
A Lower Bound for the Sample Complexity of IRL

A. Omitted Proofs
A.1. Proof of Lemma 4.3

Lemma A.1. Let P (i) and Q(j) be the columns i and j of
the transition probability matrices of such problem-reward
pairs as described above constructed using Equation 3.4.
Then

D(P (i)||Q(j)) ≤ 2ε2n

1− nε

Proof. Using Equation (3) of (Borade & Zheng, 2008), if
Q(j) = P (i) + J , then we have

D(P (i)||Q(j)) ≤ 1

2
||J ||2P (i)

where

||J ||2P (i) =

n∑
j=1

J2
j

Pj(i)

Since both P (i) and Q(j) lie in the ball of radius ε
around

[
1
n

1
n . . . 1

n

]
, we have max ||J ||2 = 2ε and

minPi(j) = 1
n − ε and thus

||J ||2P ≤
max ||J ||22
minPi(j)

=
4ε2

1/n− ε

=⇒ D(P (i)||Q(j)) ≤ 2ε2n

1− nε

A.2. Proof of Corollary 4.1

Corollary A.1. Consider the set of constructed problem re-
ward pairs F =

{
F i, Ri

}
constructed as described above.

Let F be uniform on F . Let n be large and consider the
case

1√
2n(n− 1)

= ε =
√
n− 2β

Let Z represent the m sample trajectory generated from F
and let F̂ be an estimator of F from Z with

m ≤ (n− 1)(0.5 log n− log 2)

(
1−

√
n

2(n− 1)

)
+ 1

Then for any Markov chain F → Z → F̂ , we have

P(F̂ 6= F) ≥ 0.5

Proof. From Lemma 4.2, we know that the case ε =√
n− 2β corresponds to the spherical code being an n− 1-

simplex which has n facets. Since the number of prob-
lems is the number of facets of the convex polytope, sub-
stituting |F | = n in the proof of Theorem 4.3 along with

ε = 1√
2n(n−1)

gives us

P(F̂ 6= F) ≥ 1−
(m− 1) 2ε2n

1−nε + log 2

log |F |

= 1−
(n− 1)(0.5 log n− log 2) 1

n−1 + log 2

log n

= 1− 0.5 = 0.5

A.3. Proof of Corollary 4.2

Corollary A.2. Consider the set of constructed problem re-
ward pairs F =

{
F i, Ri

}
constructed as described above.

Let F be uniform on F . Let n be large and consider the
case

1√
2n(n− 1)

≥ ε =
√
n− 2β

Let Z represent the m sample trajectory generated from F
and let F̂ be an estimator of F from Z with

m ≤ (0.5 log n− log 2)

2(n− 2)nβ2

(
1− n

√
n− 2β

)
+ 1

Then for any Markov chain F → Z → F̂ , we have

P(F̂ 6= F) ≥ 0.5

Proof. From Lemma 4.2, we know that the case ε =√
n− 2β corresponds to the spherical code being an n− 1-

simplex which has n facets. Since the number of prob-
lems is the number of facets of the convex polytope, sub-
stituting |F | = n in the proof of Theorem 4.3 along with
ε =
√
n− 2β gives us

P(F̂ 6= F) ≥ 1−
(m− 1) 2n(n−2)β2

1−n
√
n−2β + log 2

log |F |

= 1− (0.5 log n− log 2) + log 2

log n

= 1− 0.5 = 0.5
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B. Simulated Experiments
With permission from the authors, we apply our results to
the simulated experiment cases performed in (Komanduru
& Honorio, 2019) with a similar metric of percentage of
trials where the estimated reward function generates the
desired optimal strategy. The choice of this metric reflects
the nature of our result: the correct identification of F from
Theorem 4.3 is equivalent to the correct identification of
the facet which contains the set of rewards that generate
the optimal policy. This is in contrast to other methods
that use closeness in the value function generated by the
estimated reward function as their metric. We consider
the scenario presented in their work (MDP with n = 7
states, k = 7 actions, γ = 0.1 and β ≈ 0.0032) using the
L1-regularized SVM (Komanduru & Honorio, 2019), the
method of (Ng & Russel, 2000), Multiplicative Weights for
Apprenticeship Learning from (Syed et al., 2008), Bayesian
IRL with Laplacian prior from (Ramachandran & Amir,
2007) and Gaussian Process IRL from (Levine et al., 2011).
The results are presented in Figure B.1. We also consider
another case with n = 5 states, k = 5 actions, γ = 0.1 and
β ≈ 0.0056 similar to the case presented in (Komanduru
& Honorio, 2019). The results for this case can be seen in
Figure B.2.

In both cases, we observe that the performance of all the
methods tested is abysmal (< 50% success) when the num-
ber samples is below or close to our predicted lower bound.
The performance only starts to improve in various meth-
ods when the samples are well above the bound we present.
This visibly supports our sample complexity lower bound
of O( logn

n2β2 )
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Figure B.1. Empirical probability of success versus log number of samples for an IRL problem with n = 7 states, k = 7 actions, γ = 0.1
and β ≈ 0.0032) using the L1-regularized SVM (Komanduru & Honorio, 2019), the method of (Ng & Russel, 2000), Multiplicative
Weights for Apprenticeship Learning from (Syed et al., 2008), Bayesian IRL with Laplacian prior from (Ramachandran & Amir, 2007)
and Gaussian Process IRL from (Levine et al., 2011). The vertical magenta line represents the lower bound sample complexity from
Corollary 4.2. The vertical blue line represents the sample complexity upper bound from (Komanduru & Honorio, 2019).

Figure B.2. Empirical probability of success versus log number of samples for an IRL problem with n = 7 states, k = 7 actions, γ = 0.1
and β ≈ 0.0056) using the L1-regularized SVM (Komanduru & Honorio, 2019) and the method of (Ng & Russel, 2000). The vertical
magenta line represents the lower bound sample complexity from Corollary 4.2. The vertical blue line represents the sample complexity
upper bound from (Komanduru & Honorio, 2019).
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