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Abstract
Inverse reinforcement learning (IRL) is the task of
finding a reward function that generates a desired
optimal policy for a given Markov Decision Pro-
cess (MDP). This paper develops an information-
theoretic lower bound for the sample complex-
ity of the finite state, finite action IRL problem.
A geometric construction of β-strict separable
IRL problems using spherical codes is consid-
ered. Properties of the ensemble size as well as
the Kullback-Leibler divergence between the gen-
erated trajectories are derived. The resulting en-
semble is then used along with Fano’s inequality
to derive a sample complexity lower bound of
O(n log n), where n is the number of states in the
MDP.

1. Introduction
Reinforcement learning (RL) focuses on the well studied
problem of finding an optimal policy for a given Markov
Decision Process (MDP) with a known reward function.
Inverse Reinforcement Learning (IRL) (Ng & Russel, 2000)
considers a MDP with known optimal policy and aims to
find a reward function that generates the desired optimal
policy. It is well known that the choice of such reward
function is not necessarily unique. The IRL problem occurs
in situations where the actions of an expert, which represent
the optimal policy, are known or can be observed and are to
be replicated through the proper choice of a reward function.
Examples include cases such as apprenticeship learning.

Two major formulations of the IRL problem have been
proposed. The first is the standard MDP formulation con-
sidered by (Ng & Russel, 2000). This is the formulation
that is considered in this paper and for which the results are
derived. The second is the linearly-solvable MDP (LMDP)
formulation of (Dvijotham & Todorov, 2010). As noted
in (Dvijotham & Todorov, 2010), while the standard MDP
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problem can be embedded in LMDP, solutions to standard
MDP problems based on standard MDPs are guaranteed to
generate the desired Bellman optimal policy given the true
transition probabilities whereas the LMDP formulation does
not. Both formulations are used successfully in practice.
Methods to solve the standard MDP formulations include
the methods presented in (Ng & Russel, 2000), (Abbeel
& Ng, 2004), Multiplicative Weights for Apprenticeship
Learning (Syed et al., 2008), Bayesian Estimation IRL (Ra-
machandran & Amir, 2007), Maximum Margin Planning
(Ratliff et al., 2006), Hybrid IRL (Neu & Szepesvári, 2007)
and the L1 SVM formulation(Komanduru & Honorio, 2019).
Examples of methods for solving the LMDP formulation are
Maximum-Entropy IRL (Ziebart et al., 2008) and Gaussian
Process IRL (Levine et al., 2011).

As shown in (Komanduru & Honorio, 2019), various solu-
tions to the standard MDP problem can fail to result in a
reward that uniquely generates the desired optimal policy.
This failure can render such reward function solutions use-
less in the case where the goal is to replicate the policy of
the expert and not just simply achieve similar values for the
value function. With this in mind, (Komanduru & Honorio,
2019) derived an upper bound of O(n

2

β2 log(nk)) for the
sample complexity of the inverse reinforcement learning
problem. In this paper, we derive an information-theoretic
lower bound for the sample complexity of the standard MDP
IRL problem when the transition probabilities are estimated
from observed trajectories. In this case, a sample is an obser-
vation of tuples consisting of the previous state, action and
resultant state from the observed trajectories. The derived
sample complexity is a bound on the number of samples
with respect to the goal of recovering a reward function that
correctly generates the desired optimal policy.

We use Fano’s inequality (Cover & Thomas, 2006) to
prove our result through a careful construction of an en-
semble. The use of restricted ensembles is customary for
information-theoretic lower bounds (Santhanam & Wain-
wright, 2012), (Wang et al., 2010), (Tandon et al., 2014). To
the best of our knowledge, no such information-theoretic
sample complexity lower bound exists for the recovery of
the reward function with the stated properties in the case of
standard MDP IRL.

In the following section, we review the basic notation of the
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Inverse Reinforcement Learning problem, the conditions for
Bellman optimality of the optimal policy for standard MDP
and the notion of β-strict separability. In Section 3, we
describe the geometric construction of the ensemble using
spherical codes. Section 4 derives bounds for the cardinality
and the KL divergence within the ensemble and culminates
with the O(n log n) lower bound for the sample complexity
of inverse reinforcement learning. Appendix B provides
results from simulated experiments using various solutions
methods to support our sample complexity bound.

