
One-sided Frank-Wolfe algorithms for saddle problems

Vladimir Kolmogorov 1 Thomas Pock 2

Abstract
We study a class of convex-concave saddle-
point problems of the form minx maxy〈Kx, y〉+
fP(x)−h∗(y) whereK is a linear operator, fP is
the sum of a convex function f with a Lipschitz-
continuous gradient and the indicator function of
a bounded convex polytope P , and h∗ is a convex
(possibly nonsmooth) function. Such problem
arises, for example, as a Lagrangian relaxation
of various discrete optimization problems. Our
main assumptions are the existence of an efficient
linear minimization oracle (lmo) for fP and an
efficient proximal map (prox) for h∗ which moti-
vate the solution via a blend of proximal primal-
dual algorithms and Frank-Wolfe algorithms. In
case h∗ is the indicator function of a linear con-
straint and function f is quadratic, we show a
O(1/n2) convergence rate on the dual objective,
requiring O(n log n) calls of lmo. If the problem
comes from the constrained optimization problem
minx∈Rd{fP(x) |Ax− b = 0} then we addition-
ally get bound O(1/n2) both on the primal gap
and on the infeasibility gap. In the most general
case, we show a O(1/n) convergence rate of the
primal-dual gap again requiring O(n log n) calls
of lmo. To the best of our knowledge, this im-
proves on the known convergence rates for the
considered class of saddle-point problems. We
show applications to labeling problems frequently
appearing in machine learning and computer vi-
sion.

1. Introduction
In this paper, we consider the following class of saddle-point
problems:

min
x∈X

max
y∈Y
L(x, y) := 〈Kx, y〉 + fP(x)− h∗(y) (1)
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where X ,Y are finite dimensional spaces, equipped with
an inner product 〈·, ·〉 and K : X → Y is a bounded
linear operator with operator norm LK = ‖K‖. Usually
the underlying spaces are the standard Euclidean spaces
X = Rn and Y = Rm.

The functions fP(x) and h∗ are convex, lower semicontinu-
ous functions.

For a differentiable convex function f we say that it has
a Lipschitz continuous gradient if there exists a constant
Lf ≥ 0 such that

‖∇f(x)−∇f(y)‖ ≤ Lf‖x− y‖, ∀x, y ∈ X .

Moreover, the function f is called strongly convex with
strong convexity parameter µf > 0 if f(y) ≥ f(x) +
〈∇f(x), y − x〉 +

µf

2 ‖y − x‖
2 for all x, y ∈ X .

We make the following important structural assumptions on
the functions fP(x) and h∗:

• The function fP(x) has the following composite form

fP(x) = f(x) + δP(x),

where f is a convex function with a Lf -Lipschitz continu-
ous gradient and δP is the indicator function of a convex
polytope P ⊂ X . For this polytope, we assume the ex-
istence of an efficient linear minimization oracle (lmo),
which means that for any a ∈ X ∗, one can efficiently
solve

lmoP(a) ∈ arg min
x∈P
〈a, x〉.

This is for example the case if P is the polytope arising
from LP relaxations of MAP-MRF problems in a tree-
structured graph, where the above problem can be solved
efficiently using dynamic programming.

• The function h∗ is a convex function which allows to
efficiently compute its proximal map (prox), which for
any ȳ ∈ Y and τ > 0 is defined as

proxτh∗(ȳ) = arg min
y∈Y

1

2τ
‖y − ȳ‖2 + h∗(y).

Important examples of h∗ which allow for an efficient
proximal map include quadratic functions and various
norms. If h∗ = δC i.e. the indicator functions of some
convex set C the proximal map reduces the orthogonal
projection operator.
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An important special case of problem (1) is given by

min
x∈Rd

max
y∈Rd

L(x, y) := fP(x) + 〈y, Ax− b〉 (2)

where A is a matrix and b is a vector of appropriate dimen-
sions. This corresponds to the problem of minimizing fP(x)
subject to the linear constraint Ax− b = 0.

Primal and dual problems We denote by (x?, y?) a sad-
dle point of problem (1), which satisfies

L(x?, y) ≤ L(x?, y?) ≤ L(x, y?), ∀(x, y) ∈ X × Y.

Throughout the paper we denote the primal and dual prob-
lems respectively by

F (x) = max
y∈Y
L(x, y), H(y) = min

x∈X
L(x, y).

We assume that strong duality holds, that is

H(y?)=max
y∈Y

H(y)=max
y∈Y

min
x∈X
L(x, y)=min

x∈X
F (x)=F (x?)

Some of the results will also assume coercivity of a function.
We recall that a proper function φ(z) is called coercive if
lim‖z‖→∞ φ(z) =∞.

Contributions The algorithms we propose here are based
on inexact proximal algorithms, which allow for an approx-
imate evaluation of the proximal maps. For this we make
use of efficient variants of the Frank-Wolfe algorithm that
offer a linear convergence rate on the proximal subproblems.
In summary, after O(n log n) calls to lmo we achieve the
following guarantees.

• If function f is linear or quadratic, h∗ is the indicator
function of a linear constraint, and function −H(y) is
coercive then we obtain accuracy O(1/n2) on the dual
objective H . If in addition the problem has the form of
eq. (2) then we obtain bound O(1/n2) both on the primal
gap fP(x)−fP(x?) and on the infeasibility gap ||Ax−b||.

• In the most general case, we obtain accuracy O(1/n)
on the dual objective (and also on the primal objective
assuming that domh∗ ⊆ Y is compact).

