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A. Dataset realism
In this section, we discuss the framework we use to assess
the realism of a benchmark dataset. Realism is subtle to pin
down and highly contextual, and assessing realism often re-
quires consulting with domain experts and practitioners. As
a general framework, we can view a benchmark dataset as
comprising the data, a task and associated evaluation metric,
and a train/test split that potentially reflects a distribution
shift. Each of these components can independently be more
or less realistic:

1. The data—which includes not just the inputs x but also
any associated metadata (e.g., the domain that each data
point came from)— is realistic if it accurately reflects
what would plausibly be collected and available for a
model to use in a real application. The realism of data
also depends on the application context; for example, us-
ing medical images captured with state-of-the-art equip-
ment might be realistic for well-equipped hospitals, but
not necessarily for clinics that use older generations of
the technology, or vice versa. Extreme examples of un-
realistic data include the Gaussian distributions that are
often used to cleanly illustrate the theoretical properties
of various algorithms.

2. The task and evaluation metric is realistic if the task is
relevant to a real application and if the metric measures
how successful a model would be in that application.
Here and with the other components, realism lies on a
spectrum. For example, in a wildlife conservation appli-
cation where the inputs are images from camera traps,
the real task might be to estimate species populations
(Parham et al., 2017), i.e., the number of distinct individ-
ual animals of each species seen in the overall collection
of images; a task that is less realistic but still relevant and
useful for ecologists might be to classify what species
of animal is seen in each image (Tabak et al., 2019).
The choice of evaluation metric is also important. In
the wildlife example, conservationists might care more
about rare species than common species, so measuring
average classification accuracy would be less realistic
than a metric that prioritizes classifying the rare species
correctly.

3. The distribution shift (train/test split) is realistic if it
reflects training and test distributions that might arise in
deployment for that dataset and task. For example, if a
medical algorithm is trained on data from a few hospitals
and then expected to be deployed more widely, then it
would be realistic to test it on hospitals that are not in
the training set. On the other hand, an example of a
less realistic shift is to, for instance, train a pedestrian
classifier entirely on daytime photos and then test it only
on nighttime photos; in practice, any reasonable dataset

for pedestrian detection that is used in a real application
would include both daytime and nighttime photos.

Through the lens of this framework, existing ML bench-
marks tend to focus on object recognition tasks with real-
istic data (e.g., photos) but not necessarily with realistic
distribution shifts. With WILDS, we seek to address this
gap by selecting datasets that represent a wide variety of
tasks (with realistic evaluation metrics and data) and that
reflect realistic distribution shifts, i.e., train/test splits that
are likely to arise in real-world deployments.

To elaborate on the realism of the distribution shift, we asso-
ciate each dataset in WILDS with the distribution shift (i.e.,
problem setting) that we believe best reflects the real-world
challenges in the corresponding application area. For ex-
ample, domain generalization is a realistic setting for the
CAMELYON17-WILDS dataset as medical models are typi-
cally trained on data collected from a handful of hospitals,
but with the goal of general deployment across different hos-
pitals. On the other hand, subpopulation shift is appropriate
for the CIVILCOMMENTS-WILDS dataset, as the real-world
challenge is that some demographic subpopulations (do-
mains) are underrepresented, rather than completely unseen,
in the training data. The appropriate problem setting de-
pends on many dataset-specific factors, but some common
considerations include:

• Domain type. Certain types of domains are generally
more appropriate for a particular setting. For example,
if the domains represent time, as in FMOW-WILDS,
then domain generalization is suitable as a common
challenge is to generalize from past data to future data.
On the other hand, if the domains represent demograph-
ics and the goal is to improve performance on minority
subpopulations, as in CIVILCOMMENTS-WILDS, then
subpopulation shift is typically more appropriate.

• Data collection challenges. When collecting data
from a new domain is expensive, domain generaliza-
tion is often appropriate, as we might want to train
on data from a limited number of domains but still
generalize to unseen domains. For example, it is dif-
ficult to collect patient data from multiple hospitals,
as in CAMELYON17-WILDS, or survey data from new
countries, as in POVERTYMAP-WILDS.

• Continuous addition of new domains. A special case
of the above is when new domains are continuously
created. For example, in AMAZON-WILDS, where
domains correspond to users, new users are constantly
signing up for the platform; and in IWILDCAM2020-
WILDS, where domains correspond to camera traps,
new cameras are constantly being deployed. These are
natural domain generalization settings.
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B. Prior work on ML benchmarks for
distribution shifts

In this section, we discuss existing ML distribution shift
benchmarks in more detail, categorizing them by how they
induce their respective distribution shifts. We focus here on
work that has appeared in ML conferences and journals; we
discuss related work from other research communities in
Section C and Appendix H. We also restrict our attention to
publicly-available datasets. While others have studied some
proprietary datasets with realistic distribution shifts, such as
the StreetView StoreFronts dataset (Hendrycks et al., 2020b)
or diabetic retinopathy datasets (D’Amour et al., 2020a),
these datasets are not publicly available due to privacy and
other commercial reasons.

Distribution shifts from transformations. Some of the
most widely-adopted benchmarks induce distribution shifts
by synthetically transforming the data. Examples include
rotated and translated versions of MNIST and CIFAR (Wor-
rall et al., 2017; Gulrajani & Lopez-Paz, 2020); surface
variations such as texture, color, and corruptions like blur in
Colored MNIST (Gulrajani & Lopez-Paz, 2020), Stylized
ImageNet (Geirhos et al., 2018a), ImageNet-C (Hendrycks
& Dietterich, 2019), and similar ImageNet variants (Geirhos
et al., 2018b); and datasets that crop out objects and replace
their backgrounds, as in the Backgrounds Challenge (Xiao
et al., 2020) and other similar datasets (Sagawa et al., 2020a;
Koh et al., 2020). Benchmarks for adversarial robustness
also fall in this category of distribution shifts from trans-
formations (Goodfellow et al., 2015; Croce et al., 2020).
Though adversarial robustness is not a focus of this work,
we note that recent work on temporal perturbations with the
ImageNet-Vid-Robust and YTBB-Robust datasets (Shankar
et al., 2019) represents a different form of distribution shift
that also impacts real-world applications. Outside of visual
object recognition, other work has used synthetic datasets
and transformations to explore compositional generaliza-
tion, e.g., SCAN (Lake & Baroni, 2018). We discuss this
more in Section C.

Synthetic-to-real transfers. Fully synthetic datasets
such as SYNTHIA (Ros et al., 2016) and StreetHazards
(Hendrycks et al., 2020a) have been adopted for out-of-
distribution detection as well as domain adaptation and gen-
eralization, e.g., by testing robustness to transformations in
the seasons, weather, time, or architectural style (Hoffman
et al., 2018; Volpi et al., 2018). While the data is synthetic,
it can still look realistic if a high-fidelity simulator is used.
In particular, synthetic benchmarks that study transfers from
synthetic to real data (Ganin & Lempitsky, 2015; Richter
et al., 2016; Peng et al., 2018) can be important tools for
tackling real-world problems: even though the data is syn-
thesized and by definition, not real, the synthetic-to-real

distribution shift can still be realistic in contexts where real
data is much harder to acquire than synthetic data (Belle-
mare et al., 2020). In this work, we do not study these
types of synthetic distribution shifts; instead, we focus on
distribution shifts that occur in the wild between real data
distributions.

Distribution shifts from constrained splits. Other bench-
marks do not rely on transformations but instead split the
data in a way that induces particular distribution shifts.
These benchmarks have realistic data, e.g., the data points
are derived from real-world photos, but they do not nec-
essarily reflect distribution shifts that would arise in the
wild. For example, BREEDS (Santurkar et al., 2020) and
a related dataset (Hendrycks & Dietterich, 2019) test gen-
eralization to unseen ImageNet subclasses by holding out
subclasses specified by several controllable parameters; sim-
ilarly, NICO (He et al., 2020) considers subclasses that
are defined by their context, such as dogs at home versus
dogs on the beach; DeepFashion-Remixed (Hendrycks et al.,
2020b) constrains the training set to include only photos
from a single camera viewpoint and tests generalization
to unseen camera viewpoints; BDD-Anomaly (Hendrycks
et al., 2020a) uses a driving dataset but with all motorcycles,
trains, and bicycles removed from the training set only; and
ObjectNet (Barbu et al., 2019) comprises images taken from
a few pre-specified viewpoints, allowing for systematic eval-
uation for robustness to camera angle changes but deviating
from natural camera angles.

Distribution shifts across datasets. A well-studied spe-
cial case of the above category is the class of distribution
shifts obtained by combining several disparate datasets (Tor-
ralba & Efros, 2011), training on one or more of them and
then testing on the remaining datasets. A recent influential
example is the ImageNetV2 dataset (Recht et al., 2019),
which was constructed to be similar to the original Ima-
geNet dataset. Unlike ImageNetV2, however, many of these
distribution shifts were constructed to be more drastic than
might arise in the wild. For example, standard domain adap-
tation benchmarks include training on MNIST but testing on
SVHN street signs (LeCun et al., 1998; Yuval et al., 2011;
Tzeng et al., 2017; Hoffman et al., 2018), as well as transfers
across datasets containing different renditions (e.g., photos,
clipart, sketches) in DomainNet (Peng et al., 2019) and the
Office-Home dataset (Venkateswara et al., 2017).

The main difference between domain adaptation and domain
generalization is that in the latter, we do not assume access
to unlabeled data from the test distribution. This makes it
straightforward to use domain adaptation benchmarks for
domain generalization, e.g., in DomainBed (Gulrajani &
Lopez-Paz, 2020); we focus on domain generalization in
this work, but further discuss unsupervised domain adapta-
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tion in Section D. Other similar benchmarks that have been
proposed for domain generalization include VLCS (Fang
et al., 2013), which tests generalization across similar vi-
sual object recognition datasets; PACS (Li et al., 2017a),
which (like DomainNet) tests generalization across datasets
with different renditions; and ImageNet-R (Hendrycks et al.,
2020b) and ImageNet-Sketch (Wang et al., 2019c), which
also test generalization across different renditions by collect-
ing separate datasets from Flickr and Google Image queries.

C. Distribution shifts in other application
areas

Beyond the datasets currently included in WILDS, there are
many other applications where it is critical for models to
be robust to distribution shifts. In this section, we discuss
some of these applications and the challenges of finding
appropriate benchmark datasets in those areas. We also
highlight examples of datasets with distribution shifts that
we considered but did not include in WILDS, because their
distribution shifts did not lead to a significant performance
drop. Constructing realistic benchmarks that reflect distribu-
tion shifts in these application areas is an important avenue
of future work, and we would highly welcome community
contributions of benchmark datasets in these areas.

C.1. Algorithmic fairness

Distribution shifts which degrade model performance on
minority subpopulations are frequently discussed in the al-
gorithmic fairness literature. Geographic inequities are
one concern (Shankar et al., 2017; Atwood et al., 2020):
e.g., publicly available image datasets overrepresent images
from the US and Europe, degrading performance in the de-
veloping world (Shankar et al., 2017) and prompting the
creation of more geographically diverse datasets (Atwood
et al., 2020). Racial disparities are another concern: e.g.,
commercial gender classifiers are more likely to misclas-
sify the gender of darker-skinned women, likely in part
because training datasets overrepresent lighter-skinned sub-
jects (Buolamwini & Gebru, 2018), and pedestrian detection
systems fare worse on darker-skinned pedestrians (Wilson
et al., 2019). As in Appendix H.6, NLP models can also
show racial bias.

Unfortunately, publicly available algorithmic fairness bench-
marks (Mehrabi et al., 2019)—e.g., the COMPAS recidi-
vism dataset (Larson et al., 2016)—suffer from several lim-
itations. First, the datasets are often quite small by the
standards of modern ML: the COMPAS dataset has only a
few thousand rows (Larson et al., 2016). Second, they tend
to have relatively few features, and disparities in subgroup
performance are not always large (Larrazabal et al., 2020),
limiting the benefit of more sophisticated approaches: on
COMPAS, logistic regression performs comparably to a

black-box commercial algorithm (Jung et al., 2020; Dressel
& Farid, 2018). Third, the datasets sometimes represent
“toy” problems: e.g., the UCI Adult Income dataset (Asun-
cion & Newman, 2007) is widely used as a fairness bench-
mark, but its task—classifying whether a person will have
an income above $50,000—does not represent a real-world
application. Finally, because many of the domains in which
algorithmic fairness is of most concern—e.g., criminal jus-
tice and healthcare—are high-stakes and disparities are polit-
ically sensitive, it can be difficult to make datasets publicly
available.

Creating algorithmic fairness benchmarks which do not suf-
fer from these limitations represents a promising direction
for future work. In particular, such datasets would ideally
have: 1) information about a sensitive attribute like race
or gender; 2) a prediction task which is of immediate real-
world interest; 3) enough samples, a rich enough feature set,
and large enough disparities in group performance that more
sophisticated machine learning approaches would plausibly
produce improvement over naive approaches.

Dataset: New York stop-and-frisk. Predictive policing
is a prominent example of a real-world application where
fairness considerations are paramount: algorithms are in-
creasingly being used in contexts such as predicting crime
hotspots (Lum & Isaac, 2016) or a defendant’s risk of re-
offending (Larson et al., 2016; Corbett-Davies et al., 2016;
2017; Lum & Shah, 2019). There are numerous concerns
about these applications (Larson et al., 2016; Corbett-Davies
et al., 2016; 2017; Lum & Shah, 2019), one of which is
that these ML models might not generalize beyond the
distributions that they were trained on (Corbett-Davies &
Goel, 2018; Slack et al., 2019). These distribution shifts
include shifts over locations—e.g., a criminal risk assess-
ment trained on several hundred defendants in Ohio was
eventually used throughout the United States (Latessa et al.,
2010)—and shifts over time, as sentencing and other crimi-
nal justice policies evolve (Corbett-Davies & Goel, 2018).
There are, of course, also subpopulation shift concerns
around whether models are biased against particular de-
mographic groups.

We investigated these shifts using a dataset of pedestrian
stops made by the New York City Police Department un-
der its “stop-and-frisk” policy, where the task is to pre-
dict whether a pedestrian who was stopped on suspicion of
weapon possession would in fact possess a weapon (Goel
et al., 2016). This policy had a pronounced racial bias:
Black people stopped by the police on suspicion of possess-
ing a weapon were 5× less likely to actually possess one
than their White counterparts (Goel et al., 2016). We em-
phasize that we oppose stop-and-frisk (and any “improved”
ML-powered stop-and-frisk) since there is overwhelming
evidence that the policy was racially discriminatory (Gel-
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man et al., 2007; Goel et al., 2016; Pierson et al., 2018)
and such massive inequities require more than algorithmic
fixes. Rather, we use the dataset as a realistic example of
the phenomena that arise in real policing contexts, includ-
ing 1) substantial heterogeneity across locations and racial
groups and 2) distributions that arise in part because of
biased policing practices.

Overall, we find large performance disparities across race
groups and locations. Interestingly, however, we also find
that these disparities cannot be attributed to the distribution
shift, as the disparities were not reduced when we trained
models specifically on the race groups or locations that
suffer the worst performance. Indeed, the groups that see
the worst performance—Black and Hispanic pedestrians—
comprise large majorities of the dataset, making up more
than 90% of the stops. This contrasts with the typical setting
in algorithmic fairness where models perform worse on
minority groups in the training data. Our results suggest
the disparities are due to the dataset being noisier for some
race and location groups, potentially as a result of the biased
policing practices underlying the dataset. We provide further
details in Appendix I.1.

C.2. Medicine and healthcare

Substantial evidence indicates the potential for distribution
shifts in medical settings. One concern is demographic
subpopulation shifts (e.g., across race, gender, or socioe-
conomic status), since historically-disadvantaged popula-
tions are underrepresented in many medical datasets (Chen
et al., 2020). Another concern is heterogeneity across hos-
pitals; this might include differences in imaging, as in Ap-
pendix H.2, and other operational protocols such as lab tests
(D’Amour et al., 2020a; Subbaswamy et al., 2020). Finally,
changes over time can also produce distribution shifts: for
example, Nestor et al. (2019) showed that switching be-
tween two electronic health record (EHR) systems produced
a drop in performance, and the COVID-19 epidemic has
affected the distribution of chest radiographs (Wong et al.,
2020).

Creating medical distribution shift benchmarks thus rep-
resents a promising direction for future work, if several
challenges can be overcome. First, while there are large
demographic disparities in healthcare outcomes (e.g., by
race or socioeconomic status), many of them are not due
to distribution shifts, but to disparities in non-algorithmic
factors (e.g., access to care or prevalence of comorbidi-
ties (Chen et al., 2020)) or to algorithmic problems unre-
lated to distribution shift (e.g., choice of a biased outcome
variable (Obermeyer et al., 2019)). Indeed, several previous
investigations have found relatively small disparities in al-
gorithmic performance (as opposed to healthcare outcomes)
across demographic groups (Chen et al., 2019a; Larrazabal

et al., 2020); Seyyed-Kalantari et al. (2020) finds larger dis-
parities in true positive rates across demographic groups, but
this might reflect the different underlying label distributions
between groups.

Second, many distribution shifts in medicine arise from
concept drifts, in which the relationship between the input
and the label changes, for example due to changes in clinical
procedures and the definition of the label (Widmer & Kubat,
1996; Beyene et al., 2015; Futoma et al., 2020). It can be
difficult to ensure that a potential benchmark has sufficient
leverage for models to learn how to handle, e.g., an abrupt
change in the way a particular clinical procedure is carried
out.

A last challenge is data availability, as stringent medical
privacy laws often preclude data sharing (Price & Cohen,
2019). For example, EHR datasets are fundamental to medi-
cal decision-making, but there are few widely adopted EHR
benchmarks—with the MIMIC database being a promi-
nent exception (Johnson et al., 2016)—and relatively lit-
tle progress in predictive performance has been made on
them (Bellamy et al., 2020).

C.3. Genomics

Advances in high-throughput genomic and molecular profil-
ing platforms have enabled systematic mapping of biochem-
ical activity of genomes across diverse cellular contexts,
populations, and species (Consortium et al., 2012; Ho et al.,
2014; Kundaje et al., 2015; Aviv et al., 2017; Consortium
et al., 2019; Moore et al., 2020; Consortium et al., 2020).
These datasets have powered ML models that aim to learn
predictive representations of functional DNA and predict
genome-wide biochemical profiles in contexts for which
experimental data is unavailable (Ching et al., 2018; Eraslan
et al., 2019; Libbrecht & Noble, 2015). These models have
been fairly successful at deciphering functional DNA se-
quence patterns from learned representations and predicting
the consequences of genetic perturbations in contexts in
which the models are trained (Avsec et al., 2019; Zhou &
Troyanskaya, 2015; Kelley et al., 2016; Jaganathan et al.,
2019). However, distribution shifts pose a significant chal-
lenge to generalizing predictions to new contexts.

One such challenge involves the prediction of genome-wide
profiles of regulatory protein-DNA interactions across cellu-
lar contexts (Srivastava & Mahony, 2020). Regulatory pro-
teins bind regulatory DNA elements in a sequence-specific
manner to orchestrate gene expression programs. However,
these proteins often form different cooperative complexes
with each other in different cellular contexts. These context-
specific complexes can recognize distinct combinatorial
regulatory sequence syntax, thereby exhibiting dynamic ge-
nomic binding landscapes across diverse cell states and cell
types that all contain the same genomic sequence. This phe-
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nomenon essentially induces a concept shift across cellular
contexts, as the same DNA sequence can be associated with
different binding labels for a protein across contexts. Hence,
ML models that aim to predict protein-DNA binding land-
scapes across cell types typically integrate DNA sequence
and additional context-specific input data modalities that
provide auxiliary information about the regulatory state of
DNA in each cellular context (Srivastava & Mahony, 2020).

Recently, an open community challenge was introduced to
systematically benchmark state-of-the-art predictive mod-
els that integrate DNA sequence and cell context-specific
experiments of genome-wide regulatory state for cross cell-
type prediction of protein-DNA binding maps.1 Prospective
evaluation of top-performing models highlighted a signifi-
cant drop in prediction performance across cellular contexts
relative to cross-validation performance within training cell
types (Keilwagen et al., 2019; Quang & Xie, 2019; Li et al.,
2019a; Li & Guan, 2019). We expect that novel approaches
that explicitly correct for the concept shifts across cellular
contexts are likely to provide significant improvements in
cross-context generalization.

Such approaches could also benefit other prediction tasks in
genomics that suffer from distribution shifts, such as gener-
alizing animal models of human disease; adapting models of
immortalized cell-lines to primary human cells; predicting
the influence of different cellular micro-environments; and
predicting cell fate in longitudinal time courses of cellular
differentiation, reprogramming and exposure to stimuli.

C.4. Natural language and speech processing

Subpopulation shifts are an issue in automated speech recog-
nition (ASR) systems, which have been shown to have
higher error rates for Black speakers than for White speak-
ers (Koenecke et al., 2020) and for speakers of some dialects
(Tatman, 2017). These disparities were demonstrated us-
ing commercial ASR systems, and therefore do not have
any accompanying training datasets that are publicly avail-
able. There are many public speech datasets with speaker
metadata that could potentially be used to construct a bench-
mark, e.g., LibriSpeech (Panayotov et al., 2015), the Speech
Accent Archive (Weinberger, 2015), VoxCeleb2 (Chung
et al., 2018), the Spoken Wikipedia Corpus (Baumann et al.,
2019), and Common Voice (Ardila et al., 2020). However,
these datasets have their own challenges: some do not have
a sufficiently diverse sample of speaker backgrounds and
accents, and others focus on read speech (e.g., audiobooks)
instead of more natural speech.

In natural language processing (NLP), a current focus is on
challenge datasets that are crafted to test particular aspects of

1ENCODE-DREAM in vivo Transcription Factor Binding Site
Prediction Challenge, http://synapse.org/encode.

models, e.g., HANS (McCoy et al., 2019b), PAWS (Zhang
et al., 2019), and CheckList (Ribeiro et al., 2020). These
challenge datasets are drawn from test distributions that are
often (deliberately) quite different from the data distribu-
tions that models are typically trained on. Counterfactually-
augmented datasets (Kaushik et al., 2019) are a related type
of challenge dataset where the training data is modified to
make spurious correlates independent of the target, which
can result in more robust models. Others have studied
train/test sets that are drawn from different sources, e.g.,
Wikipedia, Reddit, news articles, travel reviews, and so on
(Oren et al., 2019; Miller et al., 2020; Kamath et al., 2020).

Several synthetic datasets have also been designed to test
compositional generalization, such as CLEVR (Johnson
et al., 2017), SCAN (Lake & Baroni, 2018), and COGS
(Kim & Linzen, 2020). The test sets in these datasets are
chosen such that models need to generalize to novel com-
binations of parts of training examples, e.g., familiar primi-
tives and grammatical roles (Kim & Linzen, 2020). CLEVR
is a visual question-answering (VQA) dataset; other ex-
amples of VQA datasets that are formulated as challenge
datasets are the VQA-CP v1 and v2 datasets (Agrawal et al.,
2018), which create subpopulation shifts by intentionally al-
tering the distribution of answers per question type between
the train and test splits.

These NLP examples involve English-language models;
other languages typically have fewer and smaller datasets
available for training and benchmarking models. Multi-
lingual models and benchmarks (Conneau et al., 2018; Con-
neau & Lample, 2019; Hu et al., 2020a; Clark et al., 2020)
are another source of subpopulation shifts with correspond-
ing disparities in performance: training sets might contain
fewer examples in low-resource languages (Nekoto et al.,
2020), but we would still hope for high model performance
on these minority groups.

Datasets: Other distribution shifts in Amazon and Yelp
reviews. In addition to user shifts on the Amazon Reviews
dataset (Ni et al., 2019), we also looked at category and time
shifts on the same dataset, as well as user and time shifts on
the Yelp Open Dataset2. However, for many of those shifts,
we only found modest performance drops. We provide
additional details on Amazon in Appendix I.3 and on Yelp
in Appendix I.4.

C.5. Education

ML models can help in educational settings in a variety of
ways: e.g., assisting in grading (Piech et al., 2013; Shermis,
2014; Kulkarni et al., 2014; Taghipour & Ng, 2016), estimat-
ing student knowledge (Desmarais & Baker, 2012; Wu et al.,
2020), identifying students who need help (Ahadi et al.,

2https://www.yelp.com/dataset
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2015), or automatically generating explanations (Williams
et al., 2016; Wu et al., 2019a). However, there are substan-
tial distribution shifts in these settings as well. For example,
automatic essay scoring has been found to be affected by
rater bias (Amorim et al., 2018) and spurious correlations
like essay length (Perelman, 2014), leading to problems
with subpopulation shift. Ideally, these systems would also
generalize across different contexts, e.g., a model for scor-
ing grammar should work well across multiple different
essay prompts. Recent attempts at predicting grades algo-
rithmically (BBC, 2020; Broussard, 2020) have also been
found to be biased against certain subpopulations.

Unfortunately, there is a general lack of standardized educa-
tion datasets, in part due to student privacy concerns and the
proprietary nature of large-scale standardized tests. Datasets
from massive open online courses are a potential source of
large-scale data (Kulkarni et al., 2015). In general, dataset
construction for ML in education is an active area—e.g.,
the NeurIPS 2020 workshop on Machine Learning for Ed-
ucation3 has a segment devoted to finding “ImageNets for
education”—and we hope to be able to include one in the
future.

C.6. Robotics

Robot learning has emerged as a strong paradigm for auto-
matically acquiring complex and skilled behaviors such as
locomotion (Yang et al., 2019; Peng et al., 2020), navigation
(Mirowski et al., 2017; Kahn et al., 2020), and manipula-
tion (Gu et al., 2017; et al, 2019). However, the advent
of learning-based techniques for robotics has not convinc-
ingly addressed, and has perhaps even exasperated, prob-
lems stemming from distribution shift. These problems
have manifested in many ways, including shifts induced
by weather and lighting changes (Wulfmeier et al., 2018),
location changes (Gupta et al., 2018), and the simulation-to-
real-world gap (Sadeghi & Levine, 2017; Tobin et al., 2017).
Dealing with these challenging scenarios is critical to de-
ploying robots in the real world, especially in high-stakes
decision-making scenarios.

For example, to safely deploy autonomous driving vehicles,
it is critical that these systems work reliably and robustly
across the huge variety of conditions that exist in the real
world, such as locations, lighting and weather conditions,
and sensor intrinsics. This is a challenging requirement, as
many of these conditions may be underrepresented, or not
represented at all, by the available training data. Indeed,
prior work has shown that naively trained models can suffer
at segmenting nighttime driving scenes (Dai & Van Gool,
2018), detecting relevant objects in new or challenging loca-
tions and settings (Yu et al., 2020; Sun et al., 2020a), and,
as discussed earlier, detecting pedestrians with darker skin

3https://www.ml4ed.org/

tones (Wilson et al., 2019).

Creating a benchmark for distribution shifts in robotics ap-
plications, such as autonomous driving, represents a promis-
ing direction for future work. Here, we briefly summarize
our initial findings on distribution shifts in the BDD100K
driving dataset (Yu et al., 2020), which is publicly avail-
able and widely used, including in some of the works listed
above.