2. Preliminaries and Notation
Consider the standard Markov Decision Process
(S,A, {Pa}, γ, R), where

• S is a finite set of n states.

• A = {a1, . . . , ak} is a set of k actions.

• Pa ∈ [0, 1]
n×n are the state transition probabilities for

action a. We use Pa(i) ∈ [0, 1]
n to represent the state

transition probabilities for action a in the i-th state or
more simply, the i-th row of the transition probability
matrix Pa

• γ ∈ [0, 1] is the discount factor.

• R : S → R is the reward function.

In our representation, we consider the Pa to be right stochas-
tic matrices, i.e.,

Pa(i, j) ≥ 0 ∀ i, j and
∑
j Pa(i, j) = 1 ∀i

where Pa(i, j) are the entries of Pa(i) and represent the
transition probability of going from state i to state j when
taking action a.

We assume the reward function to depend only on the state
instead of the state and the action. This assumption is also
made for the prior results in (Ng & Russel, 2000).

Throughout this paper, we represent the 1-norm with || · ||1
and the 2-norm with || · ||2.

Given a standard MDP, a policy is defined as a map
π : S → A. Given a policy π, we can define two functions.

The first is the value function at a state s1 which is
defined as

V π(s1) = E
[
R(s1)+γR(τ(s1))+γ2R(τ(τ(s1)))+. . . | π

]
where τ(s) represents the trajectory under policy π. The
second is the Q function which is defined as

Qπ(s, a) = R(s) + γEs′∼Pa(s)[V
π(s′)]

The Bellman Optimality equation states that a policy π∗(s)
is an optimal policy for an MDP if and only if

π∗(s) ∈ arg max
a∈A

Qπ
∗
(s, a), s ∈ S

The Inverse Reinforcement Learning problem for a stan-
dard MDP is posed as the problem of finding the reward
function R that generates a desired optimal policy π∗ given
a MDP (without reward R) and the known optimal policy
π∗ to be generated.

(Ng & Russel, 2000) prove that for a finite-state MDP with
rewardR, and for π∗ ≡ a1, the Bellman optimality equation
is equivalent to the following condition:

(Pa1(i)− Pa(i))(I − γPa1)−1R ≥ 0

∀ a ∈ A \ a1, i = 1, . . . , n (2.1)

It can also be shown that π∗ ≡ a1 is the unique optimal
policy if the above inequality is strict. We note that this
condition is necessary and sufficient for the policy to be
optimal for the reward.

This condition also forms the basis for the β-strict separa-
bility condition defined in (Komanduru & Honorio, 2019),
which we will make use of in our construction. We repro-
duce the aforementioned condition here for convenience.

Definition 2.1 (β-Strict Separability). Let β > 0. An
inverse reinforcement learning problem (S,A, Pa, γ) with
optimal policy π∗ ≡ a1 satisfies β-strict separability if and
only if there exists a reward function R∗ : S → R that
satisfies Bellman optimality strictly. More formally,

‖R∗‖1 = 1

and

(Pa1(i)− Pa(i))(I − γPa1)−1R∗ ≥ β > 0

∀a ∈ A \ a1, i = 1, . . . , n

There are various formulations and solution methods for
the standard MDP Inverse Reinforcement Learning problem
such as those presented in (Ng & Russel, 2000), (Ramachan-
dran & Amir, 2007), (Syed et al., 2008) and (Komanduru
& Honorio, 2019) to list a few. Our concern in this paper
is not the particular method of solution. Instead we seek to
provide an information-theoretic lower bound for the sam-
ple complexity of the IRL problem. To achieve this, we use
Fano’s inequality (Cover & Thomas, 2006) along with the
construction of an ensemble.

Throughout this paper we will use F to represent MDP
(without reward R) problems of the specified construction
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as described in Section 3, the collection of which is denoted
by F .

We also represent the unit sphere in Rn with Sn−1. That is

Sn−1 = {x ∈ Rn | ‖x‖2 = 1}

We also utilize the concept of spherical codes in this paper.
A spherical code with parameters (n,N, cos θ) represents
a set of N points (say yi, i = 1, . . . , N ) on the unit sphere
Sn−1 ⊂ Rn such that the angle between the unit vectors
from the origin to any two distinct points is at least θ, i.e.,

〈yi, yj〉 ≤ cos θ, i 6= j

where 〈·, ·〉 represents the dot product on Rn.