To the best of our knowledge these rates improve on the
so far known rates for the class of saddle-point problems
considered in this paper. In particular, for the problem in
eq. (2) previous works (described later in Sec. 1.2) after n
calls to lmo obtained accuracyO(1/n) on the dual objective
and boundO(1/

√
n) on both fP(x)−fP(x?) and ||Ax−b||.

1.1. Motivating example

An important application, which also serves as the main
motivation for the class of saddle-point problems studied in
this paper, is given by the Lagrangian relaxation of discrete

optimization problems. To form such relaxation, one needs
to first encode discrete variables via Boolean indicator vari-
ables X ∈ {0, 1}d, and then express a difficult optimization
problem as a sum of tractable subproblems:

min
X∈{0,1}d

∑
t∈T

ft(XAt
) (3)

Here T is the set of terms where each term t is speci-
fied by a subset of variables At ⊆ [d] and a function
ft : {0, 1}At → R ∪ {+∞} of |At| variables. Vector XAt

is the restriction of vector X ∈ Rd to At. The arity |At|
of function ft can be arbitrarily large, however we assume
the existence of an efficient min-oracle that for a given vec-
tor Y ∈ RAt computes X ∈ arg min

X∈{0,1}At

[ft(X) + 〈X,Y 〉]

together with the cost ft(X). For example, this holds if
ft(·) corresponds to a MAP-MRF inference problem in a
tree-structured graph.

Next, we can form a Lagrangian relaxation of the problem
by treating X and XAt for t ∈ T as independent variables
and introducing Lagrange multiplies Y tv for constraints of
the form Xv = (XAt

)v. This relaxation can be easily for-
mulated as a saddle problem (1) where function f(x) is
linear and h∗(y) is the indicator function of a linear con-
straint on y; we refer to (Swoboda & Kolmogorov, 2019) or
the suppl. material for details.

As an example, the MAP-MRF inference problem on an
undirected graph can be cast in the framework above by
decomposing the graph into tree-structured subproblems.
It is well-known that the Lagrangian relaxation is equiv-
alent to a standard LP relaxation, aka the local polytope
relaxation (Komodakis et al., 2011; Savchynskyy, 2019).
MAP-MRF problems find numerous applications in ma-
chine learning and computer vision (Blake et al., 2011). In
more recent work, they also appears as the final inference
layer in deep convolutional neural networks (Knöbelreiter
et al., 2020).

1.2. Related work

Saddle point problems in the form of (1) can be solved by a
large number of proximal primal-dual algorithms (see for
example the recent work (Condat et al., 2019) for a very
comprehensive overview) as soon as the proximal maps for
both the primal and dual functions can be solved efficiently.
On the other hand, Gidel et al. (2017) proposed an exten-
sion of the Frank-Wolfe algorithm to saddle-point problems
minx∈X maxy∈Y L(x, y) by assuming the existence of an
efficient linear minimization oracle for the product space
X ×Y (which is assumed to be a compact set). In this paper,
we are assuming the existence of an efficient linear mini-
mization oracle just on the primal and an efficient proximal
map on the dual. Therefore, our algorithms somewhat stand
between the two aforementioned techniques.
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Our algorithms rely on the inexact accelerated proximal
gradient algorithm of Aujol & Dossal (2015) and the inexact
primal-dual algorithm of Rasch & Chambolle (2020). Note
that the first method only generates a dual sequence {yn}.
We extend the method and the analysis to also generate a
primal sequence {xn}, which is needed to solve the saddle
problem (1).

Several authors studied a special case of (1) given in (2), or
equivalently the problem of minimizing function fP(x) =
f(x) + δP(x) subject to linear constraints Ax = b (Gidel
et al., 2018; Liu et al., 2019; Yurtsever et al., 2018). (The
last paper actually considered a more general class of saddle
problems). Papers (Liu et al., 2019; Yurtsever et al., 2018)
achieve an accuracy of O(n−1/2) after n iterations on the
primal and infeasibility gaps, where (Yurtsever et al., 2018)
uses one lmo call per iteration and (Liu et al., 2019) uses
O(k2) lmo calls at k-th iteration assuming that a standard
Frank-Wolfe method is employed. Note, the papers above
do not give bounds on suboptimality gaps of the dual func-
tion H; instead, (Gidel et al., 2018; Liu et al., 2019) bound
residuals of the augmented Lagrangian, which is not directly
related to the residuals of the Lagrangian in eq. (2). A simi-
lar but slightly more general class of composite optimization
problems was also recently considered in (Silveti-Falls et al.,
2020). In a setting similar to our paper (∇f is Lipschitz
continuous) they show O(n−1/3) accuracy on Lagrangian
values after n calls to lmo.

Frank-Wolfe algorithms for saddle-point problems have also
been used in (Argyriou et al., 2014; Lan & Zhou, 2016). The
former paper achieved a O(n−1/2) convergence rate on a
rather general class of constrained optimization problems.
The paper (Lan & Zhou, 2016) shares some high-level simi-
larities with our approach (such as solving smoothed primal
subproblem to a given accuracy with Frank-Wolfe), but uses
a different smoothing strategy that requires both primal and
dual domains to be compact. This assumption rules out
many interesting applications, including the one considered
in Section 1.1.