Dataset: BDD100K. We investigated the task of multi-
label binary classification of the presence of each object
category in each image. In general, we found no substantial
performance drops across a wide range of different test
scenarios, including user shifts, weather and time shifts, and
location shifts. We provide additional details in Section I.2.

Our findings contrast with previous findings that other tasks,
such as object detection and segmentation, can suffer un-
der the same types of shifts on the same dataset (Yu et al.,
2020; Dai & Van Gool, 2018). Currently, WILDS consists of
datasets involving classification and regression tasks. How-
ever, most tasks of interest in autonomous driving, and
robotics in general, are difficult to formulate as classification
or regression. For example, autonomous driving applica-
tions may require models for object detection or lane and
scene segmentation. These tasks are often more challenging
than classification tasks, and we speculate that they may
suffer more severely from distribution shift.

C.7. Feedback loops

Finally, we have restricted our attention to settings where
the data distribution is independent of the model. When
the data distribution does depend on the model, distribution
shifts can arise from feedback loops between the data and
the model. Examples include recommendation systems and
other consumer products (Bottou et al., 2013; Hashimoto
et al., 2018); dialogue agents (Li et al., 2017b); molecu-
lar compound optimization (Cuccarese et al., 2020; Reker,
2020); decision systems (Liu et al., 2018; D’Amour et al.,
2020b); and adversarial settings like fraud or malware detec-
tion (Rigaki & Garcia, 2018). While these adaptive settings
are outside the scope of our benchmark, dealing with these
types of distribution shifts is an important area of ongoing
work.

D. Potential extensions to other problem
settings

In this paper, we have focused on two problem settings
involving domain shifts: domain generalization and sub-
population shifts. Here, we discuss other problem settings
within the framework of domain shifts that could also ap-
ply to WILDS datasets. Using WILDS to benchmark and
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develop algorithms for these settings is an important avenue
for future work, and we welcome community contributions
towards this effort.

D.1. Problem settings in domain shifts

Within the general framework of domain shifts, specific
problem settings can differ along the following axes of vari-
ation:

1. Seen versus unseen test domains. Test domains may
be seen during training time (Dtest ⊆ Dtrain), as in sub-
population shift, or unseen (Dtrain ∩ Dtest = ∅), as in
domain generalization. The domain generalization and
subpopulation shift settings mainly differ on this factor.

2. Train-time domain annotations. The domain identity
d may be observed for none, some, or all of the training
examples. Train-time domain annotations are straight-
forward to obtain in some settings, e.g., we should know
which patients in the training sets came from which hos-
pitals, but can be harder to obtain in some settings, e.g.,
we might only have demographic information on a subset
of training users. In our domain generalization and sub-
population shift settings, d is always observed at training
time.

3. Test-time domain annotations. The domain identity
d may be observed for none, some, or all of the test
examples. Test-time domain annotations allow models
to be domain-specific, e.g., by treating domain identity
as a feature if the train and test domains overlap. For
example, if the domains correspond to continents and
the data to satellite images from a continent, we would
presumably know what continent each image was taken
from. On the other hand, if the domains correspond to
demographic information, this might be hard to obtain at
test time (as well as training time, as mentioned above).
In domain generalization, d may be observed at test time,
but it is not helpful by itself as all of the test domains
are unseen at training time. However, when combined
with test-time unlabeled data, observing the domain d at
test time could help with adaptation. In subpopulation
shift, we typically assume that d is unobserved at test
time, though this need not always be true.

4. Test-time unlabeled data. Varying amounts of unla-
beled test data—samples of x drawn from the test dis-
tribution P test—may be available, from none to a small
batch to a large pool. This affects the degree to which
models can adapt to test distributions. For example, if the
domains correspond to locations and the data points to
photos taken at those locations, we might assume access
to some unlabeled photos taken at the test locations.

Each combination of the above four factors corresponds to

a specific problem setting with a different set of applicable
methods. In the current version of the WILDS benchmark,
we focus on domain generalization and subpopulation shifts,
which represent specific configurations of these factors. We
briefly discuss a few other problem settings in the remainder
of this section.

D.2. Unsupervised domain adaptation

In the presence of distribution shift, a potential source of
leverage is observing unlabeled test points from the test
distribution. In the unsupervised domain adaptation setting,
we assume that at training time, we have access to a large
amount of unlabeled data from each test distribution of in-
terest, as well as the resources to train a separate model for
each test distribution. For example, in a satellite imagery
setting like FMOW-WILDS, it might be appropriate to as-
sume that we have access to a large set of unlabeled recent
satellite images from each continent and the wherewithal to
train a separate model for each continent.

Many of the methods for domain generalization discussed
in Section 6 were originally methods for domain adaptation,
since methods for both settings share the common goal of
learning models that can transfer between domains. For
example, methods that learn features that have similar dis-
tributions across domains are equally applicable to both
settings (Ben-David et al., 2006; Long et al., 2015; Sun
et al., 2016; Ganin et al., 2016; Tzeng et al., 2017; Shen
et al., 2018; Wu et al., 2019b). In fact, the CORAL algo-
rithm that we use as a baseline in this work was originally
developed for, and successfully applied in, unsupervised
domain adaptation (Sun & Saenko, 2016). Other methods
rely on knowing the test distribution and are thus specific to
domain adaptation, e.g., learning to map data points from
source to target domains (Hoffman et al., 2018), or esti-
mating the test label distribution from unlabeled test data
(Saerens et al., 2002; Zhang et al., 2013; Lipton et al., 2018;
Azizzadenesheli et al., 2019; Alexandari et al., 2020; Garg
et al., 2020).

D.3. Test-time adaptation

A closely related setting to unsupervised domain adaptation
is test-time adaptation, which also assumes the availability
of unlabeled test data. For datasets where there are many po-
tential test domains (e.g., in IWILDCAM2020-WILDS, we
want a model that can ideally generalize to any camera trap),
it might be infeasible to train a separate model for each test
domain, as unsupervised domain adaptation would require.
In the test-time adaptation setting, we assume that a model
is allowed to adapt to a small amount of unlabeled test data
in a way that is computationally much less intensive than
typical domain adaptation methods. This is a difference of
degree and not of kind, but it can have significant practical
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implications. For example, domain adaptation approaches
typically require access to the training set and a large unla-
beled test set at the same time, whereas test-time adaptation
methods typically only require the learned model (which
can be much smaller than the original training set) as well
as a smaller amount of unlabeled test data.

A number of test-time adaptation methods have been re-
cently proposed (Li et al., 2017c; Sun et al., 2020b; Wang
et al., 2020a). For example, adaptive risk minimiza-
tion (ARM) is a meta-learning approach that adapts mod-
els to each batch of test examples under the assumption
that all data points in a batch come from the same domain
(Zhang et al., 2020). Many datasets in WILDS are suit-
able for the test-time adaptation setting. For example, in
IWILDCAM2020-WILDS, images from the same domain
are highly similar, sharing the same location, background,
and camera angle, and prior work has shown inferring
these shared features can improve performance consider-
ably (Beery et al., 2020b).

D.4. Selective prediction

A different problem setting that is orthogonal to the set-
tings described above is selective prediction. In the selec-
tive prediction setting, models are allowed to abstain on
points where their confidence is below a certain thresh-
old. This is appropriate when, for example, abstentions
can be handled by backing off to human experts, such
as pathologists for CAMELYON17-WILDS, content mod-
erators for CIVILCOMMENTS-WILDS, wildlife experts for
IWILDCAM2020-WILDS, etc. Many methods for selective
prediction have been developed, from simply using soft-
max probabilities as a proxy for confidence (Cordella et al.,
1995; Geifman & El-Yaniv, 2017), to methods involving
ensembles of models (Gal & Ghahramani, 2016; Laksh-
minarayanan et al., 2017; Geifman et al., 2018) or jointly
learning to abstain and classify (Bartlett & Wegkamp, 2008;
Geifman & El-Yaniv, 2019; Feng et al., 2019).

Intuitively, even if a model is not robust to a distribution
shift, it might at least be able to maintain high accuracies
on some subset of points that are close to the training distri-
bution, while abstaining on the other points. Indeed, prior
work has shown that selective prediction can improve model
accuracy under distribution shifts (Pimentel et al., 2014;
Hendrycks & Gimpel, 2017; Liang et al., 2018; Ovadia
et al., 2019; Feng et al., 2019; Kamath et al., 2020). How-
ever, distribution shifts still pose a problem for selective
prediction methods; for instance, it is difficult to maintain
desired abstention rates under distribution shifts (Kompa
et al., 2020), and confidence estimates have been found to
drift over time (e.g., Davis et al. (2017)).

E. Empirical trends
We end our discussion of experimental results by briefly
reporting on several trends that we observed across multiple
datasets.

E.1. Underspecification

Prior work has shown that there is often insufficient infor-
mation at training time to distinguish models that would
generalize well under distribution shift; many models that
perform similarly in-distribution (ID) can vary substantially
out-of-distribution (OOD) (McCoy et al., 2019a; Zhou et al.,
2020; D’Amour et al., 2020a). In WILDS, we attempt to al-
leviate this issue by providing multiple training domains in
each dataset as well as an OOD validation set for model se-
lection. Perhaps as a result, we do not observe significantly
higher variance in OOD performance than ID performance
in Table 1, with the exception of AMAZON-WILDS and
CIVILCOMMENTS-WILDS, where the OOD performance is
measured on a smaller subpopulation and is therefore natu-
rally more variable. Excluding those datasets, the average
standard deviation from Table 1 is 2.6% for OOD perfor-
mance and 2.0% for ID performance, which is comparable.
These results raise the question of when underspecification,
as reported in prior work, could be more of an issue.

E.2. Model selection with in-distribution versus
out-of-distribution validation sets

All of the baseline results reported in this paper use an
OOD validation set for model selection, as discussed in
Appendix G.2. To facilitate research into comparisons of
ID versus OOD performance, most WILDS datasets also
provide an ID validation and/or test set. For example, in
IWILDCAM2020-WILDS, the ID validation set comprises
photos from the same set of camera traps used for the train-
ing set. These ID sets are not used for model selection nor
official evaluation.

Gulrajani & Lopez-Paz (2020) showed that on the Do-
mainBed domain generalization datasets, selecting models
with an ID validation set leads to higher OOD performance
than using an OOD validation set. This contrasts with our
approach of using OOD validation sets, which we find to
generally provide a good estimate of OOD test performance.
Specifically, in Appendix G.2, we show that for our baseline
models, model selection using an OOD validation set re-
sults in comparable or higher OOD performance than model
selection using an ID validation set. This difference could
stem from many factors: for example, WILDS datasets tend
to have many more domains, whereas DomainBed datasets
tend to have fewer domains that can be quite different from
each other (e.g., cartoons vs. photos); and there are some
differences in the exact procedures for comparing perfor-
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mance using ID versus OOD validation sets. Further study
of the effects of these different model selection procedures
and choices of validation sets would be a useful direction
for future work.

E.3. The compounding effects of multiple distribution
shifts

Several WILDS datasets consider hybrid settings, where the
goal is to simultaneously generalize to unseen domains as
well as to certain subpopulations. We observe that com-
bining these types of shifts can exacerbate performance
drops. For example, in POVERTYMAP-WILDS and FMOW-
WILDS, the shift to unseen domains exacerbates the gap
in subpopulation performance (and vice versa). Notably,
in FMOW-WILDS, the difference in subpopulation perfor-
mance (across regions) is not even manifested until also con-
sidering another shift (across time). While we do not always
observe the compounding effect of distribution shifts—e.g.,
in AMAZON-WILDS, subpopulation performance is similar
whether we consider shifts to unseen users or not—these ob-
servations underscore the importance of evaluating models
on the combination of distribution shifts that would occur
in practice, instead of considering each shift in isolation.

F. Using the WILDS package
Finally, we discuss our open-source PyTorch-based package
that exposes a simple interface to our datasets and automati-
cally handles data downloads, allowing users to get started
on a WILDS dataset in just a few lines of code. In addition,
the package provides various data loaders and utilities sur-
rounding domain annotations and other metadata, which sup-
ports training algorithms that need access to these metadata.
The package also provides standardized evaluations for each
dataset. More documentation and installation information
can be found at https://wilds.stanford.edu.

Datasets and data loading. The WILDS package pro-
vides a simple, standardized interface for all datasets in the
benchmark as well as their data loaders, as summarized in
Figure 3. This short code snippet covers all of the steps
of getting started with a WILDS dataset, including dataset
download and initialization, accessing various splits, and
initializing the data loader. We also provide multiple data
loaders in order to accommodate a wide array of algorithms,
which often require specific data loading schemes.

Domain information. To allow algorithms to leverage
domain annotations as well as other groupings over the
available metadata, the WILDS package provides Grouper
objects. Grouper objects (e.g., grouper in Figure 4)
extract group annotations from metadata, allowing users to
specify the grouping scheme in a flexible fashion.

>>> from wilds import get_dataset
>>> from wilds.common.data_loaders import get_train_loader
>>> import torchvision.transforms as transforms
# Load the full dataset
>>> dataset = get_dataset(dataset="iwildcam", download=True)
# Get the training set
>>> train_data = dataset.get_subset("train",

transform=transforms.ToTensor())
# Prepare the "standard" data loader
>>> train_loader = get_train_loader("standard", train_data, 
...                                 batch_size=16)
# Train loop
>>> for x, y_true, metadata in train_loader:
...     ...

Figure 3: Dataset initialization and data loading.

>>> from wilds.common.grouper import CombinatorialGrouper
# Initialize grouper, which extracts domain (location) information
>>> grouper = CombinatorialGrouper(dataset, ["location"])
# Train loop
>>> for x, y_true, metadata in train_loader:
...     z = grouper.metadata_to_group(metadata)
...     ...

Figure 4: Accessing domain and other group information via a
Grouper object.

Evaluation. Finally, the WILDS package standardizes and
automates the evaluation for each dataset. As summarized in
Figure 5, invoking the eval method of each dataset yields
all metrics reported in the paper and on the leaderboard.

>>> from wilds.common.data_loaders import get_eval_loader
# Get the test set
>>> test_data = dataset.get_subset("test",

transform=transforms.ToTensor())
# Prepare the data loader
>>> test_loader = get_eval_loader("standard", test_data, 
... batch_size=16)
# Get predictions for the full test set
>>> for x, y_true, metadata in test_loader:
...     y_pred = model(x)
...     [ accumulate y_true, y_pred, metadata]
# Evaluate
>>> dataset.eval(all_y_pred, all_y_true, all_metadata)
{"macro_recall": 0.66, ...}

Figure 5: Evaluation.

G. Additional experimental details
G.1. Model architectures

We used standard model architectures for each dataset:
ResNet and DenseNet for images (He et al., 2016; Huang
et al., 2017), DistilBERT for text (Sanh et al., 2019), a Graph
Isomorphism Network (GIN) for graphs (Xu et al., 2018),
and Faster-RCNN (Ren et al., 2015) for detection.

G.2. Model hyperparameters

As our goal is high OOD performance, we use a separate
OOD validation set for early stopping and hyperparameter
selection. Relative to the training set, this OOD validation
set reflects a distribution shift similar to, but distinct from,
the test set. For example, in IWILDCAM2020-WILDS, the
training, validation, and test sets each comprise photos from
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distinct sets of camera traps.

For each hyperparameter setting, we used early stopping to
pick the epoch with the best OOD validation performance
(as measured by the specified metrics for each dataset de-
scribed in Section 4), and then picked the model hyperpa-
rameters with the best early-stopped validation performance.
We found that this gave similar or slightly better OOD test
performance than selecting hyperparameters using the ID
validation set (Table 3). For the ID comparisons in Section 5,
we use the same hyperparameters optimized on the OOD
validation set, which generally means that the reported ID
results are slightly lower than they would have been if they
were optimized; in other words, the ID-OOD gaps in Table 1
are slightly underestimated (Appendix G).

Using the OOD validation set for early stopping means that
even if the training procedure does not explicitly use ad-
ditional metadata, as in ERM, the metadata might still be
implicitly (but mildly) used for model selection in one of
two related ways. First, the metric might use the metadata
directly (e.g., by computing the accuracy over different sub-
populations defined in the metadata). Second, the OOD
validation set is generally selected according to this meta-
data (e.g., comprising data from a disjoint set of domains as
the training set). We expect that implicitly using the meta-
data in these ways should increase the OOD performance of
each model. Nevertheless, as Sections 5 and 6 show, there
are still large gaps between OOD and ID performance.

In general, we selected model hyperparameters with ERM
and used the same hyperparameters for the other algo-
rithm baselines (e.g., CORAL, IRM, or Group DRO). For
CORAL and IRM, we did a subsequent grid search over
the weight of the penalty term, using the defaults from Gul-
rajani & Lopez-Paz (2020). Specifically, we tried penalty
weights of {0.1, 1, 10} for CORAL and penalty weights of
{1, 10, 100, 1000} for IRM. We fixed the step size hyperpa-
rameter for Group DRO to its default value of 0.01 (Sagawa
et al., 2020a).

G.3. Replicates

We typically use a fixed train/validation/test split and report
results averaged across 3 replicates (random seeds for model
initialization and minibatch order), as well as the unbiased
standard deviation over those replicates. There are three
exceptions to this. For POVERTYMAP-WILDS, we report re-
sults averaged over 5-fold cross validation, as model training
is relatively fast on this dataset. For CAMELYON17-WILDS,
results vary substantially between replicates, so we report
results averaged over 10 replicates instead. Similarly, for
CIVILCOMMENTS-WILDS, we report results averaged over
5 replicates.

G.4. Baseline algorithms

For all classification datasets, we train models against the
cross-entropy loss. For the POVERTYMAP-WILDS regres-
sion dataset, we use the mean-squared-error loss.

We adapted the implementations of CORAL from Gulra-
jani & Lopez-Paz (2020); IRM from Arjovsky et al. (2019);
and Group DRO from Sagawa et al. (2020a). We note
that CORAL was originally proposed in the context of do-
main adaptation (Sun & Saenko, 2016), where it was shown
to substantially improve performance on standard domain
adaptation benchmarks, and it was subsequently adapted for
domain generalization (Gulrajani & Lopez-Paz, 2020).

Following these implementations, we use minibatch stochas-
tic optimizers to train models under each algorithm, and we
sample uniformly from each domain regardless of the num-
ber of training examples in it. This means that the CORAL
and IRM algorithms optimize for their respective penalty
terms plus a reweighted ERM objective that weights each
domain equally (i.e., effectively upweighting minority do-
mains). The Group DRO objective is unchanged, as it still
optimizes for the domain with the worst loss, but the uni-
form sampling improves optimization stability.

Both CORAL and IRM are designed for models with fea-
turizers, i.e., models that first map each input to a feature
representation and then predict based on the representation.
To estimate the feature distribution for a domain, these al-
gorithms need to see a sufficient number of examples from
that domain in a minibatch. However, some of our datasets
have large numbers of domains, making it infeasible for
each minibatch to contain examples from all domains. For
these algorithms, our data loaders form a minibatch by first
sampling a few domains, and then sampling examples from
those domains. For consistency in our experiments, we used
the same total batch size for these algorithms and for ERM
and Group DRO, with a default of 8 examples per domain in
each minibatch (e.g., if the batch size was 32, then in each
minibatch we would have 8 examples × 4 domains).

For Group DRO, as in Sagawa et al. (2020a), each example
in the minibatch is sampled independently with uniform
probabilities across domains, and therefore each minibatch
does not need to only comprise a small number of domains.
We note that reweighting methods like Group DRO are
effective only when the training loss is non-vanishing, which
we achieve through early stopping (Byrd & Lipton, 2019;
Sagawa et al., 2020a;b).

H. Additional dataset details and results
In this section, we discuss each WILDS dataset in more de-
tail. For completeness, we start by repeating the motivation
behind each dataset from Section 4. We then describe the
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Table 3: The performance of models trained with empirical risk minimization with hyperparameters tuned using the out-of-distribution
(OOD) vs. in-distribution (ID) validation set. We excluded OGB-MOLPCBA, RXRX1-WILDS, and GLOBALWHEAT-WILDS, as they do
not have separate ID validation sets, and CIVILCOMMENTS-WILDS, which is a subpopulation shift setting where we measure worst-group
accuracy on a validation set that is already identically distributed to the training set.

ID performance OOD performance
Dataset Metric Tuned on ID val Tuned on OOD val Tuned on ID val Tuned on OOD val

IWILDCAM2020-WILDS Macro F1 47.2 (2.0) 47.0 (1.4) 29.8 (0.6) 31.0 (1.3)
CAMELYON17-WILDS Average acc 98.7 (0.1) 93.2 (5.2) 65.8 (4.9) 70.3 (6.4)
FMOW-WILDS Worst-region acc 58.0 (0.5) 57.4 (0.2) 31.9 (0.8) 32.8 (0.5)
POVERTYMAP-WILDS Worst-U/R Pearson R 0.65 (0.03) 0.62 (0.04) 0.46 (0.06) 0.46 (0.07)
AMAZON-WILDS 10th percentile acc 72.0 (0.0) 71.9 (0.1) 53.8 (0.8) 53.8 (0.8)
PY150-WILDS Method/class acc 75.6 (0.0) 75.4 (0.4) 67.9 (0.1) 67.9 (0.1)

task, the distribution shift, and the evaluation criteria, and
present baseline results that elaborate upon those in Sec-
tions 5 and 6. We also discuss the broader context behind
each dataset and how it connects with other distribution
shifts in similar applications. Finally, we describe how each
dataset was modified from its original version in terms of
the evaluation, splits, and data. Unless otherwise specified,
all experiments follow the protocol laid out in Appendix G.

H.1. IWILDCAM2020-WILDS

Animal populations have declined 68% on average since
1970 (Grooten et al., 2020). To better understand and
monitor wildlife biodiversity loss, ecologists commonly de-
ploy camera traps—heat or motion-activated static cameras
placed in the wild (Wearn & Glover-Kapfer, 2017)—and
then use ML models to process the data collected (Wein-
stein, 2018; Norouzzadeh et al., 2019; Tabak et al., 2019;
Beery et al., 2019; Ahumada et al., 2020). Typically, these
models would be trained on photos from some existing
camera traps and then used across new camera trap deploy-
ments. However, across different camera traps, there is
drastic variation in illumination, color, camera angle, back-
ground, vegetation, and relative animal frequencies, which
results in models generalizing poorly to new camera trap
deployments (Beery et al., 2018).

We study this shift on a variant of the iWildCam 2020 dataset
(Beery et al., 2020a).

H.1.1. SETUP

Problem setting. We consider the domain generalization
setting, where the domains are camera traps, and we seek
to learn models that generalize to photos taken from new
camera deployments (Figure 6). The task is multi-class
species classification. Concretely, the input x is a photo
taken by a camera trap, the label y is one of 182 different
animal species, and the domain d is an integer that identifies
the camera trap that took the photo.

Train Test (OOD)

Test (ID)

Impala

Great Curassow

Wild Horse …

! = Location 246

Cow

Vulturine 
Guineafowl

Giraffe

! = Location 1

! = Location 1

Cow

African Bush 
Elephant

! = Location 2

! = Location 2

unknown

Southern Pig-Tailed
Macaque

Sun Bear

! = Location 245

! = Location 245

…

Figure 6: The IWILDCAM2020-WILDS dataset comprises photos
of wildlife taken by a variety of camera traps. The goal is to
learn models that generalize to photos from new camera traps that
are not in the training set. Each WILDS dataset contains both in-
distribution (ID) and out-of-distribution (OOD) evaluation sets; for
brevity, we omit the ID sets from the subsequent dataset figures.

Data. The dataset comprises 203,029 images from 323 dif-
ferent camera traps spread across multiple countries in differ-
ent parts of the world. The original camera trap data comes
from the Wildlife Conservation Society (http://lila
.science/datasets/wcscameratraps). These
images tend to be taken in short bursts following motion-
activation of a camera trap, so the images can be addition-
ally grouped into sequences of images from the same burst,
though our baseline models do not exploit this information
and our evaluation metric treats each image individually.
Each image is associated with the following metadata: cam-
era trap ID, sequence ID, and datetime.

As is typical for camera trap data, approximately 35% of
the total number of images are empty (i.e., do not contain
any animal species); this corresponds to one of the 182 class
labels. The ten most common classes across the full dataset
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are “empty” (34%), ocellated turkey (8%), great curassow
(6%), impala (4%), black-fronted duiker (4%), white-lipped
peccary (3%), Central American agouti (3%), ocelot (3%),
gray fox (2%) and cow (2%).

We split the dataset by randomly partitioning the data by
camera traps:

1. Training: 129,809 images taken by 243 camera traps.

2. Validation (OOD): 14,961 images taken by 32 different
camera traps.

3. Test (OOD): 42,791 images taken by 48 different camera
traps.

4. Validation (ID): 7,314 images taken by the same camera
traps as the training set, but on different days from the
training and test (ID) images.

5. Test (ID): 8,154 images taken by the same camera traps
as the training set, but on different days from the training
and validation (ID) images.

The camera traps are randomly distributed across the train-
ing, validation (OOD), and test (OOD) sets. The number
of examples per location vary widely from 1 to 8494, with
a median of 194 images (Figure 7). All images from the
same sequence (i.e., all images taken in the same burst) are
placed together in the same split. See Appendix H.1.4 for
more details.
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Figure 7: Number of examples per location in the
IWILDCAM2020-WILDS dataset. The locations are sorted
such that locations with the least amount of examples are to the
left on the x-axis.

Evaluation. We evaluate models by their macro F1 score
(i.e., we compute the F1 score for each class separately, then
average those scores). We also report the average accuracy
of each model across all test images, but primarily use the
macro F1 score to better capture model performance on rare
species. In the natural world, protected and endangered
species are rare by definition, and are often the most im-
portant to accurately monitor. However, common species
are much more likely to be captured in camera trap images;
this imbalance can make metrics like average accuracy an
inaccurate picture of model effectiveness.

Potential leverage. Though the problem is challenging for
existing ML algorithms, adapting to photos from different
camera traps is simple and intuitive for humans. Repeated
backgrounds and habitual animals, which cause each sen-
sor to have a unique class distribution, provide a strong
implicit signal across data from any one location. We antici-
pate that approaches that utilize the provided camera trap
annotations can learn to factor out these common features
and avoid learning spurious correlations between particular
backgrounds and animal species.

H.1.2. BASELINE RESULTS

Model. For all experiments, we use ResNet-50 models
(He et al., 2016) that were pretrained on ImageNet, using
a learning rate of 3e-5 and no L2-regularization. As input,
these models take in images resized to 448 by 448. We
trained these models with the Adam optimizer and a batch
size of 16 for 12 epochs. To pick hyperparameters, we did
a grid search over learning rates {1× 10−5, 3× 10−5, 1×
10−4} and L2 regularization strengths {0, 1 × 10−3, 1 ×
10−2}. We report results aggregated over 3 random seeds.