Given these preliminaries, we will now proceed to the con-
struction of the ensemble F along with its properties.

First, in Section 3, we describe the geometric construction
of the ensemble of IRL problem sets along with the resulting
number of problems constructed. We start the geometric
construction of the problem set by specifying the desired
properties of the IRL problems in the set. This includes the
presence of a common optimal policy, exclusivity of the
corresponding reward with respect to other problems in the
set, and β-strict separability. We then relate the transition
probabilities and reward pairs of these problems to the facets
(represented by Y) of a spherical code on Sn−2. We also
show how the above allows for construction of rewards that
are exclusively Bellman optimal for their corresponding
problems within the problem set.

Next, in Section 4, we provide further analysis of the con-
structed problem set by providing the conditions for β-strict
separability of the generated problems, the cardinality of
the set and an upper bound for the KL divergence between
the densities of the transition probabilities. Finally, we use
these results along with Fano’s inequality to come up with
the sample complexity lower bound.

3. Geometric Construction
In this section we aim to construct a set of inverse rein-
forcement learning problems with the intention of applying
Fano’s inequality to obtain a lower bound for the sample
complexity. The geometry of the construction of these prob-
lems provides a lower bound of the number of such prob-
lems that can be constructed which allows for a Fano’s style
approach to bounding the sample complexity.

Consider a set of n-state 2-action IRL problems F =
{
F i
}

where each problem i consists of two possible actions, ai1 =
a1 and ai2 with corresponding transition probabilities Pa1 ∈
[0, 1]n×n and Pai2 ∈ [0, 1]n×n. Let γ ∈ (0, 1) be fixed
between all the problems. Let Ri ∈ Rn be the reward

function for problem i that results in action a1 as the optimal
policy. Further, let Pa1 , the transition probability under
the desired optimal action a1, be fixed between the set of
problems and be given as follows

Pa1 =


1
n

1
n

1
n . . . 1

n
1
n

1
n

1
n . . . 1

n
...

...
...

. . .
...

1
n

1
n

1
n . . . 1

n


We construct the problem pairs

(
F i, Ri

)
such that the fol-

lowing two relations, which follow from the Bellman Opti-
mality condition (Eq 2.1) in matrix form, hold(

Pa1 − Pai2
)

(I − γPa1)
−1
Ri � 0

and (
Pa1 − Pai2

)
(I − γPa1)

−1
Rj � 0 i 6= j

That is, reward Ri results in a1 being the Bellman optimal
action only for its corresponding problem set F i. Here the
notation� represents the entrywise≥ relation. The notation
0 is used to represent a vector of zeros.

Furthermore we want to enforce β- strict separability in
each problem set. That is, for each problem set F i, we have
||Ri||1 = 1 and

(
Pa1(j)− Pai2(j)

)
(I − γPa1)

−1
Ri ≥ β > 0

∀j = 1, . . . , n

We also constrain the transition probabilities of the non-
optimal action Pai2 such that the probabilities of transi-
tioning from each state lie in an ε-ball around the point[
1
n

1
n . . . 1

n

]>
, which also corresponds to the rows of

Pa1 by construction, i.e.,

‖Pa1(j)− Pa(j)‖2 < ε, ∀j = 1 . . . n

We now look at the construction of such sets of problems
F i

Let Pa(i) represent the i-th row of Pa. We notice that Pa(i)
belongs to the following set

G1
n :=

{
x | x ∈ Rn,

n∑
i=1

xi = 1

}

Now notice that if Pa(i), Pa1(j) ∈ G1
n then Pa1(i)−Pa(j)

belongs to the hyperplane Hn = {x ∈ Rn |
∑n
i=1 xi = 0}.
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We also notice that there exists an invertible rotation matrix
Π : Rn → Rn such that the following holds

Π(x) =

[
y
0

]
, x ∈ Hn, y ∈ Rn−1

or alternatively

Projn(Π(x)) = 0, x ∈ Hn

where Projn represents the projection on to the en dimen-
sion, i.e., projection on to the orthogonal subspace of the
unit vector en. Here {ei}i=1,...,n represent the canonical
basis of Rn.

It is also of note that none of the translation, rotation
or projection operations described above change the 2-
norm of Pa1(i) − Pa(j). Thus, through composition,
we can come up with a one-to-one mapping between
the points {Pa(i) | ||Pa1(i)− Pa(j)||2 < ε} and the points{
x | x ∈ Rn−1, ||x||2 < ε

}
Now we describe a construction of each problem F i by
specifying the second transition matrix Pai2 through Pa1 −
Pai2 and the corresponding reward Ri by constructing their
equivalents in Rn−1.