There is a large body of literature on the special case of
problem (1) corresponding to Lagrangian relaxation of dis-
crete optimization problems, see e.g. (Storvik & Dahl, 2000;
Schlesinger & Giginyak, 2007; Johnson et al., 2007; Raviku-
mar et al., 2010; Jojic et al., 2010; Savchynskyy et al., 2011;
Schmidt et al., 2011; Komodakis et al., 2011; Martins et al.,
2011; Savchynskyy et al., 2012; Luong et al., 2012; Schwing
et al., 2012; 2014; Swoboda & Kolmogorov, 2019). Some
of these methods apply only to MAP inference problems in
pairwise (or low-order) graphical models, because they need
to compute marginals in tree-structured subproblems (John-
son et al., 2007; Jojic et al., 2010; Savchynskyy et al., 2012)
or because they explicitly exploit the fact that the relaxation
can be described by polynomial many constraints (Schmidt

et al., 2011; Martins et al., 2011; Schwing et al., 2012;
2014). The papers (Jojic et al., 2010; Savchynskyy et al.,
2011) obtained accuracy O(1/n) on the dual objective after
n iterations, by applying accelerated gradient methods (Nes-
terov, 1983).

The first method that we develop can be viewed as an exten-
sion of the technique in (Swoboda & Kolmogorov, 2019),
which applied an inexact proximal point algorithm (PPA) to
the dual objective. In contrast to (Swoboda & Kolmogorov,
2019), we apply an accelerated version of inexact PPA, spec-
ify to which accuracy the subproblems need to be solved,
and analyze the convergence rate.

1.3. Notation for approximate solutions and
organization of the paper

We introduce the following notation for a function φ and
accuracy ε ≥ 0:

z ≈ε arg min
z

φ(z) ⇔ φ(z) ≤ min
z
φ(z) + ε

z ≈ε arg max
z

φ(z) ⇔ φ(z) ≥ max
z
φ(z)− ε

z ≈ε proxτφ(z̄) ⇔ z ≈ε arg min
z

φ(z) +
1

2τ
||z − z̄||2

The rest of the paper is organized as follows. The next
section describes Frank-Wolfe algorithms for minimizing a
smooth function over a convex polytope. Then in Section 3
we will present our first approach, which is based on an
inexact accelerated proximal point algorithm on the dual
problem. In Section 4 we present our second approach,
which is based on an inexact proximal primal-dual algorithm
and directly solves the saddle point problem. Preliminary
numerical results are given in Section 5. More technical
proofs can be found in the suppl. material.

2. Frank-Wolfe algorithms
Frank-Wolfe style algorithms is a class of algorithms for
minimizing functions gP : X → R of the form gP(x) =
g(x) + δP(x) where g a convex continuously differentiable
function with a Lipschitz continuous gradient and P is a
convex polytope. They are typically iterative techniques that
work by applying a certain procedure FWstep(x; gP) 7→
x′ where gP is the objective function, and x and x′ are
respectively the old and the new iterates with gP(x′) ≤
gP(x). We will apply such steps to functions gP that change
from time to time, which is why gP is made a part of the
notation.

It will be convenient to denote g↓P(x) = gP(x) −
minx∈X gP(x) to be a shifted version of gP with
minx∈X g

↓
P(x) = 0. The following fact is known.

Lemma 1 (Lacoste-Julien & Jaggi (2015)). For a point



One-sided Frank-Wolfe Algorithms for Saddle Problems

x̂ ∈ P denote gap = gapFW(x̂; gP) = 〈∇g(x̂), x̂ − s〉
where s = lmoP(∇g(x̂)). Then

g↓P(x̂) ≤ gap ≤

{
g↓P(x̂) + LD2/2 if g↓P(x̂) > LD2/2

D
√

2L · g↓P(x̂) if g↓P(x̂) ≤ LD2/2

where D is the diameter of P and L = Lg is the Lipschitz
constant of∇g.

While the original FW algorithm has a sublinear conver-
gence rate, there are several variants that achieve a linear
convergence rate under some assumptions on g. Examples
include Frank-Wolfe with away steps (AFW) (Lacoste-Julien
& Jaggi, 2015), Decomposition-invariant Conditional Gra-
dient (DiCG) (Garber & Meshi, 2016; Bashiri & Zhang,
2017), and Blended Conditional Gradient (BCG) (Braun
et al., 2019). Each step in these methods is classified as
either good or bad. Good steps are guaranteed to decrease
g↓P(x) by a constant factor. Bad steps do not have such
guarantee (because they hit the boundary of the polytope),
but they make x “sparser” in a certain sense and thus cannot
happen too often.

More formally, consider a class of functions F where each
function gP ∈ F is associated with a parameter vec-
tor ΘgP ∈ Rp, and P = dom gP is the same for all
gP ∈ F. We say that procedure FWstep has a linear
convergence rate on F if there exist continuous function
θ : Rp → (0, 1) and integers R0, R1 ≥ 0 with the fol-
lowing properties: (i) if the step FWstep(x; gP) 7→ x′ for
gP ∈ F is good then g↓P(x′) ≤ θ(ΘgP ) · g↓P(x); (ii) when
applying FWstep(x; gP) iteratively to some initial vector
x0 (possibly for different functions gP ∈ F), at any point
we have Nbad ≤ R0 +R1Ngood where Ngood and Nbad are
respectively the numbers of good and bad steps.

We will consider two classes of functions:

• Fstrong = {gP(x) = g(x) + δP(x) : g is a strongly
convex differentiable function with a Lipschitz-continuous
gradient, with ΘgP = (µg, Lg) }.