ERM results and performance drops. Model perfor-
mance dropped substantially and consistently going from
in-distribution (ID) to out-of-distribution (OOD) camera
traps (Table 4), with a macro F1 score of 47.0 on the ID test
set but only 31.0 on the OOD test set. We note that macro F1
and average accuracy both differ between the OOD valida-
tion and test sets: this is in part due to the difference in class
balance between them, which in turn is due to differences
in the proportion of classes across camera traps. In par-
ticular, macro F1 can vary between splits because we take
the average F1 score across all classes that are present in
the evaluation split, and not all splits have the same classes
present (e.g., a rare species might be in the OOD valida-
tion set but not OOD test set, or vice versa). In additional,
average accuracy can differ between splits due in part to
variation in the fraction of empty images per location (e.g.,
the camera traps that were randomly assigned to the OOD
validation set have a smaller proportion of empty images).

Additional baseline methods. We trained models with
CORAL, IRM, and Group DRO, treating each camera trap
as a domain, and using the same model hyperparameters
as ERM. These did not improve upon the ERM baseline
(Table 4). The IRM models performed especially poorly
on this dataset; we suspect that this is because the default
estimator of the IRM penalty term can be negatively biased
when examples are sampled without replacement from small
domains, but further investigation is needed.

Discussion. Across locations, there is drastic variation in
illumination, camera angle, background, vegetation, and
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Figure 8: Label distribution for each IWILDCAM2020-WILDS split.

color. This variation, coupled with considerable differences
in the distribution of animals between camera traps, likely
encourages the model to overfit to specific animal species
appearing in specific locations, which may account for the
performance drop.

The original iWildCam 2020 competition allows users to
use MegaDetector (Beery et al., 2019), which is an animal
detector trained on a large set of data beyond what is pro-
vided in the training set. Using an animal detection model
like MegaDetector typically improves classification perfor-
mance on camera traps (Beery et al., 2018). However, we
intentionally do not use MegaDetector in our baselines for
IWILDCAM2020-WILDS for two reasons. First, though
the trained MegaDetector model is publicly available, the
MegaDetector training set is not, which makes it difficult to
build on top of it and run controlled experiments. Second,
bounding box annotations are costly and harder to obtain,
and there is much more data with image-level species label,
so it would be useful to be able to train models that do not
have to rely on bounding box annotations.

We still welcome leaderboard submissions that use MegaDe-
tector, as it is useful to see how much better models can
perform when they use MegaDetector or other similar an-

imal detectors, but we will distinguish these submissions
from others that only use what is provided in the training
set.

A different source of leverage comes from the temporal
signal in the camera trap images, which are organized into
sequences that each correspond to a burst of images from a
single motion trigger. Using this sequence information (e.g.,
by taking the median prediction across a sequence) can also
improve model performance (Beery et al., 2018), and we
welcome submissions that explore this direction.

H.1.3. BROADER CONTEXT

Differences across data distributions at different sensor loca-
tions is a common challenge in automated wildlife monitor-
ing applications, including using audio sensors to monitor
animals that are easier heard than seen such as primates,
birds, and marine mammals (Crunchant et al., 2020; Stowell
et al., 2019; Shiu et al., 2020), and using static sonar to
count fish underwater to help maintain sustainable fishing
industries (Pipal et al., 2012; Vatnehol et al., 2018; Schnei-
der & Zhuang, 2020). As with camera traps, each static
audio sensor has a specific species distribution as well as a
sensor specific background noise signature, making general-
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Table 4: Baseline results on IWILDCAM2020-WILDS.

Val (ID) Val (OOD) Test (ID) Test (OOD)
Algorithm Macro F1 Avg acc Macro F1 Avg acc Macro F1 Avg acc Macro F1 Avg acc

ERM 48.8 (2.5) 82.5 (0.8) 37.4 (1.7) 62.7 (2.4) 47.0 (1.4) 75.7 (0.3) 31.0 (1.3) 71.6 (2.5)
CORAL 46.7 (2.8) 81.8 (0.4) 37.0 (1.2) 60.3 (2.8) 43.5 (3.5) 73.7 (0.4) 32.8 (0.1) 73.3 (4.3)
IRM 24.4 (8.4) 66.9 (9.4) 20.2 (7.6) 47.2 (9.8) 22.4 (7.7) 59.9 (8.1) 15.1 (4.9) 59.8 (3.7)
Group DRO 42.3 (2.1) 79.3 (3.9) 26.3 (0.2) 60.0 (0.7) 37.5 (1.7) 71.6 (2.7) 23.9 (2.1) 72.7 (2.0)
Reweighted (label) 42.5 (0.5) 77.5 (1.6) 30.9 (0.3) 57.8 (2.8) 42.2 (1.4) 70.8 (1.5) 26.2 (1.4) 68.8 (1.6)

ization to new sensors challenging. Similarly, static sonar
used to measure fish escapement have sensor-specific back-
ground reflectance based on the shape of the river bottom.
Moreover, since species are distributed in a non-uniform
and long-tailed fashion across the globe, it is incredibly
challenging to collect sufficient samples for rare species to
escape the low-data regime. Implicitly representing camera-
specific distributions and background features in per-camera
memory banks and extracting relevant information from
these via attention has been shown to help overcome some
of these challenges for static cameras (Beery et al., 2020b).

More broadly, shifts in background, image illumination and
viewpoint have been studied in computer vision research.
First, several works have shown that object classifiers often
rely on the background rather than the object to make its clas-
sification (Rosenfeld et al., 2018; Shetty et al., 2019; Xiao
et al., 2020). Second, common perturbations such as blur-
riness or shifts in illumination, tend to reduce performance
(Dodge & Karam, 2017; Temel et al., 2018; Hendrycks &
Dietterich, 2019). Finally, shifts in rotation and viewpoint of
the object has been shown to degrade performance (Barbu
et al., 2019).

H.1.4. ADDITIONAL DETAILS

Data processing. We generate the data splits in three steps.
First, to generate the OOD splits, we randomly split all
locations into three groups: Validation (OOD), Test (OOD),
and Others. Then, to generate the ID splits, we split the
Others group uniformly by date at random into three sets:
Training, Validation (ID), and Test (ID).

When doing the ID split, some locations only ended up in
some of but not all of Training, Validation (ID), and Test
(ID). For instance, if there were very few dates for a specific
location (camera trap), it may be that no examples from that
location ended up in the train split. This defeats the purpose
of the ID split, which is to test performance on locations that
were seen during training. We therefore put these locations
in the train split. Finally, any images in the test set with
classes not present in the train set were removed.

Modifications to the original dataset. The original iWild-
Cam 2020 Kaggle competition similarly split the dataset
by camera trap, though the competition focused on average
accuracy. We consider a smaller subset of the data here.
Specifically, the Kaggle competition uses a held-out test set
that we are not utilizing, as the test set is intended to be
reused in a future competition and is not yet public. Instead,
we constructed our own test set by splitting the Kaggle com-
petition training data into our own splits: train, validation
(ID), validation (OOD), test (ID), test (OOD).

Images are organized into sequences, but we treat each im-
age separately. In the iWildCam 2020 competition, the top
participants utilized the sequence data and also used a pre-
trained MegaDetector animal detection model that outputs
bounding boxes over the animals. These images are cropped
using the bounding boxes and then fed into a classification
network. As we discuss above, we intentionally do not use
MegaDetector in our experiments.

In addition, compared to the iWildCam 2020 competition,
the iWildCam 2021 competition changed several class def-
initions (such as removing the “unknown” class) and re-
moved some images that were taken indoors or had hu-
mans in the background. We have applied these updates to
IWILDCAM2020-WILDS as well.

H.2. CAMELYON17-WILDS

Models for medical applications are often trained on data
from a small number of hospitals, but with the goal of being
deployed more generally across other hospitals. However,
variations in data collection and processing can degrade
model accuracy on data from new hospital deployments
(Zech et al., 2018; AlBadawy et al., 2018). In histopathology
applications—studying tissue slides under a microscope—
this variation can arise from sources like differences in the
patient population or in slide staining and image acquisition
(Veta et al., 2016; Komura & Ishikawa, 2018; Tellez et al.,
2019).

We study this shift on a patch-based variant of the Came-
lyon17 dataset (Bandi et al., 2018).
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Figure 9: The CAMELYON17-WILDS dataset comprises tissue
patches from different hospitals. The goal is to accurately predict
the presence of tumor tissue in patches taken from hospitals that
are not in the training set. In this figure, each column contains two
patches, one of normal tissue and the other of tumor tissue, from
the same slide.

H.2.1. SETUP

Problem setting. We consider the domain generalization
setting, where the domains are hospitals, and our goal is to
learn models that generalize to data from a hospital that is
not in the training set (Figure 9). The task is to predict if
a given region of tissue contains any tumor tissue, which
we model as binary classification. Concretely, the input x
is a 96x96 histopathological image, the label y is a binary
indicator of whether the central 32x32 region contains any
tumor tissue, and the domain d is an integer that identifies
the hospital that the patch was taken from.

Data. The dataset comprises 450,000 patches extracted
from 50 whole-slide images (WSIs) of breast cancer metas-
tases in lymph node sections, with 10 WSIs from each of 5
hospitals in the Netherlands. Each WSI was manually anno-
tated with tumor regions by pathologists, and the resulting
segmentation masks were used to determine the labels for
each patch. We also provide metadata on which slide (WSI)
each patch was taken from, though our baseline algorithms
do not use this metadata.

We split the dataset by domain (i.e., which hospital the
patches were taken from):

1. Training: 302,436 patches taken from 30 WSIs, with 10
WSIs from each of the 3 hospitals in the training set.

2. Validation (OOD): 34,904 patches taken from 10 WSIs
from the 4th hospital. These WSIs are distinct from those
in the other splits.

3. Test (OOD): 85,054 patches taken from 10 WSIs from
the 5th hospital, which was chosen because its patches
were the most visually distinctive. These WSIs are also
distinct from those in the other splits.

4. Validation (ID): 33,560 patches taken from the same 30
WSIs from the training hospitals.

We do not provide a Test (ID) set, as there is no practical
setting in which we would have labels on a uniformly ran-
domly sampled set of patches from a WSI, but no labels on
the other patches from the same WSI.

Evaluation. We evaluate models by their average test ac-
curacy across patches. Histopathology datasets can be un-
wieldy for ML models, as individual images can be several
gigabytes large; extracting patches involves many design
choices; the classes are typically very unbalanced; and eval-
uation often relies on more complex slide-level measures
such as the free-response receiver operating characteristic
(FROC) (Gurcan et al., 2009). To improve accessibility, we
pre-process the slides into patches and balance the dataset
so that each split has a 50/50 class balance, making average
accuracy is a reasonable measure of performance (Veeling
et al., 2018; Tellez et al., 2019).

Potential leverage. Prior work has shown that differences
in staining between hospitals are the primary source of vari-
ation in this dataset, and that specialized stain augmentation
methods can close the in- and out-of-distribution accuracy
gap on a variant of the dataset based on the same underlying
slides (Tellez et al., 2019). However, the general task of
learning histopathological models that are robust to varia-
tion across hospitals (from staining and other sources) is still
an open research question. In this way, the CAMELYON17-
WILDS dataset is a controlled testbed for general-purpose
methods that can learn to be robust to stain variation be-
tween hospitals, given a training set from multiple hospitals.

H.2.2. BASELINE RESULTS

Model. For all experiments, we use DenseNet-121 mod-
els (Huang et al., 2017) models trained from scratch on
the 96 × 96 patches, following prior work (Veeling et al.,
2018). These models used a learning rate of 10−3, L2-
regularization strength of 10−2, a batch size of 32, and SGD
with momentum (set to 0.9), trained for 5 epochs with early
stopping. We selected hyperparameters by a grid search over
learning rates {10−4, 10−3, 10−2}, and L2-regularization
strengths {0, 10−3, 10−2}. We report results aggregated
over 10 random seeds.

ERM results and performance drops. Table 5 shows that
the model was consistently accurate on the in-distribution
(ID) validation set and to a lesser extent on the out-of-
distribution (OOD) validation set, which was from a held-
out hospital. However, it was wildly inconsistent on the test
set, which was from a different held-out hospital, with a
standard deviation of 6.4% in accuracies across 10 random
seeds. There is a large gap between ID validation and OOD
validation accuracy, and between OOD validation and OOD
test accuracy (in part because we early stop on the highest
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Table 5: Baseline results on CAMELYON17-WILDS. Parentheses show standard deviation across 10 replicates.

Algorithm Validation (ID) accuracy Validation (OOD) accuracy Test (OOD) accuracy

ERM 93.2 (5.2) 84.9 (3.1) 70.3 (6.4)
CORAL 95.4 (3.6) 86.2 (1.4) 59.5 (7.7)
IRM 91.6 (7.7) 86.2 (1.4) 64.2 (8.1)
Group DRO 93.7 (5.2) 85.5 (2.2) 68.4 (7.3)

Table 6: Performance drops for ERM models on CAMELYON17-WILDS. In the standard split, we train on data from three hospitals and
evaluate on a different test hospital, whereas in the mixed split, we add data from one extra slide from the test hospital to the training set.
The original test (OOD) set has data from 10 slides; here, we report performance for both splits on 9 slides (without the slide that was
moved to the training set). This makes the numbers (71.0 vs. 70.3) for the standard split slightly different from Table 5. Parentheses show
standard deviation across 10 replicates. As in the rest of the paper, note that the standard error of the mean is smaller (by a factor of

√
10).

Algorithm Test (OOD) accuracy

Standard split (train on ID examples) ERM 71.0 (6.3)
Mixed split (train on ID + OOD examples) ERM 82.9 (9.8)

OOD validation accuracy). Nevertheless, we found that us-
ing the OOD validation set gave better results than using the
ID validation set; see Appendix G.2 for more discussion.

We ran an additional experiment on a mixed split, where
we moved 1 of the 10 slides4 from the test hospital to the
training set and tested on the patches from the remaining 9
slides. By training on this mixed split, the resulting oracle
model consistently gets significantly higher accuracy on
the reduced test set (Table 6), further suggesting that the
observed performance drop is due to the distribution shift,
as opposed to the intrinsic difficulty of the examples from
the test hospital.

Additional baseline methods. We trained models with
CORAL, IRM, and Group DRO, treating each hospital as
a domain. However, they performed comparably or worse
than the ERM baseline. For the CORAL and IRM models,
our grid search selected the lowest values of their penalty
weights (0.1 and 1, respectively) based on OOD validation
accuracy.

Discussion. These results demonstrate a subtle failure
mode when considering out-of-distribution accuracy: there
are models (i.e., choices of hyperparameters and random
seeds) that do well both in- and out-of-distribution, but we
cannot reliably choose these models from just the train-
ing/validation set. Due to the substantial variability in test
accuracy on CAMELYON17-WILDS (see Figure 10), we ask
researchers to submit leaderboard submissions with results
from 10 random seeds, instead of the 3 random seeds re-
quired for other datasets.

4This slide was randomly chosen and corresponded to about
6% of the test patches; some slides contribute more patches than
others because they contain larger tumor regions.
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Figure 10: Test (OOD) accuracy versus validation (OOD) accuracy
for different random seeds on CAMELYON17-WILDS, using the
same hyperparameters. The test accuracy is far more variable than
the validation accuracy (note the differences in the axes), in part
because we early stop on the highest OOD validation accuracy.

Many specialized methods have been developed to han-
dle stain variation in the context of digital histopathology.
These typically fall into one of two categories: data aug-
mentation methods that perturb the colors in the training
images (e.g., Liu et al. (2017); Bug et al. (2017); Tellez et al.
(2018)) or stain normalization methods that seek to stan-
dardize colors across training images (e.g., Macenko et al.
(2009); BenTaieb & Hamarneh (2017)). These methods are
reasonably effective at mitigating stain variation, at least
in some contexts (Tellez et al., 2019), though the general
problem of learning digital histopathology models that can
be effectively deployed across multiple hospitals/sites is still
an open challenge.
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To facilitate more controlled experiments, we will have
two leaderboard tracks for CAMELYON17-WILDS. For the
first track, which focuses on general-purpose algorithms,
submissions should not use color-specific techniques (e.g.,
color augmentation) and should also train their models from
scratch, instead of fine-tuning models that are pre-trained
from ImageNet or other datasets. For the second track,
submissions can use any of those techniques, including spe-
cialized methods for dealing with stain variation. These
separate tracks will help to disentangle the contributions of
more general-purpose learning algorithms and model archi-
tectures from the contributions of specialized augmentation
techniques or additional training data.

H.2.3. BROADER CONTEXT

Other than stain variation, there are many other distribution
shifts that might occur in histopathology applications. For
example, patient demographics might differ from hospital to
hospital: some hospitals might tend to see patients who are
older or more sick, and patients from different backgrounds
and countries vary in terms of cancer susceptibility (Hen-
derson et al., 2012). Some cancer subtypes and tissues of
origin are also more common than others, leading to poten-
tial subpopulation shift issues, e.g,. a rare cancer subtype in
one context might be more common in another; or even if it
remains rare, we would seek to leverage the greater quantity
of data from other subtypes to improve model accuracy on
the rare subtype (Weinstein et al., 2013).

Beyond histopathology, variation between different hospi-
tals and deployment sites has also been shown to degrade
model accuracy in other medical applications such as dia-
betic retinopathy (Beede et al., 2020) and chest radiographs
(Zech et al., 2018; Phillips et al., 2020), including recent
work on COVID-19 detection (DeGrave et al., 2020). Even
within the same hospital, process variables like which scan-
ner/technician took the image can significantly affect models
(Badgeley et al., 2019).

In these medical applications, the gold standard is to eval-
uate models on an independent test set collected from a
different hospital (e.g., Beck et al. (2011); Liu et al. (2017);
Courtiol et al. (2019); McKinney et al. (2020)) or at least
with a different scanner within the same hospital (e.g., Cam-
panella et al. (2019)). However, this practice has not been
ubiquitous due to the difficulty of obtaining data spanning
multiple hospitals (Esteva et al., 2017; Bejnordi et al., 2017;
Codella et al., 2019; Veta et al., 2019). The baseline results
reported above show that even evaluating on a single differ-
ent hospital might be insufficient, as results can vary widely
between different hospitals (e.g., between the validation
and test OOD datasets). We hope that the CAMELYON17-
WILDS dataset, which has multiple hospitals in the training
set and independent hospitals in the validation and test sets,

will be useful for developing models that can generalize
reliably to new hospitals and contexts (Chen et al., 2020).

H.2.4. ADDITIONAL DETAILS

Data processing. The CAMELYON17-WILDS dataset is
adapted from whole-slide images (WSIs) of breast can-
cer metastases in lymph nodes sections, obtained from the
CAMELYON17 challenge (Bandi et al., 2018). Each split is
balanced to have an equal number of positive and negative
examples. The varying number of patches per slide and
hospital is due to this class balancing, as some slides have
fewer tumor (positive) patches. We selected the test set hos-
pital as the one whose patches were visually most distinct;
the difference in test versus OOD validation performance
shows that the choice of OOD hospital can significantly
affect performance.

From these WSIs, we extracted patches in a standard man-
ner, similar to Veeling et al. (2018). The WSIs were scanned
at a resolution of 0.23µm–0.25µm in the original dataset,
and each WSI contains multiple resolution levels, with ap-
proximately 10,000×20,000 pixels at the highest resolution
level (Bandi et al., 2018). We used the third-highest res-
olution level, corresponding to reducing the size of each
dimension by a factor of 4. We then tiled each slide with
overlapping 96×96 pixel patches with a step size of 32 pix-
els in each direction (such that none of the central 32×32
regions overlap), labeling them as the following:

• Tumor patches have at least one pixel of tumor tissue
in the central 32×32 region. We used the pathologist-
annotated tumor annotations provided with the WSIs.

• Normal patches have no tumor and have at least 20%
normal tissue in the central 32×32 region. We used
Otsu thresholding to distinguish normal tissue from
background.

We discarded all patches that had no tumor and <20% nor-
mal tissue in the central 32×32 region.

To maintain an equal class balance, we then subsampled the
extracted patches in the following way. First, for each WSI,
we kept all tumor patches unless the WSI had fewer normal
than tumor patches, which was the case for a single WSI;
in that case, we randomly discarded tumor patches from
that WSI until the numbers of tumor and normal patches
were equal. Then, we randomly selected normal patches for
inclusion such that for each hospital and split, there was an
equal number of tumor and normal patches.

Modifications to the original dataset. The task in the
original CAMELYON17 challenge (Bandi et al., 2018) was
the patient-level classification task of determining the patho-
logic lymph node stage of the tumor present in all slides
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from a patient. In contrast, our task is a lesion-level classifi-
cation task. Patient-level, slide-level, and lesion-level tasks
are all common in histopathology applications. As men-
tioned above, the original dataset provided WSIs and tumor
annotations, but not a standardized set of patches, which
we provide here. Moreover, it did not consider distribution
shifts; both of the original training and test splits contained
slides from all 5 hospitals.

The CAMELYON17-WILDS patch-based dataset is similar
to one of the datasets used in Tellez et al. (2019), which
was also derived from the CAMELYON17 challenge; there,
only one hospital is used as the training set, and the other
hospitals are all part of the test set. CAMELYON17-WILDS
is also similar to PCam (Veeling et al., 2018), which is a
patch-based dataset based on an earlier CAMELYON16
challenge; the data there is derived from only two hospitals.

Additional data sources. The full, original CAME-
LYON17 dataset contains 1000 WSIs from the same 5 hos-
pitals, although only 50 of them (which we use here) have
tumor annotations. The other 950 WSIs may be used as
unlabeled data. Beyond the CAMELYON17 dataset, the
largest source of unlabeled WSI data is the Cancer Genome
Atlas (Weinstein et al., 2013), which typically has patient-
level annotations (e.g., patient demographics and clinical
outcomes).

H.3. RXRX1-WILDS

High-throughput screening techniques that can generate
large amounts of data are now common in many fields of
biology, including transcriptomics (Harrill et al., 2019), ge-
nomics (Echeverri & Perrimon, 2006; Zhou et al., 2014),
proteomics and metabolomics (Taylor et al., 2021), and
drug discovery (Broach et al., 1996; Macarron et al., 2011;
Swinney & Anthony, 2011; Boutros et al., 2015). Such
large volumes of data, however, need to be created in ex-
perimental batches, or groups of experiments executed at
similar times under similar conditions. Despite attempts to
carefully control experimental variables such as tempera-
ture, humidity, and reagent concentration, measurements
from these screens are confounded by technical artifacts
that arise from differences in the execution of each batch.
These batch effects make it difficult to draw conclusions
from data across experimental batches (Leek et al., 2010;
Parker & Leek, 2012; Soneson et al., 2014; Nygaard et al.,
2016; Caicedo et al., 2017).

We study the shift induced by batch effects on a variant of
the RXRX1-WILDS dataset (Taylor et al., 2019). As illus-
trated in Figure 11, there are significant visual differences
between experimental batches, making recognizing siRNA
perturbations in OOD experiments in the RXRX1-WILDS
dataset a particularly challenging task for existing ML algo-

rithms.

Train Val (OOD) Test (OOD)

Experiment 1 Experiment 2 Experiment 3 Experiment 4

siRNA A

siRNA B

Figure 11: The RXRX1-WILDS dataset comprises images of cells
that have been genetically perturbed by siRNA (Tuschl, 2001).
The goal is to predict which siRNA the cells have been treated
with, where the images come from experimental batches not in the
training set. Here, we show sample images from different batches
for two of the 1,139 possible classes.

H.3.1. SETUP

Problem setting. We consider the domain generalization
setting, where the domains are experimental batches and
we seek to generalize to images from unseen experimental
batches. Concretely, the input x is a 3-channel image of
cells obtained by fluorescent microscopy, the label y indi-
cates which of the 1,139 genetic treatments (including no
treatment) the cells received, and the domain d specifies the
experimental batch of the image.

Data. RXRX1-WILDS was created by Recursion (recur-
sion.com) in its automated high-throughput screening labo-
ratory in Salt Lake City, Utah. It is comprised of fluorescent
microscopy images of human cells in four different cell
lines: HUVEC, RPE, HepG2, and U2OS. These were ac-
quired via fluorescent microscopy using a 6-channel variant
of the Cell Painting assary (Bray et al., 2016). Figure 12
shows an example of the cellular contents of each of these 6
channels: nuclei, endoplasmic reticuli, actin, nucleoli and
cytoplasmic RNA, mitochondria, and Golgi. To make the
dataset smaller and more accessible, we only included the
first 3 channels in RXRX1-WILDS.

The images in RXRX1-WILDS are the result of executing
the same experimental design 51 different times, each in
a different batch of experiments. The design consists of
four 384-well plates, where individual wells are used to
isolate populations of cells on each plate (see Figure 13).
The wells are laid out in a 16×24 grid, but only the wells in
the inner 14×22 grid are used since the outer wells are most
susceptible to environmental factors. Of these 308 usable
wells, one is left untreated to provide a negative control
phenotype, while the rest are treated with small interfering
ribonucleic acid, or siRNA, at a fixed concentration. Each
siRNA is designed to knockdown a single target gene via
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Figure 12: 6-channel composite image of HUVEC cells (left) and
its individual channels (rest): nuclei (blue), endoplasmic reticuli
(green), actin (red), nucleoli and cytoplasmic RNA (cyan), mito-
chondria (magenta), and Golgi (yellow). The overlap in channel
content is due in part to the lack of complete spectral separation
between fluorescent stains. Note that only the first 3 channels are
included in RXRX1-WILDS.

Figure 13: Schematic of a 384-well plate demonstrating imaging
sites and 6-channel images. The 4-plate experiments in RXRX1-
WILDS were run in the wells of such 384-well plates. RXRX1-
WILDS contains two imaging sites per well.

the RNA interference pathway, reducing the expression of
the gene and its associated protein (Tuschl, 2001). However,
siRNAs are known to have significant but consistent off-
target effects via the microRNA pathway, creating partial
knockdown of many other genes as well. The overall effect
of siRNA transfection is to perturb the morphology, count,
and distribution of cells, creating a phenotype associated
with each siRNA. The phenotype is sometimes visually
recognizable, but often the effects are subtle and hard to
detect.

In each plate, 30 wells are set aside for 30 positive con-
trol siRNAs. Each has a different gene as its primary
target, which together with the single untreated well al-
ready mentioned, provides a set of reference phenotypes per
plate. Each of the remaining 1,108 wells of the design (277
wells × 4 plates) receives one of 1,108 treatment siRNA, re-
spectively, so that there is at most one well of each treatment
siRNA in each experiment. We say at most once because, al-
though rare, it happens that either an siRNA is not correctly
transferred into the designated destination well, resulting
in an additional untreated well, or an operational error is

detected by quality control procedures that render the well
unsuitable for inclusion in the dataset.

Each experiment was run in a single cell type, and of the
51 experiments in RXRX1-WILDS, 24 are in HUVEC, 11
in RPE, 11 in HepG2, and 5 in U2OS. Figure 14 shows
the phenotype of the same siRNA in each of these four cell
types.

Figure 14: Images of the same siRNA in four cell types, from left
to right: HUVEC, RPE, HepG2, U2OS.