Consider the unit sphere in Rn−1 given by Sn−2. Consider
the set of points defining a spherical code (n− 1, N, cos θ)
with minimum angle θ on Sn−2 such that N is maximal.
From (Jenssen et al., 2018) we have the result

N ≥ (1 + o(1))
√

2π(n− 1)
cos θ

sinn−2 θ
(3.1)

To form the transition probabilities and the corresponding
rewards we wish to consider the facets Y of the simplicial
polytope formed by the spherical code. Since the convex
polytope formed by the maximal spherical code can be
simplicially decomposed (Edmonds, 1970), the resulting
simplicial decomposition can be used to form a simplicial
polytope with the same vertices with the condition that the
interiors of the facets, a n− 2 simplex, are pairwise disjoint.
The number of facets of such a simplicial polytope are lower
bounded by (Barnette, 1971)

|Y| ≥ (n− 2)N − (n− 1)(n− 3) (3.2)

We denote the elements of Y as Yi, such that any pair of
points y ∈ Yi are neighbors with respect to the spherical
code and

|Yi ∩ Yj | ≤ n− 2, i 6= j

To form the set of problems, we consider the pairwise dis-
joint cones formed by the vertices in each Yi and the origin.
The corresponding rewards are formed from the centroids of
each Yi. The resulting geometry from the disjoint interiors

of the Yi ensures that each reward function only results in
a1 as the optimal action for the corresponding problem.

For every Yi we denote the centroid of Yi as follows

ȳi =
1

n− 1

∑
y∈Yi

y (3.3)

We also consider the following hyperplanes inRn−1 passing
through the elements of the leave-one-out set of Yi and the
origin as defined by the corresponding normal vectors pij .
We further impose the constraint that the norm of each pij is
constant across all i and j. Formally, pij ∈ Rn−1 is defined
by the following conditions:

pi>j yik = 0, j 6= k, 1 ≤ k ≤ n

pi>j ȳi > 0

‖pij‖2 = ε

Notice that pij is an element of the null space of

yi :=
[
yi1 . . . yij−1 yij+1 . . . yin 0

]>
where the exponent > represents transpose, such that ȳi lies
in the interior of the cone formed by the hyperplanes. We
also notice that as a result of the construction of the set Yi
and the hyperplanes defined by pij p

i>
1
...

pi>n−1

 ȳk � 0 ⇐⇒ i = k

If ŷi is the unit vector in direction of ȳi, then it follows that

 p
i>
1
...

pi>n−1

 ŷk � 0 ⇐⇒ i = k

and also since the centroid ȳi of points on the sphere lies in
the interior of the sphere since the sphere is a convex shape,
while ŷi lies on the surface of the sphere. An example of
such a spherical code formation along with visualization of
the hyperplanes and centroid involved for a single facet is
provided in Figure 1.

Lemma 3.1. Let pij and ȳi be as described above. Let θ be
the minimum angle between any pair of points yij ∈ Y . Let
ŷi = ȳi/||ȳi||2 be the unit vector along ȳi. Then we have

pi>j ŷi

||pij ||2
≥ 2 sin θ/2√

2(n− 2)(1 + (n− 2) cos θ)
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O

R

yi1

yi2yi3

Figure 1. Left: An example graphical visualization a spherical code (kissing number arrangement) on the sphere S2. The arrangement
forms a regular icosahedron. The vertices (elements of Y) are marked in red and the corresponding ridges of the polytope are outlined
in black. Right: An example graphical visualization of a facet (Yi) from the configuration on the left used in the formation of a single
problem. The hyperplanes formed from the leave-one-out set of Yi and the origin are shown as the green planes (with normals pij) passing
through the origin (blue). The reward direction corresponding to ŷi is shown with the black arrow labeled R

Proof. We notice that the distance of ȳi to each hyperplane
is greater than or equal to the minimum radius of the ball
inside the n− 2 simplex formed by Yi . We can show this
from the inner product of pij and ȳi as well.