• Fweak = {gP(x) = g(Ex) + 〈b, x〉 + δP(x) : g is a
strongly convex differentiable function with a Lipschitz-
continuous gradient, and E, b are matrix and vector of
appropriate dimensions, with ΘgP = (µg, Lg, E, b) }.

Note that class Fstrong is implicitly parameterized by the
dimension of vector x, and class Fweak is implicitly parame-
terized by the dimensions of vector x and matrix E.

The AFW method is known to have linear convergence
on Fstrong (Lacoste-Julien & Jaggi, 2015) and also on
Fweak (Beck & Shtern, 2017; Lacoste-Julien & Jaggi, 2015).
From the result of (Beck & Shtern, 2017; Lacoste-Julien
& Jaggi, 2015) it is easy to deduce that the DiCG method

with away steps also has linear convergence on Fweak, using,
using Property 1 in (Bashiri & Zhang, 2017). The BCG
method (Braun et al., 2019) has been shown to have linear
convergence on class Fstrong.

Remark 1. Some of the techniques above maintain some
additional information about current iterate x. In partic-
ular, AFW and BCG represent x as a convex combination
of “atoms” (vertices of P): x =

∑
i αiai where αi ≥ 0,∑

i αi = 1 and ai are atoms. Coefficients αi are updated
together with x. For brevity, we omitted this from the nota-
tion.

Remark 2. The claims about the number of bad steps are
proven in (Lacoste-Julien & Jaggi, 2015; Garber & Meshi,
2016; Bashiri & Zhang, 2017; Braun et al., 2019) assuming
that the function gP is fixed. However, the proofs only use

“structural” properties of current iterate x; they are easily
extended to the case when gP is changing, as long as P is
fixed.

Iterative application of FWstep Procedure FWstep

can be used in a natural way to solve problems x ≈ε
arg minx gP(x) up to desired accuracy ε.

Algorithm 1 Algorithm FWε(x; gP).
Output: vector x′ ≈ε arg minx gP(x).

while true do
update x← FWstep(x; gP)
if gapFW(x; gP) ≤ ε then return x

end while

Proposition 2. Suppose that procedure FWstep has a lin-
ear convergence rate on class F that contains gP . Then,
(a) The number of good steps made during FWε(x0; gP) sat-
isfies

Ngood ≤ log1/θ(ΘgP )

g↓P(x0)

min{ 1
2LD

2, 1
2L

(
ε
D

)2} (4)

where D is the diameter of P and L > 0 is any constant
satisfying L ≥ Lg .
(b) Suppose that gP ∈ F̃ ⊆ F where supgP∈F̃,x∈P g

↓
P(x) <

∞, supgP∈F̃ Lg < ∞, and {ΘgP | gP ∈ F̃} is a compact
subset of Rp. Then Ngood = O(log 1

ε ) where the constant
in the O(·) notation depends on F̃.

Proof. (a) By the definition of linear convergence, after the
given number of good steps we obtain vector x satisfying
g↓P(x) ≤ min{ 1

2LD
2, 1

2L

(
ε
D

)2}. By Lemma 1, such x
satisfies gapFW(x; gP) ≤ ε, and therefore the algorithm will
immediately terminate.

(b) Since set {ΘgP |gP ∈ F̃} ⊆ Rp is compact and function
θ : Rp → (0, 1) is continuous, there exists θ∗ ∈ (0, 1) such
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that θ(ΘgP ) ≤ θ∗ for all gP ∈ F̃. Thus, all quantities
present in (4) (except for ε) are bounded by constants for all
gP ∈ F̃. The claim follows.

3. First approach: dual proximal point alg.
The first approach that we consider is a proximal point
algorithm (PPA) applied to the dual problem:

max
y∈Y

{
H(y) := min

x∈X
L(x, y)

}
.

For a point ȳ ∈ Y and a smoothing parameter γ > 0, we let

Lγ,ȳ(x, y) = L(x, y)− 1

2γ
‖y − ȳ‖2,

which can be seen as the original saddle-point problem,
but with an additional proximal regularization on the dual
variable. In each iteration, the PPA solves a maximization
problem of the form ŷ = arg maxy∈Y Hγ,ȳ(y) where

Hγ,ȳ(y) := min
x∈X
Lγ,ȳ(x, y) = H(y)− 1

2γ
‖y − ȳ‖2

Based on our structure, it will be beneficial to first solve for
x̂ and then to solve for ŷ via its proximal map, that is

x̂ = arg min
x∈X

{
Fγ,ȳ(x) := max

y∈Y
Lγ,ȳ(x, y)

}
ŷ = arg max

y∈Y
Lγ,ȳ(x̂, y) = proxγh∗(ȳ + γKx̂)

Note that also for the smoothed saddle-point problem, strong
duality holds,

min
x∈X

Fγ,ȳ(x) = min
x∈X

max
y∈Y
Lγ,ȳ(x, y) = max

y∈Y
Hγ,ȳ(y),

and hence each step of the PPA can be equivalently written
as minimizing the primal-dual gap

(x̂, ŷ) = arg min
(x,y)∈X×Y

Fγ,ȳ(x)−Hγ,ȳ(y) (5)

It is a well-known fact that the basic proximal point algo-
rithm can be accelerated to achieve a O(1/n2) convergence
rate (Güler, 1992; Salzo & Villa, 2012), which follows from
the fact that the PPA can be seen as a steepest descent on
the Moreau envelope (see suppl. material), which has a Lip-
schitz continuous gradient and hence can be accelerated
using the technique of Nesterov (Nesterov, 1983).