We split the dataset by experimental batches, with the train-
ing and test splits having roughly the same composition of
cell types:

1. Training: 33 experiments (16 HUVEC, 7 RPE, 7 HepG2,
3 U2OS), site 1 only = 40,612 images.

2. Validation (OOD): 4 experiments (1 HUVEC, 1 RPE, 1
HepG2, 3 U2OS), sites 1 and 2 = 9,854 images.

3. Test (OOD): 14 experiments (7 HUVEC, 3 RPE, 3
HepG2, 1 U2OS), sites 1 and 2 = 34,432 images.

4. Test (ID): same 33 experiments as in the training set,
site 2 only = 40,612 images.

In addition to the class (siRNA), each image is associated
with the following metadata: cell type, experiment, plate,
well, and site. We emphasize that all the images of an ex-
periment are found in exactly one of the training, validation
(OOD) or test (OOD) splits. See Appendix H.3.4 for more
data processing details.

Evaluation. We evaluate models by their average accu-
racy across test images. Note that there are two images per
well in the test set, which we evaluate independently.

The cell types are not balanced in the training and test sets.
Correspondingly, we observed higher performance on the
HUVEC cell type, which is over-represented, and lower per-
formance on the U2OS cell type, which is under-represented.
While maintaining high performance on minority (or even
unseen) cell types is an important problem, for RXRX1-
WILDS, we opt to measure the average accuracy across
all experiments instead of, for example, the worst accu-
racy across cell types. This is because the relatively small
amount of training data available from the minority cell
type (U2OS) makes it challenging to cast RXRX1-WILDS

19



as a tractable subpopulation shift problem. We also note
that the difference in performance across cell types leads to
the validation performance being significantly lower than
the test performance, as there is a comparatively smaller
fraction of HUVEC and a comparatively higher fraction of
U2OS.

Potential leverage. By design, there is usually one sam-
ple per class per experiment in the training set, with the
following exceptions: 1) there are usually four samples per
positive control, though 2) samples may be missing, as de-
scribed above. Moreover, while batch effects can manifest
themselves in many complicated ways, it is the case that
the training set consists of a large number of experiments
selected randomly amongst all experiments in the dataset,
hence we expect models to be able to learn what is common
amongst all such samples per cell type, and for that ability
to generalize to to test batches. We emphasize that, whether
in the training or test sets, the same cell types are perturbed
with the same siRNA, and thus the phenotypic distributions
for each batch share much of the same generative process.

We also note that, while not exploited here, there is quite a
bit of structure in the RXRX1-WILDS dataset. For example,
except in the case of errors, all treatment siRNA appear
once in each experiment, and all control conditions appear
once per plate, so four times per experiment. Also, due
to the operational efficiencies gained, the 1,108 treatment
siRNAs always appear in the same four groups of 277 per
experiment. So while the particular well an siRNA appears
in is randomized, it will always appear with the same group
of 276 other siRNAs. This structure can be exploited for
improving predictive accuracy via post-prediction methods
such as linear sum assignment. However, such methods do
not represent improved generalization to OOD samples, and
should be avoided.

H.3.2. BASELINE RESULTS

Model. For all experiments, we train the standard ResNet-
50 model (He et al., 2016) pretrained on ImageNet, using
a learning rate of 1e− 4 and L2-regularization strength of
1e− 5. We trained these models with the Adam optimizer,
using default parameter values β1 = 0.9 and β2 = 0.999,
with a batch size of 75 for 90 epochs, linearly increasing the
learning rate for 10 epochs, then decreasing it following a
cosine learning rate schedule. We selected hyperparameters
by a grid search over learning rates {10−5, 10−4, 10−3},
L2-regularization strengths {10−5, 10−3}, and numbers of
warmup epochs {5, 10}. We report results aggregated over
3 random seeds.

ERM results and performance drops. Model perfor-
mance dropped significantly from the in-distribution (ID) to
out-of-distribution (OOD) batches (Table 7), with an aver-

age accuracy of 35.9% on the ID test set but only 29.9% on
the OOD test set for ERM.

We ran an additional experiment on a mixed split, where we
moved half of the OOD test set into the training set, while
keeping the overall amount of training data the same. Specif-
ically, we moved one site per experiment from the OOD test
set into the training set, and discarded an equivalent number
of training sites, while leaving the validation set unchanged.
While the test set in the mixed split is effectively half as
large as in the standard split, we expect it to be distributed
similarly, since the two test set versions comprise the same
14 experiments.

Table 8 shows that there is a large gap between the OOD
test accuracies in the standard split (29.9%) versus in the
mixed split (39.8%). We note that the latter is higher than
the ID test accuracy of 35.9% reported for the standard split
in Table 7. This difference mainly stems from the slight
difference in cell type composition between the ID test set
of the standard split and the OOD test set of the mixed split;
in particular, the latter a slightly higher proportion of the
minority cell type (U2OS), on which performance is worse,
and a slightly lower proportion of the majority cell type
(HUVEC), on which performance is better. In this sense, the
mixed split result of 39.8% is a more accurate reflection of
the ID performance on this dataset, and the results in Table 7
therefore understate the magnitude of the distribution shift.
We use the results in Table 7 for Section 5 in the main text
for consistency and to make it easier for future comparisons,
since those results do not require training a separate model
on the mixed split.

Additional baseline methods. We also trained models
with CORAL, IRM, and group DRO, treating each experi-
ment as a domain, and using the same model hyperparam-
eters as ERM. However, the models trained using these
methods all performed poorly compared to the ERM model
(Table 7). One complication with these methods is that the
experiments in the training set comprise different cell types,
as mentioned above; this heterogeneity can pose a challenge
to methods that treat each domain equivalently.

Discussion. An important observation about batch effects
in biological experiments: it is often the case that batch ef-
fects are mediated via biological mechanisms. For example,
an increase in cellular media concentration may lead to cell
growth and proliferation, while the upregulation of prolifer-
ation genes will do the same. Thus the “nuisance” factors
associated with batch effects are often correlated with the
biological signal we are attempting to observe, and cannot
be disentangled from the biological factors that explain the
data. Correction algorithms should take account of such
trade-offs and attempt to optimize for both correction and
signal preservation.
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Table 7: Baseline results on RXRX1-WILDS. Parentheses show standard deviation across 3 replicates.

Algorithm Validation (OOD) accuracy Test (ID) accuracy Test (OOD) accuracy

ERM 19.4 (0.2) 35.9 (0.4) 29.9 (0.4)
CORAL 18.5 (0.4) 34.0 (0.3) 28.4 (0.3)
IRM 5.6 (0.4) 9.9 (1.4) 8.2 (1.1)
Group DRO 15.2 (0.1) 28.1 (0.3) 23.0 (0.3)

Table 8: Performance drops for ERM models on RXRX1-WILDS. In the standard split, we train on data from 33 experiments (1 site per
experiment) and test on 14 different experiments (2 sites per experiment). In the mixed split, we replace 14 of the training experiments
with 1 site from each of the test experiments, which keeps the training set size the same, but halves the test set size. Parentheses show
standard deviation across 3 replicates.

Algorithm Test (OOD) accuracy

Standard split (train on ID examples) ERM 29.9 (0.4)
Mixed split (train on ID + OOD examples) ERM 39.8 (0.2)

H.3.3. BROADER CONTEXT

As previously mentioned, high-throughput screening tech-
niques are used broadly across many areas of biology, and
therefore batch effects are a common problem in fields such
as genomics, transcriptomics, proteomics, metabolomics,
etc., so a particular solution in one such area may prove to
be applicable in many areas of biology (Goh et al., 2017).

There are other datasets that are used in studying batch
effects. The one most comparable to RXRX1-WILDS is
the BBBC021 dataset (Ljosa et al., 2012), which contains
13,200 3-channel fluorescent microscopy images of MCF7
cells acquired across 10 experimental batches. A subset
of 103 treatments from 38 drug compounds belonging to
12 known mechanism of action (MoA) groups was first
studied in (Ando et al., 2017), and has been the subject of
subsequent studies (Caicedo et al., 2018; Godinez et al.,
2018; Tabak et al., 2020). Note that this dataset differs
dramatically from RxRx1, in that there are fewer images,
treatments, batches, and cell types, and each batch contains
only a small subset of the total treatments.

H.3.4. ADDITIONAL DETAILS

Data processing. RXRX1-WILDS contains two non-
overlapping 256×256 fields of view per well. Therefore,
there could be as many as 125,664 images in the dataset (=
51 experiments × 4 plates/experiment × 308 wells/plate × 2
images/well). 154 images were removed based on data qual-
ity, leaving a total dataset of 125,510 images.

Modifications to the original dataset. The underlying
raw dataset consists of 2048 × 2048 pixel, 6 channel, 16bpp
images. To fit within the constraints of the WILDS bench-
mark, images for RXRX1-WILDS were first downsampled
to 1024 × 1024 and 8bpp, cropped to the center 256 × 256

pixels, and only the first three channels (nuclei, endoplasmic
reticuli, actin) were retained. The original RxRx1 dataset,
available at rxrx.ai and described in Taylor et al. (2019), pro-
vides 512 × 512 center crops of the downsampled images
with all 6 channels retained.

The original RxRx1 dataset was also used in a NeurIPS
2019 competition hosted on Kaggle. The validation (OOD)
and test (OOD) splits in RXRX1-WILDS correspond to the
public and private test sets from the Kaggle competition.
The original RxRx1 dataset did not have an additional test
(ID) split, and thus the original training split had both sites 1
and 2, for a total of 81,442 images. The Kaggle competition
also aggregated predictions from both sites to form a single
prediction per well, whereas in RXRX1-WILDS, we treat
each site separately.

As described in Section H.3.1, each plate in both the train-
ing and test sets contains the same 31 control conditions
(one untreated well, and 30 positive control siRNAs). The
Kaggle competition provided the labels for these control
conditions in the test set, expecting that competitors would
use them for various domain alignment techniques such as
CORAL. However, these labels were instead used by the top
competitors to bootstrap pseudo-labeling techniques. For
RXRX1-WILDS, for consistency with the other datasets and
the typical domain generalization setting, we have opted not
to release these control test labels for training.

The poor performance reported here on RXRX1-WILDS
may seem surprising in light of the fact that the top finishers
of the Kaggle competition achieved near perfect accuracy
on the test (OOD) set. This difference is due to a number of
factors, including:

1. Adjustments made to the original RxRx1 dataset for
RXRX1-WILDS, as detailed in this subsection.
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2. Differences in the network architectures used. To make
training on RXRX1-WILDS more accessible, we used a
less compute-intensive architecture than typical in the
competition.

3. Differences in training techniques used like pseudo-
labeling (using the test control labels, as described above)
and batch-level dataset augmentations or ensembling.

4. Differences in the way accuracy is measured. In the
Kaggle competition, accuracy was measured for each
well, meaning site-level predictions were aggregated to
well-level predictions, and only for treatment classes,
whereas in RXRX1-WILDS, for convenience, accuracy is
measured at each site and for both treatment and control
classes.

5. The use of post-prediction methods like linear sum as-
signment that exploited the particular structure of the
experiments in the RxRx1 dataset, as described under
Potential Leverage in Section H.3.1.

H.4. OGB-MOLPCBA

Accurate prediction of the biochemical properties of small
molecules can significantly accelerate drug discovery by
reducing the need for expensive lab experiments (Shoichet,
2004; Hughes et al., 2011). However, the experimental data
available for training such models is limited compared to
the extremely diverse and combinatorially large universe of
candidate molecules that we would want to make predictions
on (Bohacek et al., 1996; Sterling & Irwin, 2015; Lyu et al.,
2019; McCloskey et al., 2020). This means that models
need to generalize to out-of-distribution molecules that are
structurally different from those seen in the training set.

We study this issue through the OGB-MOLPCBA dataset,
which is directly adopted from the Open Graph Bench-
mark (Hu et al., 2020b) and originally curated by Molecu-
leNet (Wu et al., 2018).

Train Test

Scaffold 54113

Scaffold 65912

Scaffold 11

(1,0,?,0,?,..)

(?,0,0,0,?,..)

Scaffold 32

(?,0,0,0,?,..)

(?,0,?,1,0,..)

Scaffold 321

(0,1,1,0,0,..)

(?,0,0,0,1,..)

Scaffold 4413

(1,1,0,1,0,..)

(?,0,0,0,?,..)

(0,1,0,0,0,..)

(0,?,1,?,0,..)… …

Figure 15: The OGB-MOLPCBA dataset comprises molecules
with many different structural scaffolds. The goal is to predict
biochemical assay results in molecules with scaffolds that are not
in the training set. Here, we show sample molecules from each
scaffold, together with target labels: each molecule is associated
with 128 binary labels and ‘?’ indicates that the label is not pro-
vided for the molecule.

H.4.1. SETUP

Problem setting. We consider the domain generalization
setting, where the domains are molecular scaffolds, and our
goal is to learn models that generalize to structurally-distinct
molecules with scaffolds that are not in the training set (Fig-
ure 15). This is a multi-task classification problem: for
each molecule, we predict the presence or absence of 128
different kinds of biological activities, such as binding to a
particular enzyme. In addition, we cluster the molecules into
different scaffold groups according to their two-dimensional
structure, and annotate each molecule with the scaffold
group that it belongs to. Concretely, the input x is a molec-
ular graph, the label y is a 128-dimensional binary vector
where each component corresponds to a biochemical assay
result, and the domain d specifies the scaffold. Not all bio-
logical activities are measured for each molecule, so y can
have missing values.

Data. OGB-MOLPCBA contains more than 400K small
molecules with 128 kinds of prediction labels. Each small
molecule is represented as a graph, where the nodes are
atoms and the edges are chemical bonds. The molecules
are pre-processed using RDKIT (Landrum et al., 2006).
Input node features are 9-dimensional, including atomic
number, chirality, whether the atom is in the ring. Input
edge features are 3-dimensional, including bond type and
bond stereochemistry.

We split the dataset by scaffold structure. This scaffold
split (Wu et al., 2018) is also used in the Open Graph Bench-
mark (Hu et al., 2020b). By attempting to separate struc-
turally different molecules into different subsets, it provides
a realistic estimate of model performance in prospective
experimental settings. We assign the largest scaffolds to the
training set to make it easier for algorithms to leverage scaf-
fold information, and the smallest scaffolds to the test set to
ensure that it is maximally diverse in scaffold structure:

1. Training: The largest 44,930 scaffolds, with an average
of 7.8 molecules per scaffold.

2. Validation (OOD): The next largest 31,361 scaffolds,
with an average of 1.4 molecules per scaffold.

3. Test (OOD): The smallest 43,793 scaffolds, which are
all singletons.

Evaluation. We evaluate models by their average Average
Precision (AP) across tasks (i.e., we compute the average
precision for each task separately, and then average those
scores), following Hu et al. (2020b). This accounts for the
extremely skewed class balance in OGB-MOLPCBA (only
1.4% of data is positive). Not all labels are available for
each molecule; when calculating the AP for each task, we
only consider the labeled molecules for the task.
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Potential leverage. We provide the scaffold grouping of
molecules for training algorithms to leverage. Finding gen-
eralizable representations of molecules across different scaf-
fold groups is useful for models to make accurate extrapola-
tion on unseen scaffold groups. In fact, very recent work (Jin
et al., 2020) has leveraged scaffold information of molecules
to improve the extrapolation performance of molecular prop-
erty predictors.

One notable characteristic of the scaffold group is that
the size of each group is rather small; on the training
split, each scaffold contains only 7.8 molecules on aver-
age. This also results in many scaffold groups: 44,930
groups in the training split. In Appendix H.4.4, we show
that these scaffold groups are well-behaved in the sense that
the train/validation/test splits contain contain similar ratios
of positive labels as well as missing labels.

H.4.2. BASELINE RESULTS

Model. For all experiments, we use Graph Isomorphism
Networks (GIN) (Xu et al., 2018) combined with virtual
nodes (Gilmer et al., 2017), as this is currently the model
with the highest performance in the Open Graph Bench-
mark (Hu et al., 2020b). We follow the same hyperparame-
ters as in the Open Graph Benchmark: 5 GNN layers with
a dimensionality of 300; the Adam optimizer (Kingma &
Ba, 2015) with a learning rate of 0.001; and training for
100 epochs with early stopping. For each of the baseline
algorithms (ERM, CORAL, IRM, and Group DRO), we
separately tune the dropout rate from {0, 0.5}; in addition,
for CORAL and IRM, we tune the penalty weight as in
Appendix G.

ERM results and performance drops. We first compare
the generalization performance of ERM on the scaffold split
against the conventional mixed split, in which the entire
molecules are randomly split into train/validation/test sets
with the same split ratio as the scaffold split (i.e., 80/10/10).
Results are in Table 10. The test performance of ERM drops
by 7.2 points AP when the scaffold split is used, suggesting
that the scaffold split is indeed harder than the random split.

Additional baseline methods. Table 9 also shows that
ERM performs better than CORAL, IRM, and Group DRO,
all of which use scaffolds as the domains. For CORAL and
IRM, we find that smaller penalties give better generaliza-
tion performance, as larger penalty terms make the training
insufficient. We use the 0.1 penalty for CORAL and λ = 1
for IRM.

The primary issue with these existing methods is that they
make the model significantly underfit the training data even
when dropout is turned off. For instance, the training AP of
CORAL and IRM is 20.0% and 15.9%, respectively, which

are both lower than the 36.1% that ERM obtains even with
0.5 dropout. Also, these methods are primarily designed
for the case when each group contains a decent number of
examples, which is not the case for the OGB-MOLPCBA
dataset.

H.4.3. BROADER CONTEXT

Because of the very nature of discovering new molecules,
out-of-distribution prediction is prevalent in nearly all ap-
plications of machine learning to chemistry domains. Be-
yond drug discovery, a variety of tasks and their associated
datasets have been proposed for molecules of different sizes.

For small organic molecules, the scaffold split has been
widely adopted to stress-test models’ capability for out-
of-distribution generalization. While OGB-MOLPCBA
primarily focuses on predicting biophysical activity (e.g.,
protein binding), other datasets in MoleculeNet (Wu et al.,
2018) include prediction of quantum mechanical properties
(e.g., HOMO/LUMO), physical chemistry properties (e.g.,
water solubility), and physiological properties (e.g., toxicity
prediction (Attene-Ramos et al., 2013)).

Besides small molecules, it is also of interest to apply ma-
chine learning over larger molecules such as catalysts and
proteins. In the domain of catalysis, using machine learning
to approximate expensive quantum chemistry simulation
has gotten attention. The OC20 dataset has been recently
introduced, containing 200+ million samples from quan-
tum chemistry simulations relevant to the discovery of new
catalysts for renewable energy storage and other energy
applications (Becke, 2014; Chanussot et al., 2020; Zitnick
et al., 2020). The OC20 dataset explicitly provides test sets
with qualitatively different materials. In the domain of pro-
teins, the recent trend is to use machine learning to predict
3D structure of proteins given their amino acid sequence
information. This is known as the protein folding problem,
and has sometimes been referred to as the Holy Grail of
structural biology (Dill & MacCallum, 2012). CASP is a
bi-annual competition to benchmark the progress of protein
folding (Moult et al., 1995), and it evaluates predictions
made on proteins whose 3D structures are identified very
recently, presenting a natural temporal distribution shift.
Recently, the AlphaFold2 deep learning model obtained
breakthrough performance on the CASP challenge (Jumper
et al., 2020), demonstrating exciting avenues of machine
learning for structural biology.

H.4.4. ADDITIONAL DETAILS

Data processing and scaffold split analysis. The OGB-
MOLPCBA dataset contains 437,929 molecules annotated
with 128 kinds of labels, each representing a bioassay cu-
rated in the PubChem database (Kim et al., 2016b). More
details are provided in the MoleculeNet (Wu et al., 2018)
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Table 9: Baseline results on OGB-MOLPCBA. Parentheses show standard deviation across 3 replicates.

Algorithm Validation AP (%) Test AP (%)

ERM 27.8 (0.1) 27.2 (0.3)
CORAL 18.4 (0.2) 17.9 (0.5)
IRM 15.8 (0.2) 15.6 (0.3)
Group DRO 23.1 (0.6) 22.4 (0.6)

Table 10: Out-of-distribution vs. in-distribution performance for ERM models on OGB-MOLPCBA. In the standard split, we train
on molecules from some scaffolds and evaluate on molecules from different scaffolds, whereas in the mixed split, we randomly divide
molecules into training and test sets without using scaffold information.

Algorithm Test AP (%)

Standard split (split by scaffolds) ERM 27.2 (0.3)
Mixed split (split i.i.d.) ERM 34.4 (0.9)

and the Open Graph Benchmark (Hu et al., 2020b), from
which the dataset is adopted.

In WILDS, we additionally provide the scaffold informa-
tion that training algorithms can leverage in order to im-
prove model’s extrapolation capability. In Figure 16 (A),
we plot the statistics of the scaffold groups in terms of their
sizes. We see that the scaffold sizes are highly skewed. The
training split contains the largest 44,930 scaffolds with 7.8
molecules per scaffold, the validation split contains the next
largest 31,361 scaffolds with 1.4 molecules per scaffold,
and the test split contains the smallest all-singleton 43,793
scaffolds. This implies that test molecules are maximally
diverse in their structure, making it suitable to evaluate
model’s performance across diverse scaffold domains. How
does the above data split affect the distribution of target
labels? In Figures 16 (B) and (C), we quantify whether
the scaffold split creates distribution shift in the prediction
target labels. We see that the label statistics remain almost
across train/validation/test splits, suggesting that the main
distribution shift comes from the difference in the input
molecular graph structure.

H.5. GLOBALWHEAT-WILDS

Models for automated, high-throughput plant phenotyping—
measuring the physical characteristics of plants and crops,
such as wheat head density and counts—are important tools
for crop breeding (Thorp et al., 2018; Reynolds et al., 2020)
and agricultural field management (Shi et al., 2016). These
models are typically trained on data collected in a limited
number of regions, even for crops grown worldwide such
as wheat (Madec et al., 2019; Xiong et al., 2019; Ubbens
et al., 2020; Ayalew et al., 2020). However, there can be
substantial variation between regions, due to differences in
crop varieties, growing conditions, and data collection pro-
tocols. Prior work on wheat head detection has shown that

this variation can significantly degrade model performance
on regions unseen during training (David et al., 2020).

We study this shift in an expanded version of the Global
Wheat Head Dataset (David et al., 2020; 2021), a large set of
wheat images collected from 12 countries around the world.

H.5.1. SETUP

Problem setting. We consider the domain generalization
setting, where the goal is to learn models that generalize to
images taken from new countries and acquisition sessions
(Figure 17). The task is wheat head detection, which is
a single-class object detection task. Concretely, the input
x is an overhead outdoor image of wheat plants, and the
label y is a set of bounding box coordinates that enclose
the wheat heads (the spike at the top of the wheat plant
containing grain), excluding the hair-like awns that may
extend from the head. The main challenge of this task is
that the wheat head instances are densely packed and may
overlap each other. The domain d specifies an “acquisition
session,” which corresponds to a specific location, time, and
sensor for which a set of images were collected. While one
of the goals is to generalize to unseen acquisition sessions,
we aim to generalize to unseen locations in particular; the
dataset split captures shift in location, with training and test
sets comprising images from disjoint countries as discussed
below.

Data. The dataset comprises 6,515 images containing
275,187 wheat heads, spanning 16 research institutes across
12 countries. These images were collected over 47 acquisi-
tion sessions, whose metadata and statistics are described in
Table 11.

While many factors contribute to the variation in wheat
appearance across acquisition sessions, substantial variation
exists due to cross-location differences in wheat genotypes,

24



(A) (B) (C)

Figure 16: Analyses of scaffold groups in the OGB-MOLPCBA dataset. (A) shows the distribution of the scaffold sizes, (B) and (C)
show how the ratios of positive molecules and labeled molecules for the 128 tasks vary across the train/validation /test splits.
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Figure 17: The GLOBALWHEAT-WILDS dataset consists of over-
head images of wheat fields in 12 countries. The goal is to detect
and predict the bounding boxes of wheat heads, where test images
are taken from regions unseen during training time. In this fig-
ure, we show sample images with bounding boxes from various
countries, organized by acquisition sessions; a set of images are
taken in each acquisition session, each corresponding to a specific
location, time, and sensor.

growing conditions (e.g., planting density), illumination
protocols, and sensors. To this end, we split the dataset
by country and study a shift in location. In particular, we
assign disjoint continents to training and test splits in order
to maximize the difference in wheat appearance:

1. Training: 18 domains from Europe (France ×13, Nor-
way ×2, Switzerland, United Kingdom, Belgium) and
containing 3,657 images and 163,690 wheat heads.

2. Validation: 11 domains from Australia (×6), Japan
(×3), China, Canada containing 1,476 images and 44,347
wheat heads.

3. Test: 18 domains from North America (USA ×6, Mex-
ico ×3), Asia (China ×2, Japan ×1), Sudan, Australia
(×5) containing 1,287 images and 67,150 wheat heads.

Evaluation. We evaluate models by their average accu-
racy across acquisition sessions, where accuracy is mea-
sured at a fixed Intersection over Union (IoU) threshold
of 0.5. We compute the accuracy as TP

TP+FN+FP , where
TP is the number of true positives, which are ground-truth
bounding boxes that can be matched with some predicted
bounding box at IoU above the threshold; FN is the number
of false negatives, which are ground-truth bounding boxes
that cannot be matched as above; and FP is the number
of false positives, which are predicted bounding boxes that
cannot be matched with any ground-truth bounding box.
We use accuracy rather than average precision, which is a
common metric for object detection, because it was used in
previous Global Wheat Challenges with the dataset (David
et al., 2020; 2021). We use an IoU threshold of 0.5 because
there is some uncertainty regarding the precise outline of
wheat head instances due to the stem and awns extending
from the head. We average the accuracy across acquisition
sessions because the number of images significantly varies
across acquisition sessions, from 30 to 747 images, and
we use average performance rather than worst-case perfor-
mance because the wheat images are more difficult for some
acquisition sessions.

Potential leverage. We include images from 5 countries
and 12 acquisition sessions in the training set as leverage,
providing coverage over all growth stages, many different
sensors, and different illumination conditions. As a result,
some of the variation between training and test sets are cap-
tured to some (though often lesser) extent across the training
domains; for example, illumination conditions vary across
acquisition sessions within the training set due to differences
in the time of day that images were acquired, but also vary
between the training and testing domains due to differences
in region latitude and time of year. In contrast, other varia-
tions are not captured within the training set. For example,
wheat varieties used in Asia have different genotypes from
the ones used in Europe and North America, which results
in a different appearance of the wheat plants and wheat
heads across splits. Likewise, wheat planting strategies and
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Table 11: Acquisition sessions in GLOBALWHEAT-WILDS. Growth stages are abbreviated as, F: Filling, R: Ripening, PF: Post-flowering.
Locations are abbreviated as, VLB: Villiers le Bâcle, VSC: Villers-Saint-Christophe. UTokyo_1 and UTokyo_2 are from the same location
with different sensors and UTokyo_3 consists of image from a variety of farms in Hokkaido between 2016 and 2019.