Consider pi>j ȳi, using the expression for the centroid given
in Equation 3.3, we get

pi>j ȳi = pi>j

[
1

n− 1

n−1∑
k=1

yik

]

since we know from the construction of pij that pi>yik =
0, j 6= k. Therefore we have,

pi>j ȳi =
1

n− 1
pi>j yij

We also notice that the projection of the ray from the origin
to the vertex of the n − 2 simplex, yij , orthogonal to the
hyperplane forming the opposing side of the n− 2 simplex,
the normal vector of which is pij , is at least the height of

the n − 2 simplex which is given by s
√

n−1
2(n−2) , where

s ≥ 2 sin(θ/2) is the edge length of the simplex Yi. That is

pi>j yij
‖pij‖2

≥ 2 sin(θ/2)

√
n− 1

2(n− 2)

=⇒
pi>j ȳi

‖pij‖2
≥ 1

n− 1
2 sin(θ/2)

√
n− 1

2(n− 2)

=
2 sin θ/2√

2(n− 2)(n− 1)

Now we also have from Equation 3.3 and the fact that yik are
points on a maximal spherical code with minimum angle θ.

As a result
〈
yij , y

i
k

〉
≤ cos θ and thus

||ȳi||22 =

∥∥∥∥∥ 1

n− 1

n−1∑
k=1

yik

∥∥∥∥∥
2

2

=
1

(n− 1)2

n−1∑
k=1

∥∥yik∥∥22 + 2
∑

1≤j<k≤n−1

〈
yij , y

i
k

〉
≤ 1

(n− 1)2

[
n− 1 + 2

(n− 1)(n− 2)

2
cos θ

]
=

1 + (n− 2) cos θ

n− 1

=⇒
pi>j ŷi

||pij ||2
=

pi>j ȳi

||pij ||2||ȳi||2
≥ 2 sin θ/2√

2(n− 2)(1 + (n− 2) cos θ)

We will use the pij’s to construct the matrix Pa1−Pai2 and ȳi

to form the corresponding reward Ri through the following
transformations

Pa1(j)− Pai2(j) =

(
Π>

[
pij
0

])>
, 1 ≤ j ≤ n− 1

Pa1(n)− Pai2(n) =

(
Π>

[
pi1
0

])>
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Ri =

(I − γPa1) Π>
[
ŷi

0

]
∥∥∥∥(I − γPa1) Π>

[
ŷi

0

]∥∥∥∥
1

(3.4)

Since there are only n− 1 vectors pij while Pa1 − Pai2 is an
n× n matrix, we use pi1 for the final row so that the interior
of the transformed n−2 simplex in Rn−1 remains the same.

Notice that from the above construction, we have the fol-
lowing conditions being met

(
Pa1 − Pai2

)
(I − γPa1)

−1
Ri � 0

and (
Pa1 − Pai2

)
(I − γPa1)

−1
Rj � 0 i 6= j

Next we will use the β-strict separability condition to form a
relation between β, ε = ‖pij‖2 and the angle θ that generates
the spherical code.

4. Analysis of Geometric Construction and
Sample Complexity of IRL

The previous section described the geometric construction
of the ensemble of IRL problems. We now analyze the ge-
ometric construction described in the previous section in
order to find the conditions for β-strict separability of the
generated problems. We also derive bounds on the cardi-
nality of the problem ensemble constructed as well as the
KL divergence between the trajectories generated by differ-
ent problems in the ensemble. Finally we use these results
along with Fano’s inequality (Cover & Thomas, 2006), to
derive an information-theoretic lower bound for the sample
complexity of the IRL problem.

Lemma 4.1. Consider a IRL problem and reward pair con-
structed as in Equation 3.4. If the following relation between
β, ε and θ holds

sin2 θ

2
=

n(n− 1)(n− 2)β2

2ε2 + 2n(n− 2)2β2

then the problem is β-strict separable.

