipschitz φ : Rd → R+ and X ∼ g#N , φ(X) is O(γ2d)-subgaussian.
8The size of g doesn’t indeed depend on ε. The weights in the networks will simply grow with ε.
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Proof. We will use a construction similar to (Arora et al., 2017). Since the latent variable dimension is d+1, the idea is to use
the first variable, say h as input to a “selector” circuit which picks one of the components of the mixture with approximately
the right probability, then use the remaning dimensions—say variable z, to output a sample from the appropriate component.

For notational convenience, let M =
√

20γ2d. Let {hi}k−1
i=1 be real values that partition R into k intervals that have equal

probability under the Gaussian measure. Then, the map

f̃(h, z) = γz +

k∑
i=1

1(h ∈ (hi−1, hi])µi (15)

exactly generates the desired mixture, where h0 is understood to be −∞ and hk = +∞.

To construct g, first we approximate the indicators using two ReLUs, s.t. we design for each interval (hi−1, hi] a function
1̃i, s.t.:
(1) 1̃i(h) = 1(h ∈ (hi−1, hi]) unless h ∈ [hi−1, hi−1 + δ+

i−1]∪ [hi − δ−i , hi], and the Gaussian measure of the union of the
above two intervals is δ.
(2)
∑
i 1̃i(h) = 1.

The constructions of the functions 1̃i above can be found in (Arora et al., 2017), Lemma 3. We subsequently construct the
neural network f(h, z) using ReLUs defined as

f(h, z) = γz +

k∑
i=1

(
ReLU(−M(1− 1̃i(h)) + µi)− ReLU(−M(1− 1̃i(h))− µi))

)
. (16)

Denoting

B :=

k−1⋃
i=1

[hi − δ−i , hi + δ+
i ]

note that if h /∈ B, ∀z, f(h, z) = f̃(h, z), as desired. If h ∈ [hi − δ−i , hi + δ+
i ], f(h, z) by construction will be

γz +
∑k
i=1 wi(h)µi for some wi(h) ∈ [0, 1] s.t.

∑
i wi(h) = 1.

Denoting by φ(h, z) the joint pdf of h, z, by the coupling definition of W1, we have

W1(f#N , µ) ≤
∫
h∈R,z∈Rd

∣∣∣f̃(h, z)− f(h, z)
∣∣∣
1
dφ(h, z)

=

∫
h∈R

∣∣∣∣∣
k∑
i=1

1(h ∈ (hi−1, hi])µi −
k∑
i=1

(
ReLU(−M(1− 1̃i(h)) + µi)−

ReLU(−M(1− 1̃i(h))− µi))
)∣∣

1
dφ(h)

=

∫
h∈B

∣∣∣∣∣
k∑
i=1

1(h ∈ (hi−1, hi])µi −
∑
i

wi(h)µi

∣∣∣∣∣
1

dφ(h)

≤
∫
h∈B

max
i,j
|µi − µj |1dφ(h)

=

∫
h∈B

2M
√
ddφ(h)

= 2M
√
dPr [h ∈ B]

= 2M
√
dkδ

So if we choose δ = ε
2M
√
dk

, we have the desired bound in W1. (We note, making δ small only manifests in the size of the

weights of the functions 1̃, and not in the size of the network itself. This is obvious from the construction in Lemma 3 in
(Arora et al., 2017).)

Proceeding to subgaussianity, consider a 1-Lipschitz function ϕ centered such that E[(ϕ ◦ f)#N ] = 0. Next, we’ll show
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that (ϕ ◦ f)#N is subgaussian with an appropriate constant. We can view f#N as the sum of two random variables: γz and

k∑
i=1

(
ReLU(−M(1− 1̃i(h)) + µi)− ReLU(−M(1− 1̃i(h))− µi))

)
.

γz is a Gaussian with covariance γ2I . The other term is contained in an l2 ball of radius M . Using the Lipschitz
property and Lipschitz concentration for Gaussians (Theorem 5.2.2 of (Vershynin, 2018)), we see that Pr[|(ϕ ◦ f)| ≥ t] ≤
exp

(
− (t−M)2

2γ2

)
. By considering separately the cases |t| ≤ 2M and |t| > 2M , we immediately see this implies that the

pushforward is O(γ2 +M2)-subgaussian. Since M2 = O(γ2d), the claim follows.

D. Experimental verification
D.1. Partitioned Linear Networks

In this section, we will provide empirical support for Theorems 2 and 3. More precisely, empirically, the number of required
linear affine coupling layers at least for random matrices seems closer to the lower bound – so it’s even better than the upper
bound we provide.

Setup We consider the following synthetic setup. We train n layers of affine coupling layers, namely networks of the form

fn(z) =

n∏
i=1

Ei

[
Ci Di

0 I

] [
I 0
Ai Bi

]
with Ei, Bi, Ci diagonal. Notice the latter two follow the statement of Theorem 2 and the alternating order of upper vs
lower triangular matrices can be assumed without loss of generality, as a product of upper/lower triangular matrices results
in an upper/lower triangular matrix. The matrices Ei turn out to be necessary for training – they enable “renormalizing” the
units in the network (in fact, Glow uses these and calls them actnorm layers; in older models like RealNVP, batchnorm
layers are used instead).