Name Owner Country Site Date Sensor Stage # Images # Heads

Ethz_1 ETHZ Switzerland Eschikon 06/06/2018 Spidercam F 747 49603
Rres_1 Rothamsted UK Rothamsted 13/07/2015 Gantry F-R 432 19210
ULiège_1 Uliège Belgium Gembloux 28/07/2020 Cart R 30 1847
NBUM_1 NMBU Norway NMBU 24/07/2020 Cart F 82 7345
NBUM_2 NMBU Norway NMBU 07/08/2020 Cart R 98 5211
Arvalis_1 Arvalis France Gréoux 02/06/2018 Handheld PF 66 2935
Arvalis_2 Arvalis France Gréoux 16/06/2018 Handheld F 401 21003
Arvalis_3 Arvalis France Gréoux 07/2018 Handheld F-R 588 21893
Arvalis_4 Arvalis France Gréoux 27/05/2019 Handheld F 204 4270
Arvalis_5 Arvalis France VLB* 06/06/2019 Handheld F 448 8180
Arvalis_6 Arvalis France VSC* 26/06/2019 Handheld F-R 160 8698
Arvalis_7 Arvalis France VLB* 06/2019 Handheld F-R 24 1247
Arvalis_8 Arvalis France VLB* 06/2019 Handheld F-R 20 1062
Arvalis_9 Arvalis France VLB* 06/2020 Handheld R 32 1894
Arvalis_10 Arvalis France Mons 10/06/2020 Handheld F 60 1563
Arvalis_11 Arvalis France VLB* 18/06/2020 Handheld F 60 2818
Arvalis_12 Arvalis France Gréoux 15/06/2020 Handheld F 29 1277
Inrae_1 INRAe France Toulouse 28/05/2019 Handheld F-R 176 3634
Usask_1 USaskatchewan Canada Saskatoon 06/06/2018 Tractor F-R 200 5985
KSU_1 KansasStateU US Manhattan, KS 19/05/2016 Tractor PF 100 6435
KSU_2 KansasStateU US Manhattan, KS 12/05/2017 Tractor PF 100 5302
KSU_3 KansasStateU US Manhattan, KS 25/05/2017 Tractor F 95 5217
KSU_4 KansasStateU US Manhattan, KS 25/05/2017 Tractor R 60 3285
Terraref_1 TERRA-REF US Maricopa 02/04/2020 Gantry R 144 3360
Terraref_2 TERRA-REF US Maricopa 20/03/2020 Gantry F 106 1274
CIMMYT_1 CIMMYT Mexico Ciudad Obregon 24/03/2020 Cart PF 69 2843
CIMMYT_2 CIMMYT Mexico Ciudad Obregon 19/03/2020 Cart PF 77 2771
CIMMYT_3 CIMMYT Mexico Ciudad Obregon 23/03/2020 Cart PF 60 1561
Utokyo_1 UTokyo Japan NARO-Tsukuba 22/05/2018 Cart R 538 14185
Utokyo_2 UTokyo Japan NARO-Tsukuba 22/05/2018 Cart R 456 13010
Utokyo_3 UTokyo Japan NARO-Hokkaido 2016-19 Handheld multiple 120 3085
Ukyoto_1 UKyoto Japan Kyoto 30/04/2020 Handheld PF 60 2670
NAU_1 NAU China Baima n/a Handheld PF 20 1240
NAU_2 NAU China Baima 02/05/2020 Cart PF 100 4918
NAU_3 NAU China Baima 09/05/2020 Cart F 100 4596
UQ_1 UQueensland Australia Gatton 12/08/2015 Tractor PF 22 640
UQ_2 UQueensland Australia Gatton 08/09/2015 Tractor PF 16 39
UQ_3 UQueensland Australia Gatton 15/09/2015 Tractor F 14 297
UQ_4 UQueensland Australia Gatton 01/10/2015 Tractor F 30 1039
UQ_5 UQueensland Australia Gatton 09/10/2015 Tractor F-R 30 3680
UQ_6 UQueensland Australia Gatton 14/10/2015 Tractor F-R 30 1147
UQ_7 UQueensland Australia Gatton 06/10/2020 Handheld R 17 1335
UQ_8 UQueensland Australia McAllister 09/10/2020 Handheld R 41 4835
UQ_9 UQueensland Australia Brookstead 16/10/2020 Handheld F-R 33 2886
UQ_10 UQueensland Australia Gatton 22/09/2020 Handheld F-R 53 8629
UQ_11 UQueensland Australia Gatton 31/08/2020 Handheld PF 42 4345
ARC_1 ARC Sudan Wad Medani 03/2021 Handheld F 30 888

growing conditions vary between regions and contribute to
differences between the training and testing set, e.g. higher
planting density may result in more closely packed plants
and more occlusion between wheat head instances.

H.5.2. BASELINE RESULTS

Model. For all experiments, we use the Faster-RCNN
detection model (Ren et al., 2015), which has been suc-
cessfully applied to the wheat head localization problem

(David et al., 2020; Madec et al., 2019). To train, we fine-
tune a model pre-trained with ImageNet, using a batch
size of 4, a learning rate of 10−4, and weight decay of
10−4 for 10 epochs with early stopping. The hyperparam-
eters were chosen from a grid search over learning rates
{10−6, 10−5, 10−4} and weight decays {0, 10−4, 10−3}.
We report results aggregated over 3 random seeds.

ERM results and performance drops. To demonstrate
a substantial performance drop due to the distribution shift,
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Table 12: Baseline results on GLOBALWHEAT-WILDS. Parenthe-
ses show standard deviation across 3 replicates.

Algorithm Validation acc (%) Test acc (%)

ERM 65.5 (0.8) 49.2 (1.5)
Group DRO 62.9 (0.7) 46.1 (1.6)

Table 13: Out-of-distribution vs in-distribution performance for
ERM models on GLOBALWHEAT-WILDS. The ID split corre-
sponds to a model trained on 33% of the test set, while the OOD
split is trained on the training dataset defined by the setup.

Algorithm Test acc (%)

Official ERM 48.4 (1.8)
Fixed-test ERM 64.8 (0.4)

we show that an ERM model trained on the official split
performs significantly worse than an oracle ERM model
trained on the target distribution. Concretely, we train ERM
models on the official split as well as a fixed-test split, whose
training data is 33% of each domain from the official test
set, containing 425 images. We evaluate both models on
the remaining 67% of the official test set, and we observe a
substantial performance gap of 16.4%.

Additional baseline methods. We also trained models
with group DRO, treating each acquisition session as a do-
main, and using the same model hyperparameters as ERM.
However, the group DRO models perform poorly compared
to the ERM model as reported in Table 12. We leave the
investigation of CORAL and IRM for future work because it
is not straightforward to apply these algorithms to detection
tasks.

Discussion. Our baseline models were trained without
any data augmentation, in contrast to baselines reported in
the original dataset (David et al., 2020). Data augmenta-
tion could reduce the performance gap and warrants further
investigation in future work, although David et al. (2020)
observed performance gaps on models trained with data
augmentation in the original version of the dataset. More
generally, techniques for improving the general performance
of the object detection model, rather than the domain gap
specifically, are also a promising avenue for improving
model performance on test domains. Lastly, while we eval-
uated models by their average performance across acquisi-
tion sessions, we noticed a large variability in performance
across domains. It is possible that some domains are more
challenging or suffer from larger performance drops than
others, and characterizing and mitigating these variations is
interesting future work.

H.5.3. BROADER CONTEXT

Wheat head localization, while being an important opera-
tional trait for wheat breeders and farmers, is not the only
deep learning application in plant phenotyping that suffers
from lack of generalization. Other architectural traits such as
plant segmentation (Kuznichov et al., 2019; Sadeghi-Tehran
et al., 2017), plant and plant organ detection (Fan et al.,
2018; Madec et al., 2019), leaves and organ disease classifi-
cation (Fuentes et al., 2017; Toda & Okura, 2019; Shakoor
et al., 2017), and biomass and yield prediction (Aich et al.,
2018; Dreccer et al., 2019) would also benefit from plant
phenotyping models that generalize to new deployments. In
many of these applications, field images exhibit variations
in illumination and sensors, and there has been work on mit-
igating biases across sensors (Ayalew et al., 2020; Gogoll
et al., 2020). Finally, developing models that generalize
across plant species would benefit the breeding and growing
of specialized crops that are presently under-represented in
plant phenotyping research worldwide (Ward & Moghadam,
2020). We hope that GLOBALWHEAT-WILDS can foster
the development of general solutions to plant phenotyping
problems, increase collaboration between plant scientists
and computer vision scientists, and encourage the develop-
ment of new multi-domain plant datasets to ensure that plant
phenotyping results are generalizable to all crop growing
regions of the world.

H.5.4. ADDITIONAL DETAILS

Modifications to the original dataset. The dataset is
taken directly from the 2021 Global Wheat Challenge
(David et al., 2021), which is an expanded version of the
2020 Global Wheat Challenge dataset (David et al., 2020).
We note that images from North America were in the train-
ing set for the 2020 version, but have been moved to the
validation set for GLOBALWHEAT-WILDS.

H.6. CIVILCOMMENTS-WILDS

Automatic review of user-generated text is an important tool
for moderating the sheer volume of text written on the Inter-
net. We focus here on the task of detecting toxic comments.
Prior work has shown that toxicity classifiers can pick up on
biases in the training data and spuriously associate toxicity
with the mention of certain demographics (Park et al., 2018;
Dixon et al., 2018). These types of spurious correlations
can significantly degrade model performance on particular
subpopulations (Sagawa et al., 2020a).

We study this issue through a modified variant of the Civil-
Comments dataset (Borkan et al., 2019b).
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Toxic Comment Text Male Female LGBTQ White Black … Christian
0 I applaud your father. He was a good man! 

We need more like him.
1 0 0 0 0 … 0

0 As a Christian, I will not be patronizing any of 
those businesses.

0 0 0 0 0 … 1

0 What do Black and LGBT people have to do 
with bicycle licensing? 

0 0 1 0 1 … 0

0 Government agencies track down foreign 
baddies and protect law-abiding white 
citizens. How many shows does that 
describe?

0 0 0 1 0 … 0

1 Maybe you should learn to write a coherent 
sentence so we can understand WTF your 
point is.

0 0 0 0 0 … 0

Figure 18: The CIVILCOMMENTS-WILDS dataset involves classi-
fying the toxicity of online comments. The goal is to learn models
that avoid spuriously associating mentions of demographic iden-
tities (like male, female, etc.) with toxicity due to biases in the
training data.

H.6.1. SETUP

Problem setting. We cast CIVILCOMMENTS-WILDS as
a subpopulation shift problem, where the subpopulations
correspond to different demographic identities, and our goal
is to do well on all subpopulations (and not just on average
across these subpopulations). Specifically, we focus on
mitigating biases with respect to comments that mention
particular demographic identities, and not comments written
by members of those demographic identities; we discuss
this distinction in the broader context section below.

The task is a binary classification task of determining if a
comment is toxic. Concretely, the input x is a comment
on an online article (comprising one or more sentences
of text) and the label y is whether it is rated toxic or not.
In CIVILCOMMENTS-WILDS, unlike in most of the other
datasets we consider, the domain annotation d is a multi-
dimensional binary vector, with the 8 dimensions corre-
sponding to whether the comment mentions each of the 8
demographic identities male, female, LGBTQ, Christian,
Muslim, other religions, Black, and White.

Data. CIVILCOMMENTS-WILDS comprises 450,000 com-
ments, each annotated for toxicity and demographic men-
tions by multiple crowdworkers. We model toxicity classifi-
cation as a binary task. Toxicity labels were obtained in the
original dataset via crowdsourcing and majority vote, with
each comment being reviewed by at least 10 crowdwork-
ers. Annotations of demographic mentions were similarly
obtained through crowdsourcing and majority vote.

Each comment was originally made on some online article.
We randomly partitioned these articles into disjoint training,
validation, and test splits, and then formed the corresponding
datasets by taking all comments on the articles in those splits.
This gives the following splits:

1. Training: 269,038 comments.

2. Validation: 45,180 comments.

3. Test: 133,782 comments.

Evaluation. We evaluate a model by its worst-group ac-
curacy, i.e., its lowest accuracy over groups of the test data
that we define below.

As mentioned above, toxicity classifiers can spuriously latch
onto mentions of particular demographic identities, result-
ing in a biased tendency to flag comments that innocuously
mention certain demographic groups as toxic (Park et al.,
2018; Dixon et al., 2018). To measure the extent of this bias,
we define subpopulations based on whether they mention
a particular demographic identity, compute the sensitivity
(a.k.a. recall, or true positive rate) and specificity (a.k.a. true
negative rate) of the classifier on each subpopulation, and
then report the worst of these two metrics over all subpopu-
lations of interest. This is equivalent to further dividing each
subpopulation into two groups according to the label, and
then computing the accuracy on each of these two groups.

Specifically, for each of the 8 identities we study (e.g.,
“male”), we form 2 groups based on the toxicity label (e.g.,
one group of comments that mention the male gender and
are toxic, and another group that mentions the male gender
and are not toxic), for a total of 16 groups. These groups
overlap (a comment might mention multiple identities) and
are not a complete partition (a comment might not mention
any identity).

We then measure a model’s performance by its worst-group
accuracy, i.e., its lowest accuracy over these 16 groups. A
high worst-group accuracy (relative to average accuracy)
implies that the model is not spuriously associating a demo-
graphic identity with toxicity. We can view this subpopula-
tion shift problem as testing on multiple test distributions
(corresponding to different subsets of the test set, based
on demographic identities and the label) and reporting the
worst performance over these different test distributions. In
Appendix H.6.4, we further discuss the motivation for this
choice of evaluation metric as well as its limitations.

As variability in performance over replicates can be high due
to the small sizes of some demographic groups (Table 16),
we report results averaged over 5 random seeds, instead of
the 3 seeds that we use for most other datasets.

Potential leverage. Since demographic identity annota-
tions are provided at training time, we have an i.i.d. dataset
available at training time for each of the test distributions
of interest (corresponding to each group). Moreover, even
though demographic identity annotations are unavailable at
test time, they are relatively straightforward to predict.

H.6.2. BASELINE RESULTS

Model. For all experiments, we fine-tuned DistilBERT-
base-uncased models (Sanh et al., 2019), using the imple-
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Table 14: Baseline results on CIVILCOMMENTS-WILDS. The reweighted (label) algorithm samples equally from the positive and negative
class; the group DRO (label) algorithm additionally weights these classes so as to minimize the maximum of the average positive training
loss and average negative training loss. Similarly, the reweighted (label × Black) and group DRO (label × Black) algorithms sample
equally from the four groups corresponding to all combinations of class and whether there is a mention of Black identity. The CORAL
and IRM algorithms extend the reweighted algorithm by adding their respective penalty terms, so they also sample equally from each
group. We show standard deviation across 5 random seeds in parentheses.

Algorithm Avg val acc Worst-group val acc Avg test acc Worst-group test acc

ERM 92.3 (0.2) 50.5 (1.9) 92.2 (0.1) 56.0 (3.6)

Reweighted (label) 90.1 (0.4) 65.9 (1.8) 89.8 (0.4) 69.2 (0.9)
Group DRO (label) 90.4 (0.4) 65.0 (3.8) 90.2 (0.3) 69.1 (1.8)

Reweighted (label × Black) 89.5 (0.6) 66.6 (1.5) 89.2 (0.6) 66.2 (1.2)
CORAL (label × Black) 88.9 (0.6) 64.7 (1.4) 88.7 (0.5) 65.6 (1.3)
IRM (label × Black) 89.0 (0.7) 65.9 (2.8) 88.8 (0.7) 66.3 (2.1)
Group DRO (label × Black) 90.1 (0.4) 67.7 (1.8) 89.9 (0.5) 70.0 (2.0)

Table 15: Accuracies on each subpopulation in CIVILCOMMENTS-WILDS, averaged over models trained by group DRO (label).

Demographic Test accuracy on non-toxic comments Test accuracy on toxic comments

Male 88.4 (0.7) 75.1 (2.1)
Female 90.0 (0.6) 73.7 (1.5)
LGBTQ 76.0 (3.6) 73.7 (4.0)
Christian 92.6 (0.6) 69.2 (2.0)
Muslim 80.7 (1.9) 72.1 (2.6)
Other religions 87.4 (0.9) 72.0 (2.5)
Black 72.2 (2.3) 79.6 (2.2)
White 73.4 (1.4) 78.8 (1.7)

mentation from Wolf et al. (2019) and with the follow-
ing hyperparameter settings: batch size 16; learning rate
10−5 using the AdamW optimizer (Loshchilov & Hutter,
2019) for 5 epochs with early stopping; an L2-regularization
strength of 10−2; and a maximum number of tokens of
300, since 99.95% of the input examples had ≤300 tokens.
The learning rate was chosen through a grid search over
{10−6, 2 × 10−6, 10−5, 2 × 10−5}, and all other hyperpa-
rameters were simply set to standard/default values.

ERM results and performance drops. The ERM model
does well on average, with 92.2% average accuracy (Ta-
ble 14). However, it does poorly on some subpopulations,
e.g., with 57.4% accuracy on toxic comments that men-
tion other religions. Overall, accuracy on toxic comments
(which are a minority of the dataset) was lower than accu-
racy on non-toxic comments, so we also trained a reweighted
model that balanced toxic and non-toxic comments by up-
sampling the toxic comments. This reweighted model had
a slightly worse average accuracy of 89.8% and a better
worst-group accuracy of 69.2%, (Table 14, Reweighted (la-
bel)), but a significant gap remains between average and
worst-group accuracy.

Additional baseline methods. The CORAL, IRM, and
group DRO baselines involve partitioning the training data
into disjoint domains. We study the following partitions,
corresponding to different rows in Table 14:

1. Label: 2 domains, 1 for each class.

2. Label × Black: 4 domains, 1 for each combination of
class and Black.

On the Label partition, we used Group DRO to train a model
that seeks to balance the losses on the positive and neg-
ative examples. This performs similarly to the standard
reweighted models described above (Table 14, Group DRO
(label)). We found that the worst-performing demographic
for non-toxic comments was the Black demographic (Ta-
ble 15), which motivated the Label × Black partition. There,
we used CORAL, IRM, and Group DRO to train models.
However, these models did not perform significantly better
(Table 14, label × Black). While there were slight improve-
ments on the Black groups, accuracy degraded on some
other groups like non-toxic LBGTQ comments.

We note that our implementations of CORAL and IRM are
built on top of the standard reweighting algorithm, i.e., they
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sample equally from each group. As these two algorithms
perform similarly to reweighting, it indicates that the addi-
tional penalty term is not significantly affecting performance.
Indeed, our grid search for the penalty weights selected the
lowest value of the penalties (λ = 10.0 for CORAL and
λ = 1.0 for IRM).

Discussion. Adapting the baseline methods to handle mul-
tiple overlapping groups, which were not studied in their
original settings, could be a potential approach to improving
accuracy on this task. Another potential approach is using
baselining to account for different groups having different
intrinsic levels of difficulty (Oren et al., 2019). For exam-
ple, comments mentioning different demographic groups
might differ in terms of how subjective classifying them is.
Others have also explored specialized data augmentation
techniques for mitigating demographic biases in toxicity
classifiers (Zhao et al., 2018).

Adragna et al. (2020) recently used a simplified variant
of the CivilComments dataset, with artificially-constructed
training and test environments, to show a proof-of-concept
that IRM can improve performance on minority groups.
Methods such as IRM rely heavily on the choice of
groups/domains/environments; investigating the effect of
different choices would be a useful direction for future work.

Toxicity classification is one application where human mod-
erators can work together with an ML model to handle
examples that the model is unsure about. However, Jones
et al. (2021) found that using selective classifiers—where
the model is allowed to abstain if it is unsure—can actually
further worsen performance on minority subpopulations.
This suggests that in addition to having low accuracy on
minority subpopulations, standard models can be poorly
calibrated on them.

Another important consideration for toxicity detection in
practice is shifts over time, as online discourse changes
quickly, and what is seen as toxic today might not have even
appeared in the dataset from a few months ago. We do not
study this distribution shift in this work. One limitation of
the CIVILCOMMENTS-WILDS dataset is that it is fixed to a
relatively short period in time, with most comments being
written in the span of a year; this makes it harder to use as a
dataset for studying temporal shifts.

Finally, we note that collecting “ground truth” human an-
notation of toxicity is itself a subjective and challenging
process; recent work has studied ways of making it less
biased and more efficient (Sap et al., 2019; Han & Tsvetkov,
2020).

H.6.3. BROADER CONTEXT

The CIVILCOMMENTS-WILDS dataset does not assume that
user demographics are available; instead, it uses mentions of
different demographic identities in the actual comment text.
For example, we want models that do not associate com-
ments that mention being Black with being toxic, regardless
of whether a Black or non-Black person wrote the comment.
This setting is particularly relevant when user demographics
are unavailable, e.g., when considering anonymous online
comments.

A related and important setting is subpopulation shifts with
respect to user demographics (e.g., the demographics of
the author of the comment, regardless of the content of the
comment). Such demographic disparities have been widely
documented in natural language and speech processing tasks
(Hovy & Spruit, 2016), among other areas, and these dispar-
ities are instances of dataset biases that are common in many
contemporary datasets (Gebru et al., 2018; Bender & Fried-
man, 2018). For example, NLP models have been shown to
obtain worse performance on African-American Vernacular
English compared to Standard American English on part-of-
speech tagging (Jørgensen et al., 2015), dependency parsing
(Blodgett et al., 2016), language identification (Blodgett
& O’Connor, 2017), and auto-correct systems (Hashimoto
et al., 2018). Similar disparities exist in speech, with state-
of-the-art commercial systems obtaining higher word error
rates on particular races (Koenecke et al., 2020) and dialects
(Tatman, 2017).

These disparities are present not just in academic mod-
els, but in large-scale commercial systems that are already
widely deployed, e.g., in speech-to-text systems from Ama-
zon, Apple, Google, IBM, and Microsoft (Tatman, 2017;
Koenecke et al., 2020) or language identification systems
from IBM, Microsoft, and Twitter (Blodgett & O’Connor,
2017). Indeed, the original CivilComments dataset was de-
veloped by Google’s Conversation AI team, which is also
behind a public toxicity classifier (Perspective API) that
was developed in partnership with The New York Times
(NYTimes, 2016).

H.6.4. ADDITIONAL DETAILS

Evaluation metrics. The evaluation metric used in the
original competition was a complex weighted combination
of various metrics, including subgroup AUCs for each demo-
graphic identity, and a new pinned AUC metric introduced
by the original authors (Borkan et al., 2019b); conceptu-
ally, these metrics also measure the degree to which model
accuracy is uniform across the different identities. After dis-
cussion with the original authors, we replace the composite
metric with worst-group accuracy (i.e., worst TPR/FPR over
identities) for simplicity. Measuring subgroup AUCs can
be misleading in this context, because it assumes that the
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classifier can set separate thresholds for different subgroups
(Borkan et al., 2019b;a).

One downside is that measuring worst-group accuracy treats
false positives and false negatives equally. In deployment
systems, one might want to weight these differently, e.g.,
using cost-sensitive learning or by simply raising or lower-
ing the classification threshold, especially since real data is
highly imbalanced (with a lot more negatives than positives).
One could also binarize the labels and identities differently:
in this benchmark, we simply use majority voting from the
annotators.

Perhaps more fundamentally, even if TPR and FPR were
balanced across different identities, this need not imply
unambiguously equitable performance, because different
subpopulations might have different intrinsic levels of noise
and difficulty. See Corbett-Davies & Goel (2018) for more
discussion of this problem of infra-marginality.

In practice, models might also do poorly on intersections
of groups (Kearns et al., 2018), e.g., on comments that
mention multiple identities. Given the size of the dataset and
comparative rarity of some identities and of toxic comments
in general, accuracies on these intersections are difficult
to estimate from this dataset. A potential avenue of future
work is to develop methods for evaluating models on such
subgroups, e.g., by generating data in particular groups
through templates (Park et al., 2018; Ribeiro et al., 2020).

Data processing. The CIVILCOMMENTS-WILDS dataset
comprises comments from a large set of articles from the
Civil Comments platform, annotated for toxicity and demo-
graphic identities (Borkan et al., 2019b). We partitioned
the articles into disjoint training, validation, and test splits,
and then formed the corresponding datasets by taking all
comments on the articles in those splits. In total, the train-
ing set comprised 269,038 comments (60% of the data); the
validation set comprised 45,180 comments (10%); and the
test set comprised 133,782 (30%).

Modifications to the original dataset. The original
dataset5 also had a training and test split with disjoint arti-
cles. These splits are related to ours in the following way.
Let the number of articles in the original test split be m.
To form our validation split, we took m articles (sampled
uniformly at random) from the original training split, and to
form our test split, we took 2m articles (also sampled uni-
formly at random) from the original training split and added
it to the existing test split. We added a fixed validation set to
allow other researchers to be able to compare methods more
consistently, and we tripled the size of the test set to allow
for more accurate worst-group accuracy measurement.

5www.kaggle.com/c/jigsaw-unintended-bia
s-in-toxicity-classification/

Similarly, we combined some of the demographic iden-
tities in the original dataset to obtain larger groups (for
which we could more accurately estimate accuracy). Specif-
ically, we created an aggregate LGBTQ identity that com-
bines the original homosexual_gay_or_lesbian, bisexual,
other_sexual_orientation, transgender, and other_gender
identities (e.g., it is 1 if any of those identities are 1), and an
aggregate other_religions identity that combines the original
jewish, hindu, buddhist, atheist, and other_religion identi-
ties. We also omitted the psychiatric_or_mental_illness
identity, which was evaluated in the original Kaggle com-
petition, because of a lack of sufficient data for accurate
estimation; but we note that baseline group accuracies for
that identity seemed higher than for the other groups, so it
is unlikely to factor into worst-group accuracy. In our new
split, each identity we evaluate on (male, female, LGBTQ,
Christian, Muslim, other_religions, Black, and White) has
at least 500 positive and 500 negative examples. In Table 16
we show the sizes of each subpopulation in the test set; the
training and validation sets follow similar proportions.

For convenience, we also add an identity_any identity; this
combines all of the identities in the original dataset, includ-
ing psychiatric_or_mental_illness and related identities.

Additional baseline results. We also trained a group DRO
model using 29 = 512 domains, 1 for each combination of
class and the 8 identities. This model performed similarly
to the other group DRO models.

We note that the relatively small size of some of these sub-
populations makes it infeasible to estimate how well a model
could do on each subpopulation (corresponding to demo-
graphic identity) if it were trained on just that subpopulation.
For example, Black comments comprise only <4% of the
training data, and training just on those Black comments is
insufficient to achieve high in-distribution accuracy.

Additional data sources. All of the data, including the
data with identity annotations that we use and the data with
just label annotations, are also annotated for additional toxi-
city subtype attributes, specifically severe_toxicity, obscene,
threat, insult, identity_attack, and sexual_explicit. These
annotations can be used to train models that are more aware
of the different ways that a comment can be toxic; in par-
ticular, using the identity_attack attribute to learn which
comments are toxic because of the use of identities might
help the model learn how to avoid spurious associations
between toxicity and identity. These additional annotations
are included in the metadata provided through the WILDS
package.