However, based on our general assumptions on the prob-
lem (1), we will not be able to solve the proximal subprob-
lems (5) exactly but only up to a certain error ε > 0 that
is

(x̂, ŷ) ≈ε arg min
(x,y)∈X×Y

Fγ,ȳ(x)−Hγ,ȳ(y),

which clearly implies that x̂ ≈ε arg minx∈X Fγ,ȳ(x) as
well as ŷ ≈ε arg maxy∈Y Hγ,ȳ(y). However, we can still
apply the recently proposed inexact accelerated proximal
gradient algorithm of Aujol & Dossal (2015), that can han-
dle such approximation while still achieving an optimal
O(1/n2) convergence rate on the dual objective. Note that
the original method given in (Aujol & Dossal, 2015) only
generates the dual sequence {yn} but in Algorithm 2 below
we also keep the primal sequence {xn} which is needed to
obtain a solution of the original saddle-point problem (1).
Therefore, the algorithm below can also be seen as a gener-
alization for solving saddlepoint problems.

Algorithm 2 Approx. accelerated proximal gradient method
choose nonnegative sequences {tn}, {εn} so that t1 = 1

and ρn
def
= t2n−1 − t2n + tn > 0 for all n ≥ 2

choose initial point y0 ∈ Y , set ȳ0 = y0

for n = 1, 2, . . . do
(xn, yn) ≈εn arg min

(x,y)∈X×Y
Fγ,ȳn−1

(x)−Hγ,ȳn−1
(y) (6)

ȳn = yn + tn−1
tn+1

(yn − yn−1) (7)

end for

In order to analyze this algorithm, let us introduce the fol-
lowing quantities:

u0 = y0, un = yn−1 + tn(yn − yn−1) ∀n ≥ 1

An =

n∑
k=1

tk
√

2γεk

Bn =

n∑
k=1

γt2kεk

Wn = t2n[H(y?)−H(yn)] +

n∑
k=2

ρk[H(y?)−H(yk−1)]

Tn = t2n +

n∑
k=2

ρk =

n∑
k=1

tk

First, we recall the following result from (Aujol & Dossal,
2015).

Theorem 3 (Aujol & Dossal (2015)). For any n ≥ 1 there
holds

Wn +
1

2γ
||un − y?||2 ≤ C∗n

2γ

where

C∗n = ||y0−y?||2 + 2An

(
||y0−y?||+2An+

√
2Bn

)
+ 2Bn

≤
(
||y0−y?||+ 2An +

√
2Bn

)2
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This theorem immediately implies the following results.
(Note, some of the statements below are slightly modified
versions of statements from (Aujol & Dossal, 2015), but
follow exactly the same proofs).

Corollary 4 (Aujol & Dossal (2015)). Suppose that se-
quences {An} and {Bn} are bounded. Then
(a) H(y?)−H(yn) = O(1/t2n).
(b) H(y?) − H(yen) = O(1/Tn) where yen = (t2nyn +∑n

k=2 ρkyk−1)/Tn.
(c) If function −H(y) is coercive then sequence {yn} is
bounded, and ||yn − yn−1|| = O(1/tn).

Note that the rate of convergence in Corollary 4 depends on
the choice of sequence {tn}. These are some of the choices
that have appeared in the literature:

• PPA: tn = 1 for all n ≥ 1. Then Tn = Θ(n).

• Nesterov (Nesterov, 1983; Beck & Teboulle, 2009):
tn+1 = (1+

√
1 + 4t2n)/2 for n ≥ 1. Then tn = Θ(n)

and Tn = Θ(n2).

• Aujol-Dossal (Aujol & Dossal, 2015): tn =
(
n+a−1

a

)d
with d ∈ (0, 1] and a > max{1, (2d)1/d}. Then tn =
Θ(nd) and Tn = Θ(nd+1).

When stating complexities, we will implicitly assume below
that either the second case or the third case with d = 1 is
used, meaning that tn = Θ(n) and Tn = Θ(n2).

We now generalize Theorem 3 to the situation in this section.
This generalization is somewhat analogous to the generaliza-
tion obtained by Tseng (2008) (for a different Nesterov-type
algorithm and with a different proof).

Theorem 5. Denote xen =
∑n
k=1 tkxk/Tn. For any y ∈ Y

and any n ≥ 1 there holds

Tn [L(xen, y)−H(y?)] +Wn +
1

2γ
||un − y||2 ≤

Cn(y)

2γ

where Cn(y) = ||y0 − y||2 +

2An
(
||y − y?||+ ||y0 − y?||+ 2An +

√
2Bn

)
+ 2Bn.

Note that setting y = y? in Theorem 5 recovers Theo-
rem 3, since in this case we have L(xen, y

?) ≥ H(y?) and
Cn(y?) = C∗n.

Corollary 6. Suppose that sequences {An}, {Bn} are
bounded and domh∗ ⊆ Y is a compact set. Then
F (xen)− F (x?) = O(1/Tn) = O(1/n2).

Proof. By the assumption of the corollary, quantity Cn(y)
is bounded for any y ∈ domh∗ and n ≥ 1. We also have
F (xen) = max

y∈domh∗
L(xen, y) and F (x?) = H(y?). The

claim now follows directly from Theorem 5.