Proof. Note that

(Pa1(j)− Pai2(j)) (I − γPa1)
−1
Ri =

(
Π>

[
pij
0

])>
(I − γPa1)

−1
(I − γPa1) Π>

[
ŷi

0

]
∥∥∥∥(I − γPa1) Π>

[
ŷi

0

]∥∥∥∥
1

=

[
pij
0

]> [
ŷi

0

]
∥∥∥∥(I − γPa1) Π>

[
ŷi

0

]∥∥∥∥
1

≥

[
pij
0

]> [
ŷi

0

]
maxy

∥∥∥∥(I − γPa1) Π>
[
y
0

]∥∥∥∥
1

≥ β, ||y||2 = 1

Notice that since Π is a rotation matrix ||Π||2 = 1. Ad-
ditionally from the construction of (I − γPa1), we have
|| (I − γPa1) ||2 = 1. Now consider

max
y, ||y||2=1

∥∥∥∥(I − γPa1) Π>
[
y
0

]∥∥∥∥
1

The above equation represents the norm of (I − γPa1) Π>

as an operator from (Rn, ‖·‖2) to (Rn, ‖·‖1). By duality,
this is the same as the norm of the adjoint Π (I − γPa1)

>

as an operator from (Rn, ‖·‖∞) to (Rn, ‖·‖2). Using this
we get

max
||y||2=1

∥∥∥∥(I − γPa1) Π>
[
y
0

]∥∥∥∥
1

= max
||v||∞=1

∥∥∥Π (I − γPa1)
>
v
∥∥∥
2

=
√
n

This gives us

(Pa1(j)−Pai2(j)) (I − γPa1)
−1
Ri ≥

pi>j ŷi
√
n

=
εpi>j ŷi

||pij ||2
√
n

Substituting the result of Lemma 3.1, we get

εpi>j ŷi

||pij ||2
√
n
≥ 2ε sin θ/2√

2n(n− 2)(1 + (n− 2) cos θ)

Now substituting

sin
θ

2
=

√
n(n− 1)(n− 2)β2

2ε2 + 2n(n− 2)2β2

and using the trigonometric formula cos θ = 1− 2 sin2 θ/2
we get

(Pa1(j)− Pai2(j)) (I − γPa1)
−1
Ri ≥ β

Since ‖Ri‖1 = 1 by construction, the problem is β-strict
separable

We now proceed to use this construction to find a lower
bound for the number of such probability matrix - reward
function pairs as well as an upper bound on the KL diver-
gence between the corresponding probability matrices.
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Theorem 4.1. Given a construction of β-strict separable
IRL problems and reward function pairs in Equation 3.4,
where the angle θ of the spherical code used to generate the
problems satisfies Lemma 4.1, the minimum number of such
problem-reward pairs for a given n, ε and β is

|Y| ≥ (n−2)

(
(1+o(1))

√
2π(n− 1)

ε2 − n(n− 2)β2

ε2 + n(n− 2)2β2
×

(
ε2 + n(n− 2)2β√

n(n− 1)(n− 2) (2ε2 + n(n− 2)(n− 3)β2)

)n−2)
− (n− 1)(n− 3)

Proof. We start with the result of Lemma 4.1.

sin
θ

2
=

√
n(n− 1)(n− 2)β2

2ε2 + 2n(n− 2)2β2

From the trigonometric identities cos2 θ2 + sin2 θ
2 = 1,

sin θ = 2 sin θ
2 cos θ2 and cos θ = 1− 2 sin2 θ

2 we get

sin θ =
β
√
n(n− 1)(n− 2) (2ε2 + n(n− 2)(n− 3)β2)

ε2 + n(n− 2)2β2

cos θ =
ε2 − n(n− 2)β2

ε2 + n(n− 2)2β2

Substituting the above into Equation 3.1 and subsequently
into Equation 3.2 we get

|Y| ≥ (n−2)

(
(1+o(1))

√
2π(n− 1)

ε2 − n(n− 2)β2

ε2 + n(n− 2)2β2
×

(
ε2 + n(n− 2)2β2

β
√
n(n− 1)(n− 2) (2ε2 + n(n− 2)(n− 3)β2)

)n−2)
− (n− 1)(n− 3)

It is of note that the bounds of ε from the β-strict sepa-
rability condition as well as the condition that the of the
minimum ball contained in the probability simplex we have
the following result

Lemma 4.2. Consider a IRL problem and reward pair con-
structed as in Equation 3.4 from an (n− 1, N, cos θ) spher-
ical code such that Lemma 4.1 holds. Then

1√
(n− 1)(n)

≥ ε ≥
√
n− 2β (4.1)

and the lower bound corresponds to a n− 1 simplex.

Proof. The upper bound

1√
(n− 1)(n)

≥ ε

is straightforwardly obtained from the condition that Pai2(j)
is contained in a ball of radius ε around Pa1(j) which is
located at the center of the probability simplex. The bound
represents the maximum radius ball that fits within the n−1
probability simplex with side length

√
2.