The training data is of the form Az, where z ∼ N (0, I) for a fixed d × d square matrix A with either random standard
Gaussian entries in Figures 4 to 8 or random standard Gaussian entries that are diagonal-constant (that latter giving a natural
random ensemble of Toeplitz matrices) in Figures 9 to 13. This ensures that there is a “ground” truth linear model that fits
the data well. 9 We then train the affine coupling network by minimizing the loss Ez∼N (0,I)

[
(fn(z)−Az)2

]
and trained

on a variety of values for n and d in order to investigate how the depth of linear networks affects the ability to fit linear
functions of varying dimension.

Note, we are not training via maximum likelihood, but rather we are minimizing a “supervised” loss, wherein the network fn
“knows” which point x a latent z is mapped to. This is intentional and is meant to separate the representational vs training
aspect of different architectures. Namely, this objective is easier to train, and our results address the representational aspects
of different architectures of flow networks – so we wish our experiments to be confounded as little as possible by aspects of
training dynamics.

We chose n = 1, 2, 4, 8, 16 layers and d = 4, 8, 16, 32, 64 dimensions (here a layer is one matrix and not a flipped pair
as in our theoretical results). We present the standard L2 training loss and the squared Frobenius error of the recovered
matrix Â obtained by multiplying out the linear layers ||Â−A||2F , both normalized by 1/d2 so that they are independent of
dimensionality. We shade the standard error regions of these losses across the seeds tried. All these plots are log-scale, so
the noise seen lower in the charts is very small.

We initialize the E,C,B matrices with 1s on the diagonal and A,D with random Gaussian elements with σ = 10−5 and
train with Adam with learning rate 10−4. We train on 5 random seeds which affect the matrix A generated and the datapoints
z sampled.

Finally, we also train similar RealNVP models on the same datasets, using a regression objective as done with the PLNs but
s and t networks with two hidden layers with 128 units and the same numbers of couplings as with the PNN experiments.

9As a side remark, this ground truth is only specified up to orthogonal matrices U , as AUz is identically distributed to Az, due to the
rotational invariance of the standard Gaussian.
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Results The results demonstrate that the 1- and 2- layer networks fail to fit even coarsely any of the linear functions we
tried. Furthermore, the 4-layer networks consistently under-perform compared to the 8- and 16-layer networks. The 8- and
16-layer networks seem to perform comparably, though we note the larger mean error for d=64, which suggests that the
performance can potentially be further improved (either by adding more layers, or improving the training by better choice of
hyperparameters; even on this synthetic setup, we found training of very deep networks to be non-trivial).

These experimental results suggest that at least for random linear transformations T , the number of required linear layers is
closer to the lower bound. Moreover, the error for the Toeplitz ensemble is slightly larger, indicating this distribution is
slightly harder. Closing this gap (both in a worst-case and distributional sense) is an interesting question for further work.

In our experiments with the RealNVP architecture, we observe more difficulty in fitting these linear maps, as they seem to
need more training data to reach similar levels or error. We hypothesize this is due to the larger model class that comes with
allowing nonlinear functions in the couplings.

D.2. Additional Padding Results on Synthetic Datasets

We provide further results on the performance of Real NVP models on datasets with different kinds of padding (no padding,
zero-padding and Gaussian padding) on standard synthetic datasets–Swissroll, 2 Moons and Checkerboard.

The results are consistent with the performance on the mixture of 4 Gaussians: in Figures 24, 25, and 26, we see that the
zero padding greatly degrades the conditioning and somewhat degrades the visual quality of the learned distribution. On the
other hand, Gaussian padding consistently performs best, both in terms of conditioning of the Jacobian, and in terms of the
quality of the recovered distribution.

E. Approximating entrywise nonlinearity with affine couplings
To show how surprisingly hard it may be to represent even simple functions using affine couplings, we show an example of
a very simple function—an entrywise application of hyperbolic tangent, s.t. an arbitrary depth/width sequence of affine
coupling blocks with tanh nonlinearities cannot exactly represent it. Thus, even for simple functions, the affine-coupling
structure imposes nontrivial restrictions. Note that in contrast to Theorem 1, we are considering exact representation here.

Precisely, we show:
Theorem 12. Let d ≥ 2 and denote g : Rd → Rd, g(z) := (tanh z1, . . . , tanh zd). Then, for any W,D,N ∈ N and norm
‖ · ‖, there exists an ε(W,D,N) > 0, s.t. for any network f consisting of a sequence of at most N affine coupling layers of
the form:

(yS , yS̄)→ (yS , yS̄ � a(yS) + b(yS))

for in each layer an arbitrary set S ( [d] and a, b arbitrary feed-forward tanh neural networks of width at most W , depth
at most D, and weight norm into each unit of at most R, it holds that

Ex∈[−1,1]d ‖f(x)− g(x)‖ > ε(W,D,N,R).