The original CivilComments dataset (Borkan et al., 2019b)
also contains ≈1.5M training examples that have toxicity
(label) annotations but not identity (group) annotations. For
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Table 16: Group sizes in the test data for CIVILCOMMENTS-WILDS. The training and validation data follow similar proportions.

Demographic Number of non-toxic comments Number of toxic comments

Male 12092 2203
Female 14179 2270
LGBTQ 3210 1216
Christian 12101 1260
Muslim 5355 1627
Other religions 2980 520
Black 3335 1537
White 5723 2246

simplicity, we have omitted these from the current version
of CIVILCOMMENTS-WILDS. These additional data points
can be downloaded from the original data source and could
be used, for example, by first inferring which group each
additional point belongs to, and then running group DRO or
a similar algorithm that uses group annotations at training
time.

H.7. FMOW-WILDS

ML models for satellite imagery can enable global-scale
monitoring of sustainability and economic challenges, aid-
ing policy and humanitarian efforts in applications such
as deforestation tracking (Hansen et al., 2013), population
density mapping (Tiecke et al., 2017), crop yield predic-
tion (Wang et al., 2020b), and other economic tracking
applications (Katona et al., 2018). As satellite data con-
stantly changes due to human activity and environmental
processes, these models must be robust to distribution shifts
over time. Moreover, as there can be disparities in the data
available between regions, these models should ideally have
uniformly high accuracies instead of only doing well on
data-rich regions and countries.

We study this problem on a variant of the Functional Map
of the World dataset (Christie et al., 2018).
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Figure 19: The FMOW-WILDS dataset contains satellite images
taken in different geographical regions and at different times. The
goal is to generalize to satellite imagery taken in the future, which
may be shifted due to infrastructure development across time, and
to do equally well across geographic regions.

H.7.1. SETUP

Problem setting. We consider a hybrid domain general-
ization and subpopulation shift problem, where the input
x is a RGB satellite image (resized to 224 × 224 pixels),
the label y is one of 62 building or land use categories,
and the domain d represents both the year the image was
taken as well as its geographical region (Africa, the Amer-
icas, Oceania, Asia, or Europe). We aim to solve both a
domain generalization problem across time and improve
subpopulation performance across regions.

Data. FMOW-WILDS is based on the Functional Map of
the World dataset (Christie et al., 2018), which collected and
categorized high-resolution satellite images from over 200
countries based on the functional purpose of the buildings
or land in the image, over the years 2002–2018 (see Fig-
ure 19). We use a subset of this data and split it into three
time range domains, 2002–2013, 2013–2016, and 2016–
2018, as well as five geographical regions as subpopulations
(Africa, Americas, Oceania, Asia, and Europe). For each
example, we also provide the timestamp and location coordi-
nates, though our baseline models only use the coarse time
ranges and geographical regions instead of these additional
metadata.

We use the following data splits:

1. Training: 76,863 images from the years 2002–2013.

2. Validation (OOD): 19,915 images from the years from
2013–2016.

3. Test (OOD): 22,108 images from the years from 2016–
2018.

4. Validation (ID): 11,483 images from the years from
2002–2013.

5. Test (ID): 11,327 images from the years from 2002–
2013.

The original dataset did not evaluate models under distri-
bution shifts. Our training split is a subset of the original
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Figure 20: Number of examples from each region of the world in
FMOW-WILDS on the ID vs. OOD splits of the data. There is
much less data from Africa and Oceania than other regions.

training dataset, filtered for images in the appropriate time
range; similarly, our OOD and ID validation splits are sub-
sets of the original validation dataset, and our OOD and
ID test splits are subsets of the original test dataset. See
Appendix H.7.4 for more dataset details.

The train/val/test data splits contain images from disjoint
location coordinates, and all splits contain data from all
5 geographic regions. The ID and OOD splits within the
test and validation sets may have overlapping locations, but
have non-overlapping time ranges. There is a disparity in
the number of examples in each region, with Africa and
Oceania having the least examples (Figure 20); this could
be due to bias in sampling and/or a lack of infrastructure
and land data in certain regions.

Evaluation. We evaluate models by their average and
worst-region OOD accuracies. The former measures the
ability of the model to generalize across time, while the
latter additionally measures how well models do across
different regions/subpopulations under a time shift.

Potential leverage. FMOW-WILDS considers both do-
main generalization across time and subpopulation shift
across regions. As we provide both time and region annota-
tions, models can leverage the structure across both space
and time to improve robustness. For example, one hypothe-
sis is that infrastructure development occurs smoothly over
time. Utilizing this gradual shift structure with the times-
tamp metadata may enable adaptation across longer time
periods (Kumar et al., 2020). The data distribution may
also shift smoothly over spatial locations, and so enforc-
ing some consistency with respect to spatial structure may
improve predictions (Rolf et al., 2020; Jean et al., 2018).
Furthermore, to mitigate the fact that some regions (e.g.,
Africa) have less labeled data, one could potentially trans-
fer knowledge of other regions with similar economies and
infrastructure. The location coordinate metadata allows for
transfer learning across similar locations at any spatial scale.

H.7.2. BASELINE RESULTS

Model. For all experiments, we follow Christie et al.
(2018) and use a DenseNet-121 model (Huang et al., 2017)

pretrained on ImageNet and with no L2 regularization. We
use the Adam optimizer (Kingma & Ba, 2015) with an ini-
tial learning rate of 10−4 that decays by 0.96 per epoch, and
train for 50 epochs for with early stopping and with a batch
size of 64. All reported results are averaged over 3 random
seeds.

ERM results and performance drops. Table 18 shows
that accuracy drops almost 7% when evaluated on the OOD
test set (≥ 2016) vs. the ID test set, and that the accuracy
drop is especially large (11.6%) on images from the last
year of the dataset (2017), furthest in the future from the
training set. In addition, there is a substantial 26.0% drop
in worst-region accuracy, with the model performing much
worse in Africa than other regions (Table 19).

We ran an additional experiment where we mixed in some
data from the OOD period (2013–2018) into the training
set, while keeping the overall training set size constant. A
model trained on this mixed split had a much smaller drop
in performance under the time and region shifts (Table 18).
This comparison implies that the performance drop between
the ID and OOD test sets is largely due to the distribution
shift across time and region.

Additional baseline methods. We compare ERM against
CORAL, IRM, and Group DRO, using examples from differ-
ent years as distinct domains. Table 17 shows that many of
these methods are comparable or worse than ERM in terms
of both ID and OOD test performance. As with most other
datasets, our grid search selected the lowest values of the
penalty weights for CORAL (λ = 0.1) and IRM (λ = 1).

Discussion. Intriguingly, a large subpopulation shift
across regions only occurs with a combination of time and
region shift. This is corroborated by the mixed-split re-
gion shift results (Table 18), which do not have a time shift
between training and test sets, and correspondingly do not
display a large disparity in performance across regions. This
drop in performance may be partially due to label shift: from
Figure 21, we see that the label distributions between Africa
and other regions are very different, e.g., with a large drop
in recreational facilities and a sharp increase in single res-
idential units. We do not find a similarly large label shift
between < 2013 and ≥ 2013 splits of the dataset.

Despite having the smallest number of training examples
(Figure 20), the baseline models do not suffer a drop in
performance in Oceania on validation or test sets (Table 19).
We hypothesize that infrastructure in Oceania is more sim-
ilar to regions with a large amount of data than Africa. In
contrast, Africa may be more distinct and may have changed
more drastically over 2002-2018, the time extent of the
dataset. This suggests that the subpopulation shift is not
merely a function of the number of training examples.
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Table 17: Average and worst-region accuracies (%) under time shifts in FMOW-WILDS. Models are trained on data before 2013 and
tested on held-out location coordinates from in-distribution (ID) or out-of-distribution (OOD) test sets. The models are early-stopped with
respect to OOD validation accuracy. Standard deviations over 3 trials are in parentheses.

Validation (ID) Validation (OOD) Test (ID) Test (OOD)

Average
ERM 61.2 (0.52) 59.5 (0.37) 59.7 (0.65) 53.0 (0.55)
CORAL 58.3 (0.28) 56.9 (0.25) 57.2 (0.90) 50.5 (0.36)
IRM 58.6 (0.07) 57.4 (0.37) 57.7 (0.10) 50.8 (0.13)
Group DRO 60.5 (0.36) 58.8 (0.19) 59.4 (0.11) 52.1 (0.50)

Worst-region
ERM 59.2 (0.69) 48.9 (0.62) 58.3 (0.92) 32.3 (1.25)
CORAL 55.9 (0.50) 47.1 (0.43) 55.0 (1.02) 31.7 (1.24)
IRM 56.6 (0.59) 47.5 (1.57) 56.0 (0.34) 30.0 (1.37)
Group DRO 57.9 (0.62) 46.5 (0.25) 57.8 (0.60) 30.8 (0.81)

Table 18: Performance drops for ERM models on FMOW-WILDS. In the standard split, we train on ID examples (i.e., data from
2002–2013), whereas in the mixed split, we train on ID + OOD examples (i.e., the same amount of data but half from 2002–2013 and half
from 2013–2018). In both cases, we test on data from 2016–2018. Models trained on the standard split degrade in performance under
the time shift, especially on the last year (2017) of the test data, and also fare poorly on the subpopulation shift, with low worst-region
accuracy. Models trained on the mixed split have higher OOD average and last year accuracy and much higher OOD worst-region
accuracy. Standard deviations over 3 trials are in parentheses.

Test (ID) Test (OOD)
Algorithm Average Worst-region Average Last year Worst-region

Standard split ERM 59.7 (0.65) 58.3 (0.92) 53.0 (0.55) 48.1 (1.20) 32.3 (1.25)
Mixed split ERM 59.0 (0.47) 56.9 (0.80) 57.4 (0.27) 54.3 (0.22) 48.6 (0.89)

Table 19: The regional accuracies of models trained on data before 2013 and tested on held-out locations from ID (< 2013) or OOD
(≥ 2016) test sets in FMOW-WILDS. Standard deviations over 3 trials are in parentheses.

Asia Europe Africa Americas Oceania Worst region

OOD Test
ERM 55.4 (0.95) 55.6 (0.53) 32.3 (1.25) 55.7 (0.48) 59.1 (0.85) 32.3 (1.25)
CORAL 52.4 (0.96) 52.6 (0.82) 31.7 (1.24) 53.3 (0.27) 56.0 (2.02) 31.7 (1.24)
IRM 52.9 (0.73) 53.9 (0.28) 30.0 (1.37) 53.7 (0.51) 55.0 (2.22) 30.0 (1.37)
Group DRO 54.7 (0.52) 55.1 (0.39) 30.8 (0.81) 54.6 (0.48) 58.5 (1.65) 30.8 (0.81)

ID Test
ERM 58.9 (1.19) 58.4 (0.81) 69.1 (2.64) 61.4 (0.35) 69.9 (0.53) 58.3 (0.92)
CORAL 56.6 (1.35) 55.0 (1.02) 69.2 (2.92) 59.7 (0.83) 70.8 (2.53) 55.0 (1.02)
IRM 56.9 (0.62) 56.0 (0.34) 69.7 (2.16) 59.7 (0.49) 68.3 (2.00) 56.0 (0.34)
Group DRO 58.7 (0.33) 57.9 (0.74) 69.2 (0.28) 61.1 (0.57) 68.8 (2.38) 57.8 (0.60)

We note that our dataset splits can separate on particular fac-
tors such as the introduction of new sensors, which is natural
with progression over time. For example, the WorldView-3
sensor came online in 2014. Future work should look into
the role of auxiliary factors such as new sensors that are
associated with time but may be controllable. We did not
find a sharp difference in performance due to the introduc-
tion of WorldView-3; we found that the performance decays
gradually over time, suggesting that the performance drop
comes from other factors.

As with POVERTYMAP-WILDS, there are important ethical
considerations associated with remote sensing applications,
e.g., around surveillance and privacy issues, as well as the
potential for systematic biases that negatively affect par-
ticular populations. As an example of the latter, the poor
model performance on satellite images from Africa that we
observe in FMOW-WILDS raises issues of bias and fairness.
With regard to privacy, we note that the image resolution in
FMOW-WILDS is lower than that of other public and easily-
accessible satellite data such as that from Google Maps.
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We refer interested readers to the UNICEF discussion pa-
per by Berman et al. (2018) for a more in-depth discussion
of the ethics of remote sensing especially as it pertains to
development and humanitarian endeavors.

H.7.3. BROADER CONTEXT

Recognizing infrastructure and land features is crucial to
many remote sensing applications. For example, in crop
land prediction (Wang et al., 2020b), recognizing gridded
plot lines, plot circles, farm houses, and other visible fea-
tures are important in recognizing crop fields. However,
farming practices and equipment evolve over time and vary
widely across the world, requiring both robust object recog-
nition and synthesis of their different usage patterns.

Although the data is typically limited, we desire generaliza-
tion on a global scale without requiring frequent large-scale
efforts to gather more ground-truth data. It is natural to have
labeled data with limited temporal or spatial extent since
ground truth generally must be verified on the ground or
requires manual annotations from domain experts (i.e., they
are often hard to be crowdsourced). A number of existing
remote sensing datasets have limited spatial or temporal
scope, including the UC Merced Land Use Dataset (Yang
& Newsam, 2010), TorontoCity (Wang et al., 2017), and
SpaceNet (DigitalGlobe & Works, 2016). However, works
based on these datasets generally do not systematically study
shifts in time or location.

H.7.4. ADDITIONAL DETAILS

Data processing and modifications to the original dataset.
The FMOW-WILDS dataset is derived from Christie et al.
(2018), which collected over 1 million satellite images from
over 200 countries over 2002-2018. We use the RGB ver-
sion of the original dataset, which contains 523,846 total
examples, excluding the multispectral version of the images.
Methods that can utilize a sequence of images can group
the images from the same location across multiple years
together as input, but we consider the simple formulation
here for our baseline evaluation.

The original dataset from Christie et al. (2018) is provided
as a set of hierarchical directories with JPEG images of
varying sizes. To reduce download times and I/O usage, we
resize these images to 224 × 224 pixels, and then store them
as PNG images. We also collect all the metadata into CSV
format for easy processing.

The original dataset is posed as a image time-series classifi-
cation problem, where the model has access to a sequence of
images at each location. For simplicity, we treat each image
as a separate example, while making sure that the data splits
all contain disjoint locations. We use the train/val/test splits
from the original dataset, but separate out two OOD time

segments: we treat the original validation data from 2013-
2016 as OOD val and the original test data from 2016-2018
as OOD test. We remove data from after 2013 from the
training set, which reduces the size of the training set in
comparison to the original dataset.

Additional challenges in high-resolution satellite
datasets. Compared to POVERTYMAP-WILDS, FMOW-
WILDS contains much higher resolution images (sub-meter
resolution vs. 30m resolution) and contains a larger variety
of viewpoints/tilts, both of which could present compu-
tational or algorithmic challenges. For computational pur-
poses, we resized all images to 224×224 (following Christie
et al. (2018)), but raw images can be thousands of pixels
wide. Some recent works have tried to balance this trade-
off between viewing overall context and the fine-grained
detail (Uzkent & Ermon, 2020; Kim et al., 2016a), but how
best to do this is an open question. FMOW-WILDS also
contains additional information on azimuth and cloud cover
which could be used to correct for the variety in viewpoints
and image quality.

H.8. POVERTYMAP-WILDS

A different application of satellite imagery is poverty esti-
mation across different spatial regions, which is essential
for targeted humanitarian efforts in poor regions (Abelson
et al., 2014; Espey et al., 2015). However, ground-truth
measurements of poverty are lacking for much of the devel-
oping world, as field surveys are expensive (Blumenstock
et al., 2015; Xie et al., 2016; Jean et al., 2016). For ex-
ample, at least 4 years pass between nationally representa-
tive consumption or asset wealth surveys in the majority of
African countries, with seven countries that had either never
conducted a survey or had gaps of over a decade between
surveys (Yeh et al., 2020). One approach to this problem is
to train ML models on countries with ground truth labels
and then deploy them to different countries where we have
satellite data but no labels.

We study this problem through a variant of the poverty
mapping dataset collected by Yeh et al. (2020).

H.8.1. SETUP

Problem setting. We consider a hybrid domain general-
ization and subpopulation shift problem, where the input x
is a multispectral LandSat satellite image with 8 channels
(resized to 224 × 224 pixels), the output y is a real-valued
asset wealth index computed from Demographic and Health
Surveys (DHS) data, and the domain d represents the coun-
try the image was taken in and whether the image is of an
urban or rural area. We aim to solve both a domain gen-
eralization problem across country borders and improve
subpopulation performance across urban and rural areas.
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Figure 22: The POVERTYMAP-WILDS dataset contains satellite
images taken in different countries. The goal is to predict asset
wealth in countries that are not present in the training set, while
being accurate in both urban and rural areas. There may be signifi-
cant economic and cultural differences across country borders that
contribute to the spatial distribution shift.

Data. POVERTYMAP-WILDS is based on a dataset col-
lected by Yeh et al. (2020), which assembles satellite im-
agery and survey data at 19,669 villages from 23 African
countries between 2009 and 2016 (Figure 22). Each input
image has 8 channels: 7 from the LandSat satellite and an
8th channel for nighttime light intensity from a separate
satellite, as prior work has established that these night lights
correlate with poverty measures (Noor et al., 2008; Elvidge
et al., 2009).

There are 23 × 2 = 46 domains corresponding to the 23
countries and whether the location is urban or rural. Each
example comes with metadata on its location coordinates,
survey year, and its urban/rural classification.

In contrast to other datasets, which have a single fixed
ID/OOD split, the relatively small size of POVERTYMAP-
WILDS allows us to use 5 different folds, where each fold
defines a different set of OOD countries. In each fold, we
use the following splits of the data (the number of countries
and images in each split varies slightly from fold to fold):

1. Training: ∼10000 images from 13–14 countries.

2. Validation (OOD): ∼4000 images from 4–5 different
countries (distinct from training and test (OOD) coun-
tries).

3. Test (OOD): ∼4000 images from 4–5 different countries
(distinct from training and validation (OOD) countries).

4. Validation (ID): ∼1000 images from the same 13–14
countries in the training set.

5. Test (ID): ∼1000 images from the same 13–14 countries
in the training set.

All splits contain images of both urban and rural locations,
with the countries assigned randomly to each split in each
fold.

The distribution of wealth may shift across countries due
to differing levels economic development, agricultural prac-
tices, and other factors. For example, Abelson et al. (2014)
use thatched vs. metal roofs to distinguish between poor
and wealthy households, respectively in Kenya and Uganda.
However, other countries may have a different mapping of
roof type to wealth where metal roofs signify more poor
households. Similar issues can arise when looking at the
health of crops (related to vegetation indices such as NDVI
that are simple functions of the multispectral channels in the
satellite image) as a sign for wealth in rural areas, since crop
health is related to climate and the choice of crops, which
vary upon region.

Asset wealth may also shift dramatically between countries.
Figure 23 shows the mean asset wealth per country, as well
as urban vs. rural asset wealth per country. Mean asset
wealth ranges from -0.4 to +0.8 depending on the country.
There is a stark difference between mean asset wealth in
urban and rural areas, with urban asset wealth being positive
in all countries while rural mean asset wealth being mostly
negative.

Evaluation. As is standard in the literature (Jean et al.,
2016; Yeh et al., 2020), the models are evaluated on the
Pearson correlation (r) between their predicted and actual
asset wealth indices. We measure the average correlation, to
test generalization under country shifts, and also the lower
of the correlations on the urban and rural subpopulations, to
test generalization between urban and rural subpopulations.
We report the latter as previous works on poverty prediction
from satellite imagery have noted that a significant part of
model performance relies on distinguishing urban vs. rural
areas, and improving performance within these subpopu-
lations is an ongoing challenge, with rural areas generally
faring worse under existing models (Jean et al., 2016; Yeh
et al., 2020).

We average all correlations across the 5 different folds, using
1 random seed per fold. The resulting standard deviations
reflect the fact that different folds have different levels of
difficulty (e.g., depending on how similar the ID and OOD
countries are). For the purposes of comparing different al-
gorithms and models, we note that these standard deviations
might make the comparisons appear noisier than they are,
since a model might perform similarly across random seeds
but still have a high standard deviation if it has different
performances on different folds on the data. In contrast,
other WILDS datasets report results on the same data split
but averaged across different random seeds.

Potential leverage. Large socioeconomic differences be-
tween countries makes generalization across borders chal-
lenging. However, some indicators of wealth are known to
be robust and are able to be seen from space. For example,
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Figure 23: Mean asset wealth by country on aggregate as well as urban and rural splits for each country, computed on the full dataset.
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Figure 24: Mean absolute difference in asset wealth between two
data points in the full dataset as a function of (great circle) distance
between the two points. Smaller distances between data points
correlate with more similar asset wealth measures. The pairs are
binned by distance on a log (base 10) scale (100 bins), and the
mean value of each bin is plotted at the midpoint distance of each
bin.

roof type (e.g. thatched or metal roofing) has been shown
to be a reliable proxy for wealth (Abelson et al., 2014), and
contextual factors such as the health of nearby croplands,
the presence of paved roads, and connections to urban ar-
eas are plausibly reliable signals for measuring poverty.
Poverty measures are also known to be highly correlated
across space, meaning nearby villages will likely have sim-
ilar poverty measures, and methods can utilize this spatial
structure (using the provided location coordinate metadata)
to improve predictions (Jean et al., 2018; Rolf et al., 2020).
We show the correlation with distance in Figure 24, which
plots the distance between pairs of data points against the
absolute differences in asset wealth between pairs.

H.8.2. BASELINE RESULTS

Model. For all experiments, we follow Yeh et al. (2020)
and train a ResNet-18 model (He et al., 2016) to minimize

squared error. We use the Adam optimizer (Kingma & Ba,
2015) with an initial learning rate of 10−3 that decays by
0.96 per epoch, and train for 200 epochs for with early
stopping (on OOD r) and with a batch size of 64.

ERM results and performance drops. When shifting
across country borders, Table 21 shows that ERM suffers
a 0.04 drop in r on OOD test examples compared to ID
test examples (MSE results are in Appendix H.8.4). More-
over, the drop in performance is exacerbated when looking
at urban and rural subpopulations, even though all splits
contain urban and rural examples. Table 21 shows that the
difference between ID and OOD test r in the ERM model
nearly triples from 0.04 to 0.11 when considering the overall
vs. rural r. Correlation is consistently lower on the rural
subpopulation than the urban subpopulation.

We ran an additional experiment where we considered an
alternative training set with data that was uniformly sampled
from all countries, while keeping the overall training set size
constant (i.e., compared to the standard training set, it has
fewer examples from each country, but data from more
countries). A model trained on this mixed split had a much
smaller drop in performance between the ID and OOD test
sets (Table 21), as the mixed training set contains examples
from the countries in both the ID and OOD test sets. This
comparison implies that the performance drop between the
ID and OOD test sets is largely due to the distribution shift
from seen to unseen countries.

Finally, we also ran an ablation where we removed the night-
time light intensity channel. This resulted in a drop in OOD
r of 0.04 on average and 0.06 on the rural subpopulation,
demonstrating the usefulness of the nightlight data in asset
wealth estimation.

Additional baseline methods. We trained models with
CORAL, IRM, and Group DRO, taking examples from dif-

38



Table 20: Pearson correlation r (higher is better) on in-distribution and out-of-distribution (unseen countries) held-out sets in
POVERTYMAP-WILDS, including results on the worst urban/rural subpopulations. All results are averaged over 5 different OOD
country folds taken from Yeh et al. (2020), with standard deviations across different folds in parentheses.

Validation (ID) Validation (OOD) Test (ID) Test (OOD)

Overall
ERM 0.82 (0.02) 0.80 (0.04) 0.82 (0.03) 0.78 (0.04)
CORAL 0.82 (0.00) 0.80 (0.04) 0.83 (0.01) 0.78 (0.05)
IRM 0.82 (0.02) 0.81 (0.03) 0.82 (0.02) 0.77 (0.05)
Group DRO 0.78 (0.03) 0.78 (0.05) 0.80 (0.03) 0.75 (0.07)

Worst urban/rural subpopulation
ERM 0.58 (0.07) 0.51 (0.06) 0.57 (0.07) 0.45 (0.06)
CORAL 0.59 (0.04) 0.52 (0.06) 0.59 (0.03) 0.44 (0.06)
IRM 0.57 (0.06) 0.53 (0.05) 0.57 (0.08) 0.43 (0.07)
Group DRO 0.49 (0.08) 0.46 (0.04) 0.54 (0.11) 0.39 (0.06)

Table 21: Performance drops for ERM models on POVERTYMAP-WILDS. In the standard split, we train on data from one set of countries,
and then test on a different set of countries. In the mixed split, we train on the same amount of data but sampled uniformly from all
countries. Models trained on the standard split degrade in performance, especially on rural subpopulations, while models trained on the
mixed split do not.

Test (ID) Test (OOD)
Overall r Rural r Urban r Overall r Rural r Urban r

Standard split (ID examples) 0.82 (0.03) 0.57 (0.07) 0.66 (0.04) 0.78 (0.04) 0.46 (0.05) 0.59 (0.11)
Mixed split (ID + OOD examples) 0.83 (0.01) 0.62 (0.01) 0.65 (0.03) 0.83 (0.03) 0.60 (0.06) 0.65 (0.06)

ferent countries as coming from distinct domains. Table 20
shows that these baselines are generally comparable to ERM,
and that they continue to be susceptible to shifts across coun-
tries and urban/rural areas. As with most other datasets, our
grid search selected the lowest values of the penalty weights
for CORAL (λ = 0.1) and IRM (λ = 1).

Discussion. These results corroborate performance drops
seen in previous out-of-country generalization tests for
poverty prediction from satellite imagery (Jean et al., 2016).
In general, differences in infrastructure, economic develop-
ment, agricultural practices, and even cultural differences
can cause large shifts across country borders. Differences
between urban and rural subpopulations have also been well-
documented (Jean et al., 2016; Yeh et al., 2020). Models
based on nighttime light information could suffer more in
rural areas where nighttime light intensity is uniformly low
or even zero.

Since survey years are also available, we could also inves-
tigate the robustness of the model over time. This would
enable the models to be used for a longer time before need-
ing more updated survey data, and we leave this to future
work. Yeh et al. (2020) investigated predicting the change
in asset wealth for individual villages in the World Bank
Living Standards Measurement Surveys (LSMS), which is
a longitudinal study containing multiple samples from the

same village. POVERTYMAP-WILDS only contains cross-
sectional samples which do not provide direct supervision
for changes over time at any one location, but it is still
possible to consider aggregate shifts across years.

As with FMOW-WILDS, there are important ethical consid-
erations associated with remote sensing applications, e.g.,
around surveillance and privacy issues, as well as the po-
tential for systematic biases that negatively affect particular
populations. As we describe in Section H.8.4, noise has been
added to the location metadata in POVERTYMAP-WILDS
to protect privacy. The distribution shifts across country
and urban/rural boundaries that we study in POVERTYMAP-
WILDS are an example of a bias that affects model per-
formance and therefore could have adverse policy conse-
quences. We refer interested readers to the UNICEF dis-
cussion paper by Berman et al. (2018) for a more in-depth
discussion of the ethics of remote sensing especially as it
pertains to development and humanitarian endeavors.