The minimum can be found by noticing that the convex
n− 1 dimensional polytope in Rn−1 formed by the maxi-
mal spherical code must be at least n− 1-vertex-connected
by Balinski’s theorem (Balinski et al., 1961). Thus the mini-
mum number of vertices (which give the minimum possible
cos θ) must be n. This minimum is achieved in the form of
an n−1 simplex with vertices on Sn−2 with θ = cos−1 −1n−1

From this minimum case we have

cos θ =
ε2 − n(n− 2)β2

ε2 + n(n− 2)2β2
≥ − 1

n− 1

rearranging and simplifying gives

=⇒ ε2 ≥ (n− 2)β2

The solution to which gives the lower bound of the lemma

Now we apply the result from Equation (3) of (Borade &
Zheng, 2008) to bound the KL divergenceD of two columns
of the transition probability matrices P and Q from two
different problems where the columns lie within a ball of
radius ε around Pa1(i) =

[
1
n

1
n . . . 1

n

]
Lemma 4.3. Let P (i) and Q(j) be the columns i and j of
the transition probability matrices of such problem-reward
pairs as described above constructed using Equation 3.4.
Then

D(P (i)||Q(j)) ≤ 2ε2n

1− nε
Theorem 4.2. Let P and Q be two transition probability
matrices of such problem-reward pairs as described above
constructed using Equation 3.4. Consider the m-length
trajectories drawn from each transition probability and let
p(m) and q(m) represent the corresponding probability dis-
tributions of the trajectory m-tuples. Furthermore, let the
trajectories start in each state with equal probability. Then
we have

D(p(m)||q(m)) ≤ (m− 1)
2ε2n

1− nε

Proof. We use an approach based on Theorem 1 of (Rached
et al., 2004). Notice that since the columns of P and Q
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are within the ε ball around
[
1
n

1
n . . . 1

n

]
and ε < 1

n ,
none of the elements of P and Q are 0. Thus we have P is
absolutely continuous with respect to Q.

Now we have

D(p(m)||q(m)) = p(I+P+P 2+. . .+Pm−2)V +D(p||q)

Where p = q =
[
1
n

1
n . . . 1

n

]
represent the initial distri-

butions of states for the trajectories and V is given by

V =


D(P (1)||Q(1))
D(P (2)||Q(2))

...
D(P (n)||Q(n))

 ≤ 1
2ε2n

1− nε
(by Lemma 4.3 )

Also notice that D(p||q) = 0. By construction of P and
Q, we can write P as P = Pa1 + εU . Since P is also
a transition probability matrix, U will be a matrix whose
columns are unit vectors whose components sum to 0. That
is 1TU =

[
1 1 . . . 1

]
U = 0T =⇒ Pa1U = 0I

Substituting into the expression forD(p(m)||q(m)), and sim-
plifying, we get

D(p(m)||q(m)) =
[
1
n

1
n . . . 1

n

](
I + Pa1 + εU+

(Pa1 + εU)
2

+ . . .+ (Pa1 + εU)
m−2

)
V

Since every term with U will either be multiplied with Pa1
or
[
1
n

1
n . . . 1

n

]
from the left, all of the terms with U

will end up being 0.

=⇒ D(p(m)||q(m)) =
[
1
n

1
n . . . 1

n

]
(I + (m− 2)Pa1)V

≤
[
1
n

1
n . . . 1

n

]
(I + (m− 2)Pa1)1

2ε2n

1− nε

=
[
1
n

1
n . . . 1

n

]
1(1 + (m− 2))

2ε2n

1− nε

= (m− 1)
2ε2n

1− nε

Notice that in the case of multiple actions, if we assume the
actions are chosen randomly, thereby creating an extended
P and Q matrix for state transition of dimensions nk × nk,
the KL bound as well as the result of Theorem 4.2 do not
change.

We will now use Fano’s inequality to form the lower bound.

Theorem 4.3. Consider the set of constructed problem re-
ward pairs F =

{
F i, Ri

}
constructed as described above.