Next, we analyze the special case of problem (1)
corresponding to constrained optimization problem
minx∈Rd{fP(x) |Ax = b}.
Theorem 7. Suppose we are in the case of the saddle prob-
lem in eq. (2). (a) There holds

fP(xen)− fP(x?) ≤ Cn(0)

2γTn

||Axen − b|| ≤

√
2 max{fP(x?)−fP(xen), 0}

γTn
+

Ĉn
γTn

where Ĉn = ||y0||+An+√
||y0||2 + 2An

(
||y?||+ ||y0−y?||+ 2An+

√
2Bn

)
+ 2Bn.

(b) There exists constant β ≥ 0 such that for any x ∈ P we
have fP(x?)− fP(x) ≤ β||Ax− b||.
(c) If sequences {An} and {Bn} are bounded then
fP(xen)− fP(x?) = O(1/n2) and ||Axen− b|| = O(1/n2).

Note that part (a) is derived directly from Theorem 5. In
part (b) we crucially exploit the facts that P is a polytope,
the feasible set {x ∈ P : Ax − b = 0} is non-empty, and
function f has a bounded gradient on P . Part (c) is an easy
consequence of parts (a) and (b).

3.1. Overall algorithm

In this section we fix n, and denote ȳ = ȳn−1 and ε = εn. In
order to implement Algorithm 2 for solving the saddle-point
problem (1), we need to specify how to solve subproblem (6)
for vector ȳ up to accuracy ε:

(xn, yn) ≈ε arg min
(x,y)∈X×Y

Fγ,ȳ(x)−Hγ,ȳ(y) (8)

We will first compute xn ≈ε arg minx∈X Fγ,ȳ(x) by invok-
ing Algorithm 1 for function Fγ,ȳ , and then solve for yn via
its proximal map:

xn = FWε(xn−1;Fγ,ȳ)

yn = arg max
y∈Y

Lγ,ȳ(xn, y) = proxγh∗(ȳ + γKxn)

(As we will see later, function Fγ,ȳ has the form Fγ,ȳ(x) =
g(x)+δP(x) for some differentiable convex function g with
a Lg-Lipschitz continuous gradient, and so Algorithm 1 is
indeed applicable). By construction, vector xn satisfies
gapFW(xn;Fγ,ȳ) ≤ ε. The following lemma thus implies
that the pair (xn, yn) indeed solves problem (8).

Lemma 8. Suppose that x̂ ∈ P and ŷ =
arg maxy Lγ,ȳ(x̂, y). Then Hγ,ȳ(ŷ) ≥ Lγ,ȳ(x̂, ŷ) − ε =
Fγ,ȳ(x̂)− ε where ε = gapFW(x̂;Fγ,ȳ).

Next, we derive an explicit expression for function
Fγ,ȳ (which is needed for implementing the call xn =
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FWε(xn−1;Fγ,ȳ)), and formulate sufficient conditions on
L that will guarantee that Fγ,ȳ ∈ Fweak (this would yield a
good bound on the complexity of Algorithm 2).

Recall that the function Fγ,ȳ(x) is given by

Fγ,ȳ(x) = max
y∈Y
〈Kx, y〉 + fP(x)− h∗(y)− 1

2γ
‖y − ȳ‖2.

We now show that it can be written as

Fγ,ȳ(x) = fP(x) + hγ,ȳ(Kx)

with hγ,ȳ(Kx) a differentiable function with Lipschitz con-
tinuous gradient.

Lemma 9. Let the function hγ,ȳ(Kx) be defined as

hγ,ȳ(Kx) = max
y∈Y
〈Kx, y〉 − h∗(y)− 1

2γ
‖y − ȳ‖2.

We have the following two representations:

hγ,ȳ(Kx) =
γ

2
‖Kx‖2 + 〈Kx, ȳ〉 −mγ

h∗(ȳ + γKx),

= mγ−1

h

(
γ−1ȳ +Kx

)
− 1

2γ
‖ȳ‖2.

where mγ
h∗ is the Moreau envelope of h∗ with smoothing

parameter γ and mγ−1

h is the Moreau envelope of h with
smoothing parameter γ−1.
Moreover, the function hγ,ȳ(Kx) is convex, continuously
differentiable in x with a γL2

K-Lipschitz continuous gradi-
ent given by

∇xhγ,ȳ(Kx) = K∗proxγh∗ (ȳ + γKx)

= γK∗
(
γ−1ȳ+Kx−proxγ−1h

(
γ−1ȳ+Kx

))
In practical applications, we will mostly be interested in the
situation where h∗ is a linear constraint.

Lemma 10. Let X = Y = R`, and let h∗(y) =
δS(y) be a linear constraint of the form S = {y ∈
Y : Cy = d} for some matrix C with full row
rank and vector d. Then, the function hγ,ȳ(Kx) is a
quadratic function of the form hγ,ȳ(Kx) = γ

2 ‖Kx‖
2 +

〈Kx, ȳ〉 − 1
2γ ‖C

∗(CC∗)−1(d− C(ȳ + γKx))‖2. More-
over, its gradient is a linear map given by∇xhγ,ȳ(Kx) =
K∗
(
ȳ + γKx+ C∗(CC∗)−1(d− C(ȳ + γKx))

)
.

We therefore obtain the following sufficient condition where
the functions Fγ,ȳ(x) for any ȳ ∈ Y and any γ > 0 fall into
the class Fweak.

