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Abstract

Decentralized training of deep learning models
enables on-device learning over networks, as well
as efficient scaling to large compute clusters. Ex-
periments in earlier works reveal that, even in
a data-center setup, decentralized training often
suffers from the degradation in the quality of the
model: the training and test performance of mod-
els trained in a decentralized fashion is in general
worse than that of models trained in a centralized
fashion, and this performance drop is impacted by
parameters such as network size, communication
topology and data partitioning.

We identify the changing consensus distance be-
tween devices as a key parameter to explain the
gap between centralized and decentralized train-
ing. We show in theory that when the training con-
sensus distance is lower than a critical quantity,
decentralized training converges as fast as the cen-
tralized counterpart. We empirically validate that
the relation between generalization performance
and consensus distance is consistent with this the-
oretical observation. Our empirical insights al-
low the principled design of better decentralized
training schemes that mitigate the performance
drop. To this end, we provide practical training
guidelines and exemplify its effectiveness on the
data-center setup as the important first step.

1. Introduction

The impressive successes of machine learning, witnessed in
the last decade, have been accompanied by a steady increase
in the size, complexity, and computational requirements of
training systems. In response to these challenges, distributed
training algorithms (i.e. data-parallel large mini-batch SGD)
have been developed for the use in data-centers (Goyal et al.,
2017; You et al., 2018; Shallue et al., 2018). These state-
of-the-art (SOTA) training systems rely on the All-Reduce
communication primitive to perform exact averaging on the

“Equal contribution 'EPFL, Lausanne, Switzerland. Correspon-
dence to: Tao Lin <tao.lin@epfl.ch>.

Proceedings of the 38" International Conference on Machine
Learning, PMLR 139, 2021. Copyright 2021 by the author(s).

Anastasia Koloskova' Martin Jaggi' Sebastian U. Stich'

local mini-batch gradients computed on different subsets
of the data, for the later synchronized model update. How-
ever, exact averaging with All-Reduce is sensitive to the
communication hardware of the training system, causing
the bottleneck in efficient deep learning training. To address
this issue, decentralized training has become an indispens-
able training paradigm for efficient large scale training in
data-centers (Assran et al., 2019), alongside its orthogonal
benefits on preserving users’ privacy for edge Al (Bellet
et al., 2018; Kairouz et al., 2019).

Decentralized SGD (D-SGD) implementations trade off
the exactness of the averaging provided by All-Reduce,
with more efficient, but inexact, communication over sparse
typologies. However, this often results in a severe drop in
the training and/or test performance (i.e. generalization gap),
even after hyper-parameter fine-tuning (see our Table 1 as
well as Tables 1-3 in Assran et al., 2019). This phenomenon
is poorly understood even in relatively straightforward i.i.d.
data distribution scenarios (i.e. the data-center case), to
which very few works are dedicated (in fact none of them
provide insights into the generalization performance).

Table 1: Significant generalization gap for decentralized train-
ing on a sparse ring topology (ResNet-20 on CIFAR-10 with
n€{16, 32, 64} workers). Decentralized SGD (D-SGD) commu-
nicates model parameters through the gossip averaging. Test top-1
accuracies averaged over three seeds with fine-tuned learning rates.

AllReduce (complete) D-SGD (ring)
n=16 92.91 +0.12 92.40 £ 0.10
n=32 92.82 £ 0.27 91.81 +0.09
n=64 92.71 £0.11 89.58 +0.20

In this work, we investigate the trade-off between the
train/test performance and the exactness of the averaging,
measured in terms of consensus distance, i.e. the average
discrepancy between each node and the mean of model
parameters over all machines. We identify this consensus
distance as the key parameter that captures the joint effect
of decentralization.

While one might suspect that a smaller consensus distance
would improve performance in any case, we identify several
interesting phenomena. (i) We identify a diminishing return
phenomenon: if the consensus distance stays below a critical
value (critical consensus distance), decreasing the consensus
distance further does not yield any additional performance
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gains. For the main interests of this work, deep learning
training, we (ii) identify the pivotal initial training phase
where the critical consensus distance matters and the train-
ing consensus distance heavily influences the final training
and generalization performance, and (iii) large consensus
distance in later training phases can even be beneficial.

Our findings have far-reaching consequences for practice:
By (iv) using consensus control as a principled tool to find,
adaptively during training, the appropriate trade-off between
targeted generalization performance and affordable commu-
nication resources, it is possible to exploit the efficiency
benefits of decentralized methods without sacrificing quality.
While our numerical study, on Computer Vision (CV) tasks
(CIFAR-10 and ImageNet-32) as well as Natural Language
Processing (NLP) tasks (transformer models for machine
translation), mainly focuses on the data-center setting with
homogeneous nodes, our findings also apply to decentral-
ized training over time-varying topologies and the more
difficult heterogeneous setting alike.

2. Related Work

2.1. Decentralized Learning

For general decentralized optimization, common algorithms
are either gradient-based methods with gossip averaging
steps (Kempe et al., 2003; Xiao & Boyd, 2004; Boyd et al.,
2006), or problem-structure dependent methods, such as
primal-dual methods (Hong et al., 2017; Sun & Hong, 2019).
In this work, we focus on non-convex decentralized deep
learning problems and only consider gradient-based meth-
ods with gossip averaging—methods that do not support
stochastic gradients (not suitable for deep learning) are omit-
ted for the discussion.

The convergence rate of gossip averaging towards the con-
sensus among the nodes can be expressed in terms of the (ex-
pected) spectral gap of the mixing matrix. Lian et al. (2017)
combine SGD with gossip averaging for