Let F be uniform on F . Let Z represent the m sample tra-
jectory generated from F and let F̂ be an estimator of F
from Z. Then for any Markov chain F → Z → F̂ , we have

P(F̂ 6= F) ≥ 1−
(m− 1) 2ε2n

1−nε + log 2

log η

where

η = (n− 2)

(√
2π(n− 1)

ε2 − n(n− 2)β2

ε2 + n(n− 2)2β2
×

(
ε2 + n(n− 2)2β2

β
√
n(n− 1)(n− 2) (2ε2 + n(n− 2)(n− 3)β2)

)n−2)
− (n− 1)(n− 3)

Proof. We start with Fano’s inequality

P(F̂ 6= F) ≥ 1− I(F ;Z) + log 2

log |F |

Notice that

I(F ;Z) ≤ max
F,F ′

D
(
PZ|F (·|F)||PZ|F (·|F ′)

)
= max
p(m),q(m)

D(p(m)||q(m))

≤ (m− 1)
2ε2n

1− nε
(by Theorem 4.2)

We also know that the number of such problem-reward pairs
|F | is the number of facets |Y|. From Theorem 4.1, we have

|F | ≥ (n− 2)

(√
2π(n− 1)

ε2 − n(n− 2)β2

ε2 + n(n− 2)2β2
×

(
ε2 + n(n− 2)2β2

β
√
n(n− 1)(n− 2) (2ε2 + n(n− 2)(n− 3)β2)

)n−2)
− (n− 1)(n− 3)

Substituting these results in Fano’s inequality gives us the
result of the Theorem.

Corollary 4.1. Consider the set of constructed problem re-
ward pairs F =

{
F i, Ri

}
constructed as described above.

Let F be uniform on F . Let n be large and consider the
case

1√
2n(n− 1)

= ε =
√
n− 2β
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Let Z represent the m sample trajectory generated from F
and let F̂ be an estimator of F from Z with

m ≤ (n− 1)(0.5 log n− log 2)

(
1−

√
n

2(n− 1)

)
+ 1

Then for any Markov chain F → Z → F̂ , we have

P(F̂ 6= F) ≥ 0.5

This result gives us the lower bound for the sample com-
plexity in the case of large n on the order of O(n log n).

A similar result can be found for the case where just the
lower bound of ε ≥

√
n− 2β is satisfied, which from

Lemma 4.2 results in the case of an n− 1 simplex.

Corollary 4.2. Consider the set of constructed problem re-
ward pairs F =

{
F i, Ri

}
constructed as described above.

Let F be uniform on F . Let n be large and consider the
case

1√
2n(n− 1)

≥ ε =
√
n− 2β

Let Z represent the m sample trajectory generated from F
and let F̂ be an estimator of F from Z with

m ≤ (0.5 log n− log 2)

2(n− 2)nβ2

(
1− n

√
n− 2β

)
+ 1

Then for any Markov chain F → Z → F̂ , we have

P(F̂ 6= F) ≥ 0.5

This result gives us the lower bound for the sample com-
plexity in the case of large n on the order of O( logn

n2β2 ). The
results of our experimental validation of this bound for dif-
ferent values of n and various solution methods is described
in Appendix B and can be seen in Figure B.1 and Figure B.2.
The bound of O( logn

n2β2 ) from Corollary 4.2 approaches the
bound of O(n log n) from Corollary 4.1 as β approaches
the upper bound of 1√

2n(n−2)(n−1)
. It is also important to

note that the more general lower bound is the one provided
in Theorem 4.3.

5. Discussion
A lower bound of sample complexity is a statement repre-
senting a high probability of failing to recover the correct
solution in the case where sufficient samples are not pro-
vided. The results presented in this paper show, by con-
struction, the existence of an entire family of problem sets
for any number of dimensions where problems within each
set have distinct solutions that are incompatible with other
members of the set. Rotating and perturbing the spherical
codes on Sn−2 can result in a different set of problems,

resulting in this family of problem sets being "dense". The
interpretation of the lower bound result is that with very
little knowledge of the underlying problem, there is a high
probability of not recovering the correct solution without
a sufficient number of samples since, independent of the
algorithm used to solve, one will not be able to correctly
distinguish the "true" problem among the elements of the
corresponding problem set.

Although there is a gap in the bound ofO( logn
n2β2 ) from Corol-

lary 4.2 with respect to the O(n
2 logn
β2 ) of (Komanduru &

Honorio, 2019), we note that non-sparse logn
β2 part of the

bound is captured by our lower bound estimate. An esti-
mation of the lower bound in the sparse case may further
help reduce the gap between the lower bound and the upper
bound of the sample complexity of Inverse Reinforcement
Learning.
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