H.8.3. BROADER CONTEXT

Computational sustainability applications in the developing
world also include tracking child mortality (Burke et al.,
2016; Osgood-Zimmerman et al., 2018; Reiner et al., 2018),
educational attainment (Graetz et al., 2018), and food se-
curity and crop yield prediction (You et al., 2017; Wang
et al., 2020b; Xie et al., 2020). Remote sensing data and
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satellite imagery has the potential to enable high-resolution
maps of many of these sustainability challenges, but as with
poverty measures, ground truth labels in these applications
come from expensive surveys or observations from human
workers in the field. Some prior works consider using spa-
tial structure (Jean et al., 2018; Rolf et al., 2020), unlabeled
data (Xie et al., 2016; Jean et al., 2018; Xie et al., 2020),
or weak sources of supervision (Wang et al., 2020b) to im-
prove global models despite the lack of ground-truth data.
We hope that POVERTYMAP-WILDS can be used to improve
the robustness of machine learning techniques on satellite
data, providing an avenue for cheaper and faster measure-
ments that can be used to make progress on a general set of
computational sustainability challenges.

H.8.4. ADDITIONAL DETAILS

Data processing. The POVERTYMAP-WILDS dataset is
derived from Yeh et al. (2020), which gathers LandSat im-
agery and Demographic and Health Surveys (DHS) data
from 19669 villages across 23 countries in Africa . The im-
ages are 224×224 pixels large over 7 multispectral channels
and an eighth nighttime light intensity channel. The LandSat
satellite has a 30m resolution, meaning that each pixel of the
image covers a 30m2 spatial area. The location metadata is
perturbed by the DHS as a privacy protection scheme; urban
locations are randomly displaced by up to 2km and rural lo-
cations are perturbed by up to 10km. While this adds noise
to the data, having a large enough image can guarantee that
the location is in the image most of the time. The target is a
real-valued composite asset wealth index computed as the
first principal component of survey responses about house-
hold assets, which is thought to be a less noisy measure
of households’ longer-run economic well-being than other
welfare measurements like consumption expenditure (Sahn
& Stifel, 2003; Filmer & Scott, 2011). Asset wealth also
has the advantage of not requiring adjustments for inflation
or for purchasing power parity (PPP), as it is not based on a
currency.

We normalize each channel by the pixel-wise mean and
standard deviation for each channel, following (Yeh et al.,
2020). We also do a similar data augmentation scheme,
adding random horizontal and vertical flips as well as color
jitter (brightness factor 0.8, contrast factor 0.8, saturation
factor 0.8, hue factor 0.1).

The data download process provided by Yeh et al. (2020)
involves downloading and processing imagery from Google
Earth Engine. We process each image into a compressed
NumPy array with 8 channels. We also provide all the
metadata in a CSV format.

Modifications to the original dataset. We report a much
larger drop in correlation due to spatial shift than in Yeh

et al. (2020). To explain this, we note that our data split-
ting method is slightly different from theirs. They have
two separate experiments (with different data splits) to test
in-distribution vs. out-of-distribution generalization. In
contrast, our data splits on both held-out in-distribution and
out-of-distribution points at the same time with respect to the
same training set, thus allowing us to compare both metrics
simultaneously on one model as a more direct comparison.
We use the same OOD country folds as the original dataset.
However, Yeh et al. (2020) split the ID train/val/test while
making sure that the spatial extent of the images between
each split never overlap, while we simply take uniformly
random splits of the ID data. This means that between our
ID train/val/test splits, we may have images that have share
some overlapping spatial extent, for example for two very
nearby locations. Thus, a model can utilize some memo-
rization here to improve ID performance. We believe this
is reasonable since, with more ID data, more of the spatial
area will be labeled and memorization should become an
increasingly viable strategy for generalization in-domain.

H.9. AMAZON-WILDS

In many consumer-facing ML applications, models are
trained on data collected on one set of users and then de-
ployed across a wide range of potentially new users. These
models can perform well on average but poorly on some
individuals (Tatman, 2017; Caldas et al., 2018; Li et al.,
2019b; Koenecke et al., 2020). These large performance
disparities across users are practical concerns in consumer-
facing applications, and they can also indicate that models
are exploiting biases or spurious correlations in the data
(Badgeley et al., 2019; Geva et al., 2019). We study this
issue of inter-individual performance disparities on a variant
of the AMAZON-WILDS Reviews dataset (Ni et al., 2019).

Reviewer ID (!) Review Text (") Stars (#)

Tr
ai

n

Reviewer 1 They are decent shoes. Material quality is good but the 
color fades very quickly. Not as black in person as 
shown.

5

Super easy to put together. Very well built. 5
Reviewer 2 This works well and was easy to install. The only thing I 

don't like is that it tilts forward a little bit and I can't 
figure out how to stop it.

4

Perfect for the trail camera 5
…

Reviewer 
10,000

I am disappointed in the quality of these. They have 
significantly deteriorated in just a few uses. I am going 
to stick with using foil.

1

Very sturdy especially at this price point. I have a 
memory foam mattress on it with nothing underneath 
and the slats perform well.

5

Te
st

Reviewer 
10,001

Solidly built plug in. I have had 4 devices plugged in 
and all charge just fine. 

5

Works perfectly on the wall to hang our wreath without 
having to do any permanent damage.

5

…

Figure 25: The AMAZON-WILDS dataset involves predicting star
ratings from reviews of Amazon products. The goal is to do
consistently well on new reviewers who are not in the training set.
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H.9.1. SETUP

Problem setting. We consider a hybrid domain gener-
alization and subpopulation problem where the domains
correspond to different reviewers. The task is multi-class
sentiment classification, where the input x is the text of a
review, the label y is a corresponding star rating from 1 to
5, and the domain d is the identifier of the reviewer who
wrote the review. Our goal is to perform consistently well
across a wide range of reviewers, i.e., to achieve high tail
performance on different subpopulations of reviewers in ad-
dition to high average performance. In addition, we consider
disjoint set of reviewers between training and test time.

Data. The dataset comprises 539,502 customer reviews
on Amazon taken from the Amazon Reviews dataset (Ni
et al., 2019). Each input example has a maximum token
length of 512. For each example, the following additional
metadata is also available at both training and evaluation
time: reviewer ID, product ID, product category, review
time, and summary.

To reliably measure model performance on each reviewer,
we include at least 75 reviews per reviewer in each split.
Concretely, we consider the following splits, where review-
ers are randomly assigned to either in-distribution or out-of-
distribution sets:

1. Training: 245,502 reviews from 1,252 reviewers.

2. Validation (OOD): 100,050 reviews from another set of
1,334 reviewers, distinct from training and test (OOD).

3. Test (OOD): 100,050 reviews from another set of 1,334
reviewers, distinct from training and validation (OOD).

4. Validation (ID): 46,950 reviews from 626 of the 1,252
reviewers in the training set.

5. Test (ID): 46,950 reviews from 626 of the 1,252 review-
ers in the training set.

The reviewers in the train and in-distribution splits; the
validation (OOD) split; and the test (OOD) split are all
disjoint, which allows us to test generalization to unseen
reviewers. See Appendix H.9.4 for more details.

Evaluation. To assess whether models perform consis-
tently well across reviewers, we evaluate models by their
accuracy on the reviewer at the 10th percentile. This fol-
lows the federated learning literature, where it is standard
to measure model performance on devices and users at vari-
ous percentiles in an effort to encourage good performance
across many devices (Caldas et al., 2018; Li et al., 2019b).

Potential leverage. We include more than a thousand re-
viewers in the training set, capturing variation across a wide
range of reviewers. In addition, we provide reviewer ID
annotations for all reviews in the dataset. These annotations
could be used to directly mitigate performance disparities
across reviewers seen during training time.

H.9.2. BASELINE RESULTS

Model. For all experiments, we finetuned DistilBERT-
base-uncased models (Sanh et al., 2019), using the imple-
mentation from Wolf et al. (2019), and with the following
hyperparameter settings: batch size 8; learning rate 1×10−5

with the AdamW optimizer (Loshchilov & Hutter, 2019);
L2-regularization strength 0.01; 3 epochs with early stop-
ping; and a maximum number of tokens of 512. We selected
the above hyperparameters based on a grid search over learn-
ing rates {1×10−6, 2×10−6, 1×10−5, 2×10−5}, and all
other hyperparameters were simply set to standard/default
values.

ERM results and performance drops. A DistilBERT-
base-uncased model trained with the standard ERM ob-
jective performs well on average, but performance varies
widely across reviewers (Figure 26, Table 22). Despite the
high average accuracy of 71.9%, per-reviewer accuracies
vary widely between 100.0% and 12.0%, with accuracy
at the 10th percentile of 53.8%. The above variation is
larger than expected from randomness: a random binomial
baseline with equal average accuracy would have a 10th
percentile accuracy of 65.4%. We observe low tail perfor-
mance on both previously seen and unseen reviewers, with
low 10th percentile accuracy on in-distribution and out-of-
distribution sets (Table 22). In addition, we observe drops
on both average and 10th percentile accuracies upon eval-
uating on unseen reviewers, as evident in the performance
gaps between the in-distribution and the out-of-distribution
sets.

Additional baseline methods. We now consider models
trained by existing robust training algorithms, and show that
these models also perform poorly on tail reviewers, failing
to mitigate the performance drop (Table 22). We observe
that reweighting to achieve uniform class balance fails to
improve the 10th percentile accuracy, showing that variation
across users cannot be solved simply by accounting for label
imbalance. In addition, CORAL, IRM, and Group DRO fail
to improve both average and 10th percentile accuracies on
both ID and OOD sets. Our grid search selected λ = 1.0
for the CORAL penalty and λ = 1.0 for the IRM penalty.

Discussion. The distribution shift and the evaluation crite-
ria for AMAZON-WILDS focus on the tail performance, un-
like the other datasets in WILDS. Because of this, AMAZON-
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Table 22: Baseline results on AMAZON-WILDS. We report the accuracy of models trained using ERM, CORAL, IRM, and group DRO, as
well as a reweighting baseline that reweights for class balance. To measure tail performance across reviewers, we report the accuracy
for the reviewer in the 10th percentile. While the performance drop on AMAZON-WILDS is primarily from subpopulation shift, there is
also a performance drop from evaluating on unseen reviewers, as evident in the gaps in accuracies between the in-distribution and the
out-of-distribution sets.

Validation (ID) Validation (OOD) Test (ID) Test (OOD)
Algorithm 10th percentile Average 10th percentile Average 10th percentile Average 10th percentile Average

ERM 58.7 (0.0) 75.7 (0.2) 55.2 (0.7) 72.7 (0.1) 57.3 (0.0) 74.7 (0.1) 53.8 (0.8) 71.9 (0.1)
CORAL 56.2 (1.7) 74.4 (0.3) 54.7 (0.0) 72.0 (0.3) 55.1 (0.4) 73.4 (0.2) 52.9 (0.8) 71.1 (0.3)
IRM 56.4 (0.8) 74.3 (0.1) 54.2 (0.8) 71.5 (0.3) 54.7 (0.0) 72.9 (0.2) 52.4 (0.8) 70.5 (0.3)
Group DRO 57.8 (0.8) 73.7 (0.6) 54.7 (0.0) 70.7 (0.6) 55.8 (1.0) 72.5 (0.3) 53.3 (0.0) 70.0 (0.5)
Reweight (label) 55.1 (0.8) 71.9 (0.4) 52.1 (0.2) 69.1 (0.5) 54.4 (0.4) 70.7 (0.4) 52.0 (0.0) 68.6 (0.6)
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Per-reviewer test accuracy
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Distribution of per-reviewer test accuracies
Random baseline
ERM

Figure 26: Distribution of per-reviewer accuracy on the test set for
the ERM model (blue). The corresponding random baseline would
have per-reviewer accuracy distribution in grey.

WILDS might have distinct empirical trends or be conducive
to different algorithms compared to other datasets. Poten-
tial approaches include extensions to algorithms for worst-
group performance, for example to handle a large number
of groups, as well as adaptive approaches that yield user-
specific predictions.

H.9.3. BROADER CONTEXT

Performance disparities across individuals have been ob-
served in a wide range of tasks and applications, including
in natural language processing (Geva et al., 2019), automatic
speech recognition (Koenecke et al., 2020; Tatman, 2017),
federated learning (Li et al., 2019b; Caldas et al., 2018),
and medical imaging (Badgeley et al., 2019). These perfor-
mance gaps are practical limitations in applications that call
for good performance across a wide range of users, includ-
ing many user-facing applications such as speech recogni-
tion (Koenecke et al., 2020; Tatman, 2017) and personalized
recommender systems (Patro et al., 2020), tools used for
analysis of individuals such as sentiment classification in
computational social science (West et al., 2014) and user
analytics (Lau et al., 2014), and applications in federated

learning. These performance disparities have also been stud-
ied in the context of algorithmic fairness, including in the
federated learning literature, in which uniform performance
across individuals is cast as a goal toward fairness (Li et al.,
2019b; Dwork et al., 2012). Lastly, these performance dis-
parities can also highlight models’ failures to learn the actual
task in a generalizable manner; instead, some models have
been shown learn the biases specific to individuals. Prior
work has shown that individuals—technicians for medical
imaging in this case—can not only be identified from data,
but also are predictive of the diagnosis, highlighting the risk
of learning to classify technicians rather than the medical
condition (Badgeley et al., 2019). More directly, across a
few natural language processing tasks where examples are
annotated by crowdworkers, models have been observed
to perform well on annotators that are commonly seen at
training time, but fail to generalize to unseen annotators, sug-
gesting that models are merely learning annotator-specific
patterns and not the task (Geva et al., 2019).

H.9.4. ADDITIONAL DETAILS

Data processing. We consider a modified version of the
Amazon reviews dataset (Ni et al., 2019). We consider dis-
joint reviewers between the training, OOD validation, and
OOD test sets, and we also provide separate ID validation
and test sets that include reviewers seen during training for
additional reporting. These reviewers are selected uniformly
at random from the reviewer pool, with the constraint that
they have at least 150 reviews in the pre-processed dataset.
Statistics for each split are described in Table 23. Notably,
each reviewer has at least 75 reviews in the training set and
exactly 75 reviews in the validation and test sets.

To process the data, we first eliminate reviews that are longer
than 512 tokens, reviews without any text, and any dupli-
cate reviews with identical star rating, reviewer ID, product
ID, and time. We then obtain the 30-core subset of the
reviews, which contains the maximal set of reviewers and
products such that each reviewer and product has at least
30 reviews; this is a standard preprocessing procedure used
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Table 23: Dataset details for AMAZON-WILDS.

Split # Reviews # Reviewers # Reviews per reviewer (mean / minimum)

Training 245,502 1,252 196 / 75
Validation (OOD) 100,050 1,334 75 / 75
Test (OOD) 46,950 662 75 / 75
Validation (ID) 100,050 1,334 75 / 75
Test (ID) 46,950 662 75 / 75

in the original dataset (Ni et al., 2019). To construct the
dataset for reviewer shifts in particular, we further eliminate
the following reviews: (i) reviews that contain HTML, (ii)
reviews with identical text within a user in order to ensure
sufficiently high effective sample size per reviewer, and
(iii) reviews with identical text across users to eliminate
generic reviews. Once we have the filtered set of reviews,
we consider reviewers with at least 150 reviews and sample
uniformly at random until the training set contains approx-
imately 250,000 reviews and each evaluation set contains
at least 100,000 reviews. As we construct the training set,
we reserve a random sample of 75 reviews for each user for
evaluation and put all other reviews in the training set. For
the evaluation set, we put a random sample of 75 reviews
for each user.

Modifications to the original dataset. The original
dataset does not prescribe a specific task or split. We con-
sider a standard task of sentiment classification, but instead
of using a standard i.i.d. split, we instead consider disjoint
users between training and evaluation time as described
above. In addition, we preprocess the data as detailed above.

H.10. PY150-WILDS

Code completion models—autocomplete tools used by pro-
grammers to suggest subsequent source code tokens, such as
the names of API calls—are commonly used to reduce the ef-
fort of software development (Robbes & Lanza, 2008; Bruch
et al., 2009; Nguyen & Nguyen, 2015; Proksch et al., 2015;
Franks et al., 2015). These models are typically trained on
data collected from existing codebases but then deployed
more generally across other codebases, which may have
different distributions of API usages (Nita & Notkin, 2010;
Proksch et al., 2016; Allamanis & Brockschmidt, 2017).
This shift across codebases can cause substantial perfor-
mance drops in code completion models. Moreover, prior
studies of real-world usage of code completion models have
noted that these models can generalize poorly on some im-
portant subpopulations of tokens such as method names
(Hellendoorn et al., 2019).

We study this problem using a variant of the Py150 Dataset,
originally developed by Raychev et al. (2016) and adapted
to a code completion task by Lu et al. (2021).

Repository ID (d) Source code context (x) Next tokens (y)
Train Repository 1 ... from easyrec.gateway import EasyRec <EOL> gateway = 

EasyRec('tenant','key') <EOL> item_type = gateway.     i

get_item_type

... response = gateway.get_other_users() <EOL>
get_params = HTTPretty.     ii  

last_request

Repository 2 import numpy as np ... <EOL> if np.linalg.norm(target - 
prev_target) > far_threshold: <EOL> norm = np.     ii

linalg

... new_trans = np.zeros((n_beats + max_beats, n_beats) 
<EOL> new_trans[:n_beats,:n_beats] = np.     ii

max

Test Repository 6,001 ... if e.errno == errno.ENOENT: <EOL> continue <EOL> p = 
subprocess.Popen () <EOL> stdout = p.     ii

communicate

... command = shlex.split(command) <EOL> command = 
map(str, command) <EOL> env = os.     ii . copy ( )

environ

…
…

Figure 27: The PY150-WILDS dataset comprises Python source
code files taken from a variety of public repositories on GitHub.
The task is code completion: predict token names given the context
of previous tokens. We evaluate models on their accuracy on the
subpopulation of API calls (i.e., method and class tokens), which
are the most common code completion queries in real-world set-
tings. Our goal is to learn code completion models that generalize
to source code in new repositories that are not seen in the training
set.

H.10.1. SETUP

Problem setting. We consider a hybrid domain general-
ization and subpopulation shift problem, where the domains
are codebases (GitHub repositories), and our goal is to learn
code completion models that generalize to source code writ-
ten in new codebases. Concretely, the input x is a sequence
of source code tokens taken from a single file, the label y
is the next token (e.g., "environ", "communicate" in
Figure 27), and the domain d is an integer that identifies the
repository that the source code belongs to. We aim to solve
both a domain generalization problem across codebases and
improve subpopulation performance on class and methods
tokens.

Data. The dataset comprises 150,000 Python source
code files from 8,421 different repositories on GitHub
(github.com). Each source code file is associated with
the repository ID so that code from the same repository can
be linked.

We split the dataset by randomly partitioning the data by
repositories:

1. Training: 79,866 code files from 5,477 repositories.

2. Validation (OOD): 5,160 code files from different 261
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repositories.

3. Test (OOD): 39,974 code files from different 2,471
repositories.

4. Validation (ID): 5,000 code files from the same reposi-
tories as the training set (but different files).

5. Test (ID): 20,000 code files from the same repositories
as the training set (but different files).

The repositories are randomly distributed across the training,
validation (OOD), and test (OOD) sets. As we use models
pre-trained on the CodeSearchNet dataset (Husain et al.,
2019), which partially overlaps with the Py150 dataset, we
ensured that all GitHub repositories used in CodeSearchNet
only appear in the training set in PY150-WILDS and not in
the validation/test sets.

Table 24 shows the token statistics of the source code files,
as well as the token type breakdown (e.g., class, method,
punctuator, keyword, literal). The tokens are defined by
the built-in Python tokenizer and the CodeGPT tokenizer,
following Lu et al. (2021). Training and evaluation are con-
ducted at the token-level (more details are provided below).

Evaluation. We evaluate models by their accuracy on
predicting class and method tokens in the test set code files.
This subpopulation metric is inspired by Hellendoorn et al.
(2019), which finds that in real-world settings, developers
primarily use code completion tools for completing class
names and method names; in contrast, measuring average
token accuracy would prioritize common tokens such as
punctuators, which are often not a problem in real-world
settings.

Potential leverage. We provide the GitHub repository
that each source code files was derived from, which train-
ing algorithms can leverage. As programming tools like
code completion are expected to be used across codebases
in real applications (Nita & Notkin, 2010; Allamanis &
Brockschmidt, 2017), it is important for models to learn
generalizable representations of code and extrapolate well
on unseen codebases. We hope that approaches using the
provided repository annotations can learn to factor out com-
mon features and codebase-specific features, resulting in
more robust models.

Additionally, besides the (integer) IDs of repositories, we
also provide the repository names and file names in nat-
ural language as extra metadata. While we only use the
repository IDs in our baseline experiments described below,
the extra natural language annotations can potentially be
leveraged as well to adapt models to target repositories/files.

H.10.2. BASELINE RESULTS

Model. For all experiments, we use the CodeGPT model
(Lu et al., 2021) pre-trained on CodeSearchNet (Husain
et al., 2019) as our model and finetune it on PY150-WILDS,
using all the tokens in the training set. We tokenize input
source code by the CodeGPT tokenizer and take blocks
of length 256 tokens. We then train the CodeGPT model
with a batch size of 6 (with 6 × 256 = 1, 536 tokens),
a learning rate of 8 × 10−5, no L2 regularization, and
the AdamW optimizer (Loshchilov & Hutter, 2019) for
3 epochs with early stopping. Using the hyperparameters
from Lu et al. (2021) as a starting point, we selected the
above hyperparameters by a grid search over learning rates
{8 × 10−4, 8 × 10−5, 8 × 10−6} and L2 regularization
strength {0, 0.01, 0.1}. All other hyperparameters were
simply set to standard/default values.

ERM results and performance drops. Table 25 shows
that model performance on class and method tokens dropped
substantially from 75.4% on the in-distribution repositories
in the Test (ID) set to 67.9% on the out-of-distribution repos-
itories in the Test (OOD) set. This gap shrinks if we eval-
uate the model on all tokens (instead of class and method
tokens): accuracy drops from 74.5% on Test (ID) to 69.6%
on Test (OOD). This is because the evaluation across all
tokens includes many tokens that are used universally across
repositories, such as punctuators and keywords.

Additional baseline methods. We trained CORAL, IRM,
and Group DRO baselines, treating each repository as a
domain. For CORAL and IRM, we find that the smaller
penalties give slightly better generalization performance
(λ = 1 for CORAL and λ = 1 for IRM). Compared to
the ERM baseline, while CORAL and IRM reduced the
performance gap between ID and OOD, neither of them
improved upon ERM on the final OOD performance.

H.10.3. BROADER CONTEXT

Machine learning can aid programming and software engi-
neering in various ways: automatic code completion (Ray-
chev et al., 2014; Svyatkovskiy et al., 2019), program syn-
thesis (Bunel et al., 2018; Kulal et al., 2019), program repair
(Vasic et al., 2019; Yasunaga & Liang, 2020), code search
(Husain et al., 2019), and code summarization (Allamanis
et al., 2015). However, these systems face several forms of
distribution shifts when deployed in practice. One major
challenge is the shifts across codebases (which our PY150-
WILDS dataset focuses on), where systems need to adapt
to factors such as project content, coding conventions, or
library or API usage in each codebase (Nita & Notkin, 2010;
Allamanis & Brockschmidt, 2017). A second source of
shifts is programming languages, which includes adaptation
across different domain-specific languages (DSLs), e.g., in
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Table 24: Token statistics for PY150-WILDS.

Split #Files #Total tokens #Class #Method #Punctuator #Keyword #Literal

Training 79,866 14,129,619 894,753 789,456 4,512,143 1,246,624 1,649,653
Validation (ID) 5,000 882,745 55,645 48,866 282,568 77,230 105,456
Test (ID) 20,000 3,539,524 222,822 194,293 1,130,607 313,008 420,232
Validation (OOD) 5,160 986,638 65,237 56,756 310,914 84,677 111,282
Test (OOD) 39,974 7,340,433 444,713 412,700 2,388,151 640,939 869,083

Table 25: Baseline results on PY150-WILDS. We report both the model’s accuracy on predicting class and method tokens and accuracy on
all tokens trained using ERM, CORAL, IRM and group DRO. Standard deviations over 3 trials are in parentheses.

Validation (ID) Validation (OOD) Test (ID) Test (OOD)
Algorithm Method/class All Method/class All Method/class All Method/class All

ERM 75.5 (0.5) 74.6 (0.4) 68.0 (0.1) 69.4 (0.1) 75.4 (0.4) 74.5 (0.4) 67.9 (0.1) 69.6 (0.1)
CORAL 70.7 (0.0) 70.9 (0.1) 65.7 (0.2) 67.2 (0.1) 70.6 (0.0) 70.8 (0.1) 65.9 (0.1) 67.9 (0.0)
IRM 67.3 (1.1) 68.4 (0.7) 63.9 (0.3) 65.6 (0.1) 67.3(1.1) 68.3 (0.7) 64.3 (0.2) 66.4 (0.1)
Group DRO 70.8 (0.0) 71.2 (0.1) 65.4 (0.0) 67.3 (0.0) 70.8 (0.0) 71.0 (0.0) 65.9 (0.1) 67.9 (0.0)

robotic environments (Shin et al., 2019); and across differ-
ent versions of languages, e.g., Python 2 and 3 (Malloy &
Power, 2017). Another challenge is the shift from synthetic
training sets to real usage: for instance, (Hellendoorn et al.,
2019) show that existing code completion systems, which
are typically trained as language models on source code,
perform poorly on the real completion instances that are
most commonly used by developers in IDEs, such as API
calls (class and method calls).

H.10.4. ADDITIONAL DETAILS

Data split. We generate the splits in the following steps.
First, to avoid test set contamination, we took all of the
repositories in CodeSearchNet (which, as a reminder, is
used to pretrain our baseline model) and assigned them
to the training set. Second, we randomly split all of the
remaining repositories into three groups: Validation (OOD),
Test (OOD), and Others. Finally, to generate the ID splits,
we randomly split the files in the Others repositories into
three sets: Training, Validation (ID), and Test (ID).

Modifications to the original dataset. The original
Py150 dataset (Raychev et al., 2016) splits the total 150k
files into 100k training files and 50k test files, regardless of
the repository that each file was from. In PY150-WILDS,
we re-split the dataset based on repositories to construct
the aforementioned train, validation (ID), validation (OOD),
test (ID), and test (OOD) sets.

Additionally, in the Py150 code completion task introduced
in Lu et al. (2021), models are evaluated by the accuracy of
predicting every token in source code. However, according
to developer studies, this evaluation may include various
tokens that are rarely used in real code completion, such as
punctuators, strings, numerals, etc. (Robbes & Lanza, 2008;

Proksch et al., 2016; Hellendoorn et al., 2019). To define a
task closer to real applications, in PY150-WILDS we focus
on class name and method name prediction (which are used
most commonly by developers).