The proof of the theorem is fairly unusual, as it uses some tools from complex analysis in several variables (see (Grauert &
Fritzsche, 2012) for a reference) — though it’s so short that we include it here. The result also generalizes to other neural
networks with analytic activations.

Proof of Theorem 12. By compactness of the class of models bounded by W,D,N,R, it suffices to prove that there is no
way to exactly represent the function.

Suppose for contradiction that f = g on the entirety of [−1, 1]d. Let z1, . . . , zd denote the d inputs to the function: we now
consider the behavior of f and g when we extend their definition to Cd. From the definition, g extends to a holomorphic
function (of several variables) on all of Cd \ {z : ∃j, zj = iπ(k+ 1/2) : k ∈ Z}, i.e. everywhere where tanh doesn’t have a
pole. Similarly, there exists an dense open subset D ⊂ Cd on which the affine coupling network f is holomorphic, because
it is formed by the addition, multiplication, and composition of holomorphic functions.

We next prove that f = g on their complex extensions by the Identity Theorem (Theorem 4.1 of (Grauert & Fritzsche,
2012)). We must first show that f = g on an open subset of Cd. To prove this, observe that f is analytic at zero and its
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Figure 3. The smaller MLPs are much better able to fit simple elementwise nonlinearities than the affine couplings.

power series expansion is uniquely defined in terms of the values of f on Rd (for example, we can compute the coefficients
by taking partial derivatives). It follows that the power series expansions of f and g are both equal at zero and convergent in
an open neighborhood of 0 in Cd, so we can indeed apply the Identity Theorem; this shows that f = g wherever they are
both defined.

From the definition tanh(z) = e2z−1
e2z+1 we can see that g is periodic in the sense that g(z + πik) = g(z) for any k ∈ Zd.

However, by construction the affine coupling network f is invertible whenever, at every layer, the output of the function a
is not equal to zero. By the identity theorem, the set of inputs where each a vanishes is nowhere dense — otherwise, by
continuity a vanishes on the open neighborhood of some point, so a = 0 by the Identity Theorem which contradicts the
assumption. Therefore the union of inputs where a at any layer vanishes is also nowhere dense. Consider the behavior of f
on an open neighborhood of 0 and of iπ: we have shown that f is invertible except on a nowhere dense set, and also that
g = f wherever f is defined, but g(z) = g(z + iπ) so it’s impossible for f to be invertible on these neighborhoods except
on a nowhere dense subset. By contradiction, f 6= g on [−1, 1]d.

Finally, to give empirical evidence that the above is not merely a theoretical artifact, we regress an affine coupling architecture
to fit entrywise tanh.

Specifically, we sample 10-dimensional vectors from a standard Gaussian distribution and train networks as in the padding
section on a squared error objective such that each input is regressed on its elementwise tanh. We train an affine coupling
network with 5 pairs of alternating couplings with g and h networks consisting of 2 hidden layers with 128 units each. For
comparison, we also regress a simple MLP with 2 hidden layers with 128 units in each layer, exactly one of the g or h
subnetworks from the coupling architecture, which contains 20 such subnetworks. For another comparison, we also try this
on the elementwise ReLU function, using affine couplings with tanh activations and the same small MLP.

As we see in Figure 3, the affine couplings fit the function substantially worse than a much smaller MLP – corroborating our
theoretical result.
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Figure 4. Learning Partitioned Linear Networks on 4-D linear functions.

Figure 5. Learning Partitioned Linear Networks on 8-D linear functions.
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Figure 6. Learning Partitioned Linear Networks on 16-D linear functions.

Figure 7. Learning Partitioned Linear Networks on 32-D linear functions.
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Figure 8. Learning Partitioned Linear Networks on 64-D linear functions.

Figure 9. Learning Partitioned Linear Networks on 4-D Toeplitz functions.



Representational aspects of depth and conditioning in normalizing flows

Figure 10. Learning Partitioned Linear Networks on 8-D Toeplitz functions.

Figure 11. Learning Partitioned Linear Networks on 16-D Toeplitz functions.
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Figure 12. Learning Partitioned Linear Networks on 32-D Toeplitz functions.

Figure 13. Learning Partitioned Linear Networks on 64-D Toeplitz functions.
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Figure 14. Real NVP Regressed on 4-D Linear Functions Figure 15. Real NVP Regressed on 8-D Linear Functions

Figure 16. Real NVP Regressed on 16-D Linear Functions Figure 17. Real NVP Regressed on 32-D Linear Functions
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Figure 18. Real NVP Regressed on 64-D Linear Functions Figure 19. Real NVP Regressed on 4-D Toeplitz Functions

Figure 20. Real NVP Regressed on 8-D Toeplitz Functions Figure 21. Real NVP Regressed on 16-D Toeplitz Functions
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Figure 22. Real NVP Regressed on 32-D Toeplitz Functions Figure 23. Real NVP Regressed on 164-D Toeplitz Functions
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Figure 24. Real NVP on Swissroll Dataset

Figure 25. Real NVP on 2 Moons Dataset

Figure 26. Real NVP on Checkerboard Dataset