Lemma 11. Let f(x) be a quadratic function of the form
f(x) = 1

2 〈Qx, x〉 + 〈q, x〉, with a symmetric positive
semidefinite matrix Q and vector q. Furthermore, let h∗

satisfy the condition of Lemma 10. Then {Fγ,ȳ | ȳ ∈ Y} ⊆
Fweak.

Proof. First note that both f(x) and hγ,ȳ(Kx) are quadratic
functions. By completing the squares and ignoring constant
terms, it follows that Fγ,ȳ(x) can be written as Fγ,ȳ(x) =
1
2‖Ex‖

2 + 〈b, x〉 + δP(x) for some matrix E and vector b,
where matrix E may depend on γ but not on ȳ.

It remains to specify how to set the sequence {εn}. We
want sequences {An} and {Bn} to be bounded; this can be
achieved by setting εn = Θ(n−4−δ) for some δ > 0. With
these choices, we obtain the main result of this section:
Theorem 12. Suppose that function L satisfies the precon-
dition of Lemma 11, function −H(y) is coercive, and pro-
cedure FWstep has a linear convergence rate on Fweak (e.g.
it is one step of AFW or DiCG). Then Algorithm 2 makes
O(n log n) calls to FWstep during the first n iterations, and
obtains iterates xen and yen satisfying H(y?) − H(yen) =
O(1/n2). Furthermore, in the case of the problem in
eq. (2) the iterates satisfy fP(xen) − fP(x?) = O(1/n2)
and ||Axen − b|| = O(1/n2).

Proof. By Lemma 11, all functions Fγ,ȳn−1 encountered
during the algorithm belong to Fweak. Furthermore, vectors
ȳn−1 for n ≥ 1 belong to a compact set, since the sequence
{yn} (and thus the sequence {ȳn}) is bounded by Corol-
lary 4(c). By Proposition 2(b) the number of good FW steps
during n-th iteration is O(log 1

εn
) = O(log n), and during

the first n iterations is
∑n
k=1O(log k) = O(n log n). The

number of bad FW steps is thus also O(n log n) by the def-
inition of linear convergence and by the fact that the call
xn = FWεn(xn−1;Fγ,ȳn−1) is initialized with vector xn−1.
The remaining claims follow from Corollaries 4 and 6 and
Theorem 7.

4. Second approach: primal-dual proximal
algorithm

In this section we consider solving (1) without the restric-
tion that h∗ is the indicator function of a linear constraint.
Therefore we make use of proximal primal-dual algorithms
such as (Chambolle & Pock, 2011) which in each step of the
algorithm need to compute proximal maps with respect to
fP and h∗. By our problem assumptions, the proximal map
with respect to h∗ is tractable but the proximal map with
respect to fP requires to solve for any x̄ ∈ X and τ > 0 an
optimization problem of the form

proxτfP (x̄) = arg min
x∈P

f(x) +
1

2τ
‖x− x̄‖2.

We note the obvious fact that each proximal subproblem is
a τ−1-strongly convex function with Lf + τ−1-Lipschitz
continuous gradient over a convex polytope. Hence, it falls
into the class Fstrong, on which Frank-Wolfe algorithms
achieve a linear rate of convergence. Similar to the previ-
ous section, we will not be able to solve the subproblems
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exactly but up to a certain accuracy ε > 0. We therefore
need to resort to the recently proposed inexact primal-dual
algorithm by Rasch & Chambolle (2020), Section 3.1 which
can handle such inaccuracy. The algorithm adapted to our
situation is given below as Algorithm 3.

Algorithm 3 Inexact primal-dual algorithm.
choose τ, σ > 0 such that στL2

K < 1
choose initial points x0 ∈ X and y0 ∈ Y , set x−1 = x0

for n = 0, 1, . . . do
yn+1 = proxσh∗(yn + σK(2xn − xn−1)) (9)
xn+1 ≈εn+1

proxτfP (xn − τK∗yn+1) (10)

end for

The following result has been shown in (Rasch & Cham-
bolle, 2020). 1

Theorem 13 (Rasch & Chambolle (2020)).
(a) Define xen = 1

n

∑n
k=1 xk and yen = 1

n

∑n
k=1 yk. Then

for any n ≥ 1 and (x, y) ∈ X × Y

L(xen, y)− L(x, yen)

≤ 1

n

(
||x− x0||2

2τ
+
||y − y0||2

2σ
+

diam(P)

τ
An +

1

τ
Bn

)
where

An =

n∑
k=1

√
2τεk Bn =

n∑
k=1

τεk (11)

(b) If sequences {An} and {Bn} are bounded then there
exists saddle point (x?, y?) of problem (1) such that xn →
x? and yn → y?.

To solve the subproblem in eq. (10), we call Alg. 1 via
xn+1 ← FWεn+1

(xn; gn) where gn(x) = fP(x) + 1
2τ ||x−

(xn − τK∗yn+1)||2. To make sequences {An} and {Bn}
bounded, we can set εn = Θ(n−2−δ) for some δ > 0. With
these choices, we obtain
Theorem 14. Suppose that procedure FWstep has linear
a linear convergence rate on Fstrong (e.g. it is one step of
AFW, DiCG or BCG). Then Algorithm 3 makes O(n log n)
calls to FWstep during the first n iterations, and obtains
iterates xen and yen satisfying F (xen)−F (x?) = O(1/n) (if
domh∗ is a compact set) and H(y?)−H(yen) = O(1/n).