I. Datasets with distribution shifts that do not
cause performance drops

I.1. SQF: Criminal possession of weapons across race
and locations

In this section, we provide more details on the stop-and-
frisk dataset discussed in Section C.1. The original data
was provided by the New York City Police Department, and
has been widely used in previous ML and data analysis
work (Goel et al., 2016; Zafar et al., 2017; Pierson et al.,
2018; Kallus & Zhou, 2018; Srivastava et al., 2020). For
our analysis, we use the version of the dataset that was
processed by Goel et al. (2016). Our problem setting and
dataset structure closely follow theirs.

I.1.1. SETUP

Problem setting. We study a subpopulation shift in a
weapons prediction task, where each data point corresponds
to a pedestrian who was stopped by the police on suspicion
of criminal possession of a weapon. The input x is a vector
that represents 29 observable features from the UF-250 stop-
and-frisk form filled out by the officer after each stop: e.g.,
whether the stop was initiated based on a radio run or at
an officer’s discretion, whether the officer was uniformed,
and any reasons the officer gave for the stop (encoded as
a categorical variable). Importantly, these features can all
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be observed by the officer prior to making the stop.6 The
binary label y is whether the pedestrian in fact possessed a
weapon (i.e., whether the stop fulfilled its stated purpose).
We consider, separately, two types of domains d: 1) race
groups and 2) locations (boroughs in New York City). We
consider location and race as our domains because previous
work has shown that they can produce substantial disparities
in policing practices and in algorithmic performance (Goel
et al., 2016).

Data. Each row of the dataset represents one stop of one
pedestrian. Following Goel et al. (2016), we filter for the
621,696 stops where the reason for the stop is suspicion of
criminal possession of a weapon. We then filter for rows
with complete data for observable features; with stopped
pedestrians who are Black, white, or Hispanic; and who are
stopped during the years 2009-2012 (the time range used
in Goel et al. (2016)). These filters yield a total of 506,283
stops, 3.5% of which are positive examples (in which the
officer finds that the pedestrian is illegally possessing a
weapon).

The training versus validation split is a random 80%-20%
partition of all stops in 2009 and 2010. We test on stops
from 2011-2012; this follows the experimental setup in Goel
et al. (2016). Overall, our data splits are as follows:

1. Training: 241,964 stops from 2009 and 2010.

2. Validation: 60,492 stops from 2009 and 2010, disjoint
from the training set.

3. Test: 289,863 stops from 2011 and 2012.

In the experiments below, we do not use the entire training
set, as we observed in our initial experiments that the model
performed less well on certain subgroups (Black pedestrians
and pedestrians from the Bronx). To determine whether
this inferior performance might be ameliorated by training
specifically on those groups, we controlled for training set
size by downsampling the training set to the size of the disad-
vantaged population of interest for a given split. Specifically,
we consider the following (overlapping) training subsets,
each of which is subsampled from the overall training set
described above:

1. Black pedestrians only: 155,929 stops of Black pedes-
trians from 2009 and 2010.

2. All pedestrians, subsampled to # Black pedestrians:
155,929 stops of all pedestrians from 2009 and 2010.

6When we consider subpopulation shifts over race groups, the
input x additionally includes 75 one-hot indicators corresponding
to the precinct that the stop was made in. We do not include those
features when we consider shifts over locations, as they prevent
the model from generalizing to new locations.

3. Bronx pedestrians only: 69,129 stops of pedestrians in
the Bronx from 2009 and 2010.

4. All pedestrians, subsampled to # Bronx pedestrians:
69,129 stops of all pedestrians from 2009 and 2010.

Evaluation. Our metric for classifier performance is the
precision for each race group and each borough at a global
recall of 60%—i.e., when using a threshold which recovers
60% of all weapons in the test data, similar to the recall
evaluated in Goel et al. (2016). The results are similar when
using different recall thresholds. Examining the precision
for each race/borough captures the fact, discussed in Goel
et al. (2016), that very low-precision stops may violate the
Fourth Amendment, which requires reasonable suspicion
for conducting a police stop; thus, the metric encapsulates
the intuition that the police are attempting to avoid Fourth
Amendment violations for any race group or borough while
still recovering a substantial fraction of the illegal weapons.

I.1.2. BASELINE RESULTS

Model. For all experiments, we use a logistic regres-
sion model trained with the Adam optimizer (Kingma
& Ba, 2015) and early stopping. We trained one model
on each of the 4 training sets, separately picking hyper-
parameters through a grid search across 7 learning rates
logarithmically-spaced in [5× 10−8, 5× 10−2] and batch
sizes in {4, 8, 16, 32, 64}. Table 28 provides the hyperpa-
rameters used for each training set. All models were trained
with a reweighted cross-entropy objective that upsampled
the positive examples to achieve class balance.

ERM results and performance drops. Performance dif-
fered substantially across race and location groups: preci-
sion was lowest on Black pedestrians (Table 26, top row)
and pedestrians in the Bronx (Table 27, top row). To assess
whether in-distribution training would improve performance
on these groups, we trained the model only on Black pedes-
trians (Table 26, bottom row) and pedestrians in the Bronx
(Table 27, bottom row). However, this did not substantially
improve performance on Black pedestrians or pedestrians
from the Bronx; the difference in precision was less than
0.005 for both groups relative to the original model trained
on all races and locations. This is consistent with the fact
that groups with the lowest performance are not necessar-
ily small minorities of the dataset: for example, more than
90% of the stops are of Black or Hispanic pedestrians, but
performance on these groups is worse than that for white
pedestrians. The lack of improvement from in-distribution
training suggests that approaches like group DRO would be
unlikely to further improve performance, and we thus did
not assess these approaches.
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Table 26: Comparison of precision scores for each race group at 60% global weapon recall. Train set size is 69,129 for both rows.

Precision at 60% recall
Training dataset Black Hispanic White

Black pedestrians only 0.131 0.174 0.360
All pedestrians, subsampled to # Black pedestrians 0.135 0.183 0.362

Table 27: Comparison of precision scores for each borough at a threshold which achieves 60% global weapon recall. Train set size is
155,929 for both rows.

Precision at 60% recall
Training dataset Bronx Brooklyn Manhattan Queens Staten Island

Bronx pedestrians only 0.074 0.158 0.207 0.157 0.105
All pedestrians, subsampled to # Bronx pedestrians 0.075 0.162 0.224 0.168 0.107

Table 28: Model parameters used in this analysis. Learning rates are rounded to the first significant digit.

Training data Batch size Learning rate Number of epochs

Black pedestrians only 4 5e-04 1
All pedestrians, subsampled to # Black pedestrians 4 5e-04 4

Bronx pedestrians only 4 5e-04 2
All pedestrians, subsampled to # Bronx pedestrians 4 5e-03 4

Discussion. We observed large disparities in performance
across race and location groups. However, the fact that
in-distribution training did not ameliorate these disparities
suggests that they do not occur because some groups com-
prise small minorities of the original dataset, and thus suffer
worse performance. Instead, our results suggest that classifi-
cation performance on some race and location groups are
intrinsically noisier; it is possible, for example, that collec-
tion of additional features would be necessary to improve
performance on these groups (Chen et al., 2018).

I.1.3. ADDITIONAL DETAILS

Modifications to the original dataset. The features we
use are very similar to those used in Goel et al. (2016).
The two primary differences are that 1) we remove features
which convey information about a stopped pedestrian’s race,
since those might be illegal to use in real-world policing
contexts and 2) we do not include a “local hit rate” feature
which captures the fraction of historical stops in the vicin-
ity of a stop which resulted in discovery of a weapon; we
omit this latter feature because it was unnecessary to match
performance in Goel et al. (2016).

I.2. BDD100K: Object recognition in autonomous
driving across locations

As discussed in Section C.6, autonomous driving, and
robotics in general, is an important application that requires

effective and robust tools for handling distribution shift.
Here, we discuss our findings on a modified version of the
BDD100K dataset that evaluates on shifts based on time of
day and location. Our results below suggest that more chal-
lenging tasks, such as object detection and segmentation,
may be more suited to evaluations of distribution shifts in
an autonomous driving context.

Figure 28: For BDD100K, we study two different types of shift,
based on time of day and location. We visualize randomly chosen
images and their corresponding labels from the training, validation,
and test splits for both shifts. The labels are 9-dimensional binary
vectors indicating the presence (1) or absence (0) of, in order:
bicycles, buses, cars, motorcycles, pedestrians, riders, traffic lights,
traffic signs, and trucks.
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Table 29: Average multi-task classification accuracy of ERM trained models on BDD100K. All results are reported across 3 random seeds,
with standard deviation in parentheses. We observe no substantial drops in the presence of test time distribution shifts.

Time of day shift Location shift
Algorithm Validation (ID) Test (OOD) Validation (ID) Test (OOD)

ERM 87.1 (0.3) 89.7 (0.2) 87.9 (0.0) 86.9 (0.0)

I.2.1. SETUP

Task. In line with the other datasets in WILDS, we eval-
uate using a classification task. Specifically, the task is to
predict whether or not 9 different categories appear in the
image x: bicycles, buses, cars, motorcycles, pedestrians,
riders, traffic lights, traffic signs, and trucks. This is a multi-
task binary classification problem, and the label y is thus a
9-dimensional binary vector.

Data. The BDD100K dataset is a large and diverse driv-
ing dataset crowd-sourced from tens of thousands of drivers,
covering four different geographic regions and many dif-
ferent times of day, weather conditions, and scenes (Yu
et al., 2020). The original dataset contains 80,000 images
in the combined training and validation sets and is richly
annotated for a number of different tasks such as detection,
segmentation, and imitation learning. We use bounding box
labels to construct our task labels, and as discussed later,
we use location and image tags to construct the shifts we
evaluate.

Evaluation. In evaluating the trained models, we consider
average accuracy across the binary classification tasks, aver-
aged over each of the validation and test sets separately. We
next discuss how we create and evaluate two different types
of shift based on time of day and location differences.

I.2.2. TIME OF DAY SHIFT

Distribution shift and evaluation. We evaluate two dif-
ferent types of shift, depicted in Figure 28. For time of day
shift (Figure 28 top row), we use the original BDD100K
training set, which has roughly equal proportions of daytime
and non daytime images (Yu et al., 2020). However, we
construct a test set using the original BDD100K validation
set that only includes non-daytime images. We then split
roughly the same number of images randomly from the train-
ing set to form an in-distribution validation set. There are
64,993, 4,860, and 4,742 images in the training, validation,
and test splits, respectively.

ERM results. Table 29 summarizes our findings. For
time of day shift, we actually observe slightly higher test
performance, on only non daytime images, than validation
performance on mixed daytime and non daytime images.
We contrast this with findings from Dai & Van Gool (2018);

Yu et al. (2020), who showed worse test performance for
segmentation and detection tasks, respectively, on non day-
time images. We believe this disparity can be attributed
to the difference in tasks – for example, it is likely more
difficult to draw an accurate bounding box for a car at night
than to simply recognize tail lights and detect the presence
of a car.

I.2.3. LOCATION SHIFT

Distribution shift. For location shift (Figure 28 bot-
tom row), we combine all of the data from the original
BDD100K training and validation sets. We construct train-
ing and validation sets from all of the images captured in
New York, and we use all images from California for the test
set. The validation set again is in distribution with respect to
the training set and has roughly the same number of images
as the test set. There are 53,277, 9,834, and 9,477 images in
the training, validation, and test splits, respectively.

ERM results. In the case of location shift, we see from
Table 29 that there is a small drop in performance, possibly
because this shift is more drastic as the locations are disjoint
between training and test time. However, the performance
drop is relatively small and the test time accuracy is still
comparable to validation accuracy. In general, we believe
that these results lend support to the conclusion that, for
autonomous driving and robotics applications, other more
challenging tasks are better suited for evaluating perfor-
mance. Generally speaking, incorporating a wide array
of different applications will likely require a simultaneous
effort to incorporate different tasks as well. table*

I.3. Amazon: Sentiment classification across different
categories and time

Our benchmark dataset AMAZON-WILDS studies user shifts.
In Section 7, we discussed empirical trends on other types
of distribution shifts on the same underlying 2018 Amazon
Reviews dataset (Ni et al., 2019). We now present the
detailed setup and empirical results for the time and category
shifts.

I.3.1. SETUP

Model. For all experiments in this section, we finetune
BERT-base-uncased models, using the implementation from
Wolf et al. (2019), and with the following hyperparam-
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eter settings: batch size 8; learning rate 2 × 10−6; L2-
regularization strength 0.01; 3 epochs; and a maximum
number of tokens of 512. These hyperparameters are taken
from the AMAZON-WILDS experiments.

I.3.2. TIME SHIFTS

Problem setting. We consider the domain generalization
setting, where the domain d is the year in which the reviews
are written. As in AMAZON-WILDS, the task is multi-class
sentiment classification, where the input x is the text of a
review, the label y is a corresponding star rating from 1 to 5.

Data. The dataset is a modified version of the Amazon
Reviews dataset (Ni et al., 2019) and comprises customer
reviews on Amazon. Specifically, we consider the following
split:

1. Training: 1,000,000 reviews written in years 2000 to
2013.

2. Validation (OOD): 20,000 reviews written in years 2014
to 2018.

3. Test (OOD): 20,000 reviews written in years 2014 to
2018.

To construct the above split, we first randomly sample 4,000
reviews per year for the evaluation splits. For years in
which there are not sufficient reviews, we split the reviews
equally between validation and test. After constructing the
evaluation set, we then randomly sample from the remaining
reviews to form the training set.

Evaluation. To assess whether models generalize to future
years, we evaluate models by their average accuracy on the
OOD test set.

ERM results and performance drops. We only observed
modest performance drops due to time shift. Our baseline
model performs well on the OOD test set, achieving 76.0%
accuracy on average and 75.4% on the worst year (Table 30).
To measure performance drops due to distribution shifts, we
compared the above results with an oracle in-distribution
baseline model, which is trained on reviews written in years
2014 to 2018 (Table 31). The performance gaps with the in-
distribution baseline model are consistent but modest across
the years, with the biggest drop of 1.1% for 2018.

I.3.3. CATEGORY SHIFTS

Shifts across categories—where a model is trained on re-
views in one category and then tested on another—have
been studied extensively (Blitzer et al., 2007; Mansour et al.,
2009; Hendrycks et al., 2020c). In line with prior work, we

observe that model performance drops upon evaluating on
a few unseen categories. However, the observed difference
between out-of-distribution and in-distribution baselines
varies from category to category and is not consistently
large (Hendrycks et al., 2020c). In addition, we find that
training on more diverse data with more product categories
tends to improve generalization to unseen categories and
reduce the effect of the distribution shift; similar phenomena
have also been reported in prior work (Mansour et al., 2009;
Guo et al., 2018).

Problem setting. We consider the domain generalization
setting, where the domain d is the product category. As in
AMAZON-WILDS, the task is multi-class sentiment classifi-
cation, where the input x is the text of a review, the label y
is a corresponding star rating from 1 to 5.

Data. The dataset is a modified version of the Amazon
Reviews dataset (Ni et al., 2019) and comprises customer
reviews on Amazon. Specifically, we consider the following
split for a given set of training categories:

1. Training: up to 1,000,000 reviews in training categories.

2. Validation (OOD): reviews in categories unseen during
training.

3. Test (OOD): reviews in categories unseen during train-
ing.

4. Validation (ID): reviews in training categories.

5. Test (ID): reviews in training categories.

To construct the above split, we first randomly sample 1,000
reviews per category for the evaluation splits (for categories
with insufficient number of reviews, we split the reviews
equally between validation and test) and then randomly
sample from the remaining reviews to form the training set.

Evaluation. To assess whether models generalize to un-
seen categories, we evaluate models by their average accu-
racy on each of the categories in the OOD test set.

ERM results. We first considered training on four cat-
egories (Books, Movies and TV, Home and Kitchen, and
Electronics) and evaluating on unseen categories. We ob-
served that a BERT-base-uncased model trained via ERM
yields a test accuracy of 75.4% on the four in-distribution
categories and a wide range of accuracies on unseen cate-
gories (Table 32, columns Multiple). While the accuracies
on some unseen categories are lower than the in-distribution
accuracy, it is unclear whether the performance gaps stem
from the distribution shift or differences in intrinsic dif-
ficulty across categories; in fact, the accuracy is higher
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Table 30: Baseline results on time shifts on the Amazon Reviews Dataset. We report the accuracy of models trained using ERM. In
addition to the average accuracy across all years in each split, we report the accuracy for the worst-case year.

Train Validation (OOD) Test (OOD)
Algorithm Average Worst year Average Worst year Average Worst year

ERM 75.0 (0.0) 72.4 (0.1) 75.7 (0.1) 74.6 (0.1) 76.0 (0.1) 75.4 (0.1)

Table 31: Comparison with in-distribution baselines for time shifts on Amazon Reviews Dataset. We observe only modest performance
drops due to time shifts.

Year 2014 2015 2016 2017 2018

OOD baseline (ERM) 75.4 (0.1) 75.8 (0.1) 76.3 (0.1) 76.4 (0.4) 76.1 (0.1)
ID baseline (oracle) 76.1 (0.2) 76.8 (0.1) 77.1 (0.2) 77.5 (0.2) 77.0 (0.0)

Table 32: Baseline results on category shifts on the Amazon Reviews Dataset. We report the accuracy of models trained using ERM on a
single category (Books) versus four categories (Books, Movies and TV, Home and Kitchen, and Electronics). Across many categories
unseen at training time, corresponding to each row, the latter model modestly but consistently outperforms the former.

Validation (OOD) Test (OOD)
Category Single Multiple Single Multiple

All Beauty 87.8 (0.8) 85.6 (1.4) 82.9 (0.8) 83.1 (0.8)
Arts Crafts and Sewing 81.6 (0.7) 83.4 (0.4) 79.5 (0.2) 81.7 (0.2)
Automotive 78.2 (0.4) 80.4 (0.4) 76.5 (0.2) 78.9 (0.2)
CDs and Vinyl 78.1 (0.7) 78.6 (0.2) 78.5 (0.7) 79.7 (0.3)
Cell Phones and Accessories 76.8 (0.3) 79.0 (0.7) 78.0 (0.5) 80.2 (1.0)
Clothing Shoes and Jewelry 69.8 (0.6) 72.6 (0.2) 73.3 (0.2) 75.2 (0.2)
Digital Music 77.5 (0.5) 77.8 (0.5) 80.7 (1.0) 81.7 (0.6)
Gift Cards 88.2 (1.5) 90.7 (3.1) 90.7 (0.8) 91.2 (0.0)
Grocery and Gourmet Food 79.0 (0.3) 79.0 (0.1) 79.3 (0.7) 79.2 (0.2)
Industrial and Scientific 77.0 (0.4) 78.1 (0.6) 77.4 (0.2) 78.9 (0.1)
Kindle Store 75.0 (0.3) 74.5 (0.3) 73.2 (0.3) 73.1 (0.5)
Luxury Beauty 67.2 (0.2) 70.2 (0.6) 67.4 (0.7) 69.4 (0.9)
Magazine Subscriptions 74.2 (3.2) 71.0 (0.0) 90.3 (0.0) 89.2 (1.9)
Musical Instruments 76.1 (0.3) 78.3 (0.3) 78.8 (0.8) 80.9 (0.2)
Office Products 78.5 (0.3) 80.0 (0.5) 76.7 (0.5) 78.9 (0.4)
Patio Lawn and Garden 70.8 (0.6) 72.9 (0.3) 75.5 (0.6) 79.7 (0.6)
Pet Supplies 74.5 (0.4) 77.1 (0.9) 74.4 (0.4) 76.8 (0.5)
Prime Pantry 80.5 (0.3) 80.2 (0.2) 78.5 (0.6) 79.4 (0.3)
Software 65.8 (1.7) 67.1 (1.1) 71.3 (1.5) 72.6 (0.5)
Sports and Outdoors 74.2 (0.5) 76.0 (0.2) 75.8 (0.2) 78.3 (0.6)
Tools and Home Improvement 74.0 (1.1) 76.4 (0.3) 73.1 (0.6) 74.4 (0.2)
Toys and Games 78.9 (0.4) 79.9 (0.2) 77.6 (0.2) 80.9 (0.2)
Video Games 76.0 (0.2) 76.6 (0.8) 76.9 (0.6) 78.0 (0.6)

on many unseen categories (e.g., All Beauty) than on the
in-distribution categories, illustrating the importance of ac-
counting for intrinsic difficulty.

In an attempt to control for this and measure performance
drops due to distribution shifts, we compared the above
model against an oracle in-distribution model, which is
trained on each target category. We controlled for the num-
ber of training reviews to the extent possible; the main,
non-oracle model is trained on 1 million reviews, and each
oracle model is trained on 1 million reviews or less, as
limited by the number of reviews per category. We ob-
served performance drops on some categories, for example

on Clothing, Shoes, and Jewelry (83.0% with the oracle
model versus 75.2% with the main model trained on the
four different categories) and on Pet Supplies (78.8% to
76.8%). However, on the remaining categories, we observed
more modest performance gaps, if at all. While we thus
found no evidence for significance performance drops for
many categories, these results do not rule out such drops
either: one confounding factor is that some of the oracle
models are trained on significantly smaller training sets and
therefore underestimate the in-distribution performance.

In addition, we compared training on four categories (Books,
Movies and TV, Home and Kitchen, and Electronics), as
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above, to training on just one category (Books), while keep-
ing the training set size constant. We found that decreasing
the number of training categories in this way lowered out-
of-distribution performance: across many OOD categories,
accuracies were modestly but consistently higher for the
model trained on four categories than for the model trained
on a single category (Table 32).

I.4. Yelp: Sentiment classification across different users
and time

We present empirical results on time and user shifts in the
Yelp Open Dataset7.

I.4.1. SETUP

Model. For all experiments in this section, we finetune
BERT-base-uncased models, using the implementation from
Wolf et al. (2019), and with the following hyperparam-
eter settings: batch size 8; learning rate 2 × 10−6; L2-
regularization strength 0.01; 3 epochs with early stopping;
and a maximum number of tokens of 512. We select the
above hyperparameters based on a grid search over learning
rates 1 × 10−6, 2 × 10−6, 1 × 10−5, 2 × 10−5, using the
time shift setup; for the user shifts, we adopted the same
hyperparameters.

I.4.2. TIME SHIFTS

Problem setting. We consider the domain generalization
setting, where the domain d is the year in which the reviews
are written. As in AMAZON-WILDS, the task is multi-class
sentiment classification, where the input x is the text of a
review, the label y is a corresponding star rating from 1 to 5.

Data. The dataset is a modified version of the Yelp Open
Dataset and comprises 1 million customer reviews on Yelp.
Specifically, we consider the following split:

1. Training: 1,000,000 reviews written in years 2006 to
2013.

2. Validation (OOD): 20,000 reviews written in years 2014
to 2019.

3. Test (OOD): 20,000 reviews written in years 2014 to
2019.

To construct the above split, we first randomly sample 1,000
reviews per year for the evaluation splits. For years in
which there are not sufficient reviews, we split the reviews
equally between validation and test. After constructing the
evaluation set, we then randomly sample from the remaining
reviews to form the training set.

7https://www.yelp.com/dataset

Evaluation. To assess whether models generalize to future
years, we evaluate models by their average accuracy on the
OOD test set.

ERM results and performance drops. We observe mod-
est performance drops due to time shift. A BERT-base-
uncased model trained with the standard ERM objective per-
forms well on the OOD test set, achieving 76.0% accuracy
on average and 73.9% on the worst year (Table 33). To mea-
sure performance drops due to distribution shifts, we com-
pare the above results with an oracle in-distribution baseline
model, which is trained on reviews written in years 2014 to
2019 (Table 34). While there are consistent performance
gaps between the out-of-distribution and the in-distribution
baselines in later years, they are modest in magnitude with
the largest drop of 3.1% for 2018.

I.4.3. USER SHIFT

Problem setting. As in AMAZON-WILDS, we consider
the domain generalization setting, where the domains are
reviewers and the task is multi-class sentiment classification.
Concretely, the input x is the text of a review, the label y is
a corresponding star rating from 1 to 5, and the domain d is
the identifier of the user that wrote the review.

Data. The dataset is a modified version of the Yelp Open
Dataset and comprises 1.2 million customer reviews on Yelp.
To measure generalization to unseen reviewers, we train on
reviews written by a set of reviewers and consider reviews
written by unseen reviewers at test time. Specifically, we
consider the following random split across reviewers:

1. Training: 1,000,104 reviews from 11,856 reviewers.

2. Validation (OOD): 40,000 reviews from another set of
1,600 reviewers, distinct from training and test (OOD).

3. Test (OOD): 40,000 reviews from another set 1,600
reviewers, distinct from training and validation (OOD).

4. Validation (ID): 40,000 reviews from 1,600 of the
11,856 reviewers in the training set.

5. Test (ID): 40,000 reviews from 1,600 of the 11,856 re-
viewers in the training set.

The training set includes at least 25 reviews per reviewer,
whereas the evaluation sets include exactly 25 reviews per
reviewer. While we primarily evaluate model performance
on the above OOD test set, we also provide in-distribution
validation and test sets for potential use in hyperparameter
tuning and additional reporting. These in-distribution splits
comprise reviews written by reviewers in the training set.
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Evaluation. To assess whether models perform consis-
tently well across reviewers, we evaluate models by their
accuracy on the reviewer at the 10th percentile.

ERM results and performance drops. We observe mod-
est variations in performance across reviewers. A BERT-
base-uncased model trained with the standard ERM objec-
tive achieves 71.5% accuracy on average and 56.0% accu-
racy at the 10th percentile reviewer (Table 35). The above
variation is modestly larger than expected from randomness;
a random binomial baseline with equal average accuracy
would have a tenth percentile accuracy of 60.1%.
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Table 33: Baseline results on time shifts on the Yelp Open Dataset. We report the accuracy of models trained using ERM.

Train Validation (OOD) Test (OOD)
Algorithm Average Worst year Average Worst year Average Worst year

ERM 71.4 (0.7) 65.7 (1.1) 76.1 (0.1) 73.1 (0.2) 76.0 (0.4) 73.9 (0.4)

Table 34: Comparison with in-distribution baselines for time shifts on Yelp Open Dataset. We observe only modest performance drops
due to time shifts.

Year 2014 2015 2016 2017 2018 2019

OOD baseline (ERM) 75.8 (0.6) 75.2 (0.9) 73.9 (0.4) 77.0 (0.4) 76.7 (0.3) 77.2 (0.6)
ID baseline (oracle) 75.2 (0.5) 75.0 (0.5) 76.4 (0.7) 78.8 (0.6) 79.6 (0.4) 79.5 (0.5)

Table 35: Baseline results on user shifts on the Yelp Open Dataset. We report the accuracy of models trained using ERM. In addition to
the average accuracy across all reviews, we compute the accuracy for each reviewer and report the performance for the reviewer in the
10th percentile.

Validation (OOD) Test (OOD) Validation (ID) Test (ID)
Algorithm 10th percentile Average 10th percentile Average 10th percentile Average 10th percentile Average

ERM 56.0 (0.0) 70.5 (0.0) 56.0 (0.0) 71.5 (0.0) 56.0 (0.0) 70.6 (0.0) 56.0 (0.0) 70.9 (0.1)
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