5. Numerical results
In this section, we show preliminary results for solving
MRFs arising from computer vision. The goal is to solve
the following discrete minimization problem:

min
X∈DV

E(X) :=
∑
i∈V

θi(Xi) +
∑
ij∈E

θij(Xi,Xj)

1Part (a) is not formulated explicitly as a theorem in (Rasch &
Chambolle, 2020), but can be found on page 396 before Theorem
2. Part (b) appears as Theorem 2 in (Rasch & Chambolle, 2020).

where (V, E) is a 4-connected 2D grid graph, D is a finite
set of labels, and θi(·), θij(·, ·) are given unary and pairwise
costs, respectively. We decompose the problem into hori-
zontal and vertical chains, and convert it to the saddle point
problem (1) as described in Section 1.1.

We compare two versions of Algorithm 2: accelerated prox-
imal point algorithm (A-PPA) with the aggressive choice
tn = (n + 1)/2 (which corresponds to the Aujol-Dossal
scheme with d = 1, a = 2), and the standard proximal point
algorithm (PPA) with the tn = 1. Their convergence rates
after n iterations are O(1/n2) and O(1/n) respectively, as-
suming that sequences {An} and {Bn} are bounded. We
invoke Algorithm 1 to minimize the functions Fγ,ȳ up to
accuracy εn = gap0 ·n−α for a constant α > 0, where gap0

denotes the initial gap of the function Fγ,ȳ. Additionally,
in the case of PPA we tested the version where we use a
constant number (“fw-it”) of Frank-Wolfe steps for the
proximal subproblem. We view the latter version as a base-
line, since this was the method suggested in (Swoboda &
Kolmogorov, 2019).

Procedure FWstep was implemented as follows. We explic-
itly maintain the current iterate x as a convex combination
of atoms. In the beginning of FWstep we first run a stan-
dard Frank-Wolfe step, and then re-optimize the objective
over the current set of atoms. For that one needs to solve
a low-dimensional strongly convex, quadratic subproblem
over the unit simplex; we used the linearly converging ac-
celerated proximal gradient method described in (Nesterov,
2004). The resulting method can be viewed as a version of
the BCG method (Braun et al., 2019), which is known to be
linearly convergent on Fstrong.

Remark 3. Note that there is an extensive literature on FW
variants. Potential alternatives to the method above include
BCFW (Lacoste-Julien et al., 2013) and its variants (Shah
et al., 2015; Osokin et al., 2016), DiCG (Garber & Meshi,
2016; Bashiri & Zhang, 2017), and Frank-Wolfe with in-face
directions (Freund et al., 2017). However, testing different
Frank-Wolfe methods is outside the scope of this paper;
instead, we study what is the best way to use a given FW
method.

Next, we describe the two vision applications that we used.

Image denoising The first example is a simple image
denoising problem. The unary terms are given by a quadratic
potential function and the pairwise terms are given by a
truncated quadratic potential function. Hence, this model
resembles a discrete version of the celebrated Mumford-
Shah functional. Figure 1 (a) shows the noisy input image
which is of size 150× 200 pixels and the image intensities
are discretized using 50 labels. Figure 1 (b) shows the
denoised image.

Stereo The second example is a classical disparity estima-
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(a) Noisy image (b) Denoised image
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Figure 1. Results of the proposed algorithm for image denoising (first row) and disparity estimation (second row)

tion problem from a rectified stereo image pair (Scharstein
et al., 2014). Figure 1 (d) shows the left input image which
is of size 718× 496 pixels. The disparities are discretized
using 64 labels. The unary terms are pre-computed using a
CNN-based correlation network (Knöbelreiter et al., 2020)
and the pairwise costs are given by a truncated absolute
potential function. The estimated disparity image is shown
in Figure 1 (e).

Results Figure 1 (c) and (f) plot the convergence of the
dual energyH(y) over the total number of calls of lmo. The
plots indicate that A-PPA clearly outperforms the baseline
method PPA. Hence the theoretical improvement of this
paper is also reflected in the practical performance. We also
tested PPA with a prescribed accuracy εn and it performed
slightly better compared to a fixed number of iterations, but
still worse compared to A-PPA. We refer to the supplemental
material for such comparisons.

The results also indicate that the choice of α significantly
influences the global convergence behavior. For example
for α = 2 A-PPA is fastest in the beginning but is catched
up by α = 3 after 500 calls of lmo. Note that in order
to guarantee an O(1/n2) convergence rate for A-PPA we
would have to set α > 4, which seems to be competitive
only for a very high accuracy. Therefore α should be chosen
according to the desired accuracy of the solution. This
is of particular interest if one is only interested in a fast
approximate solution to the problem, for example if the

MRF is used as the last inference layer in a CNN. For
further experimental results we refer to the supplemental
material.

6. Conclusion
In this work, we have proposed new primal-dual algo-
rithms based on a mixture of proximal and Frank-Wolfe
algorithms to solve a class of convex-concave saddle point
problems arising in Lagrangian relaxations of discrete opti-
mization problems. As our main result, we have shown after
O(n log n) calls to lmo a O(1/n) convergence rate in the
most general case (Alg. 3) and a O(1/n2) convergence rate
with certain regularity assumptions on the dual objective
(Alg. 2). To the best of our knowledge, this improves on
the known rates from the literature. Our preliminary numer-
ical results also show an improved practical performance
of Alg. 2 on MAP inference problems in computer vision.
Note, we have not implemented yet Alg. 3 since its rate is
worse on the application that we consider; at the moment
the primary purpose of Alg. 3 is to show which rates are
achievable for different classes of saddle point problems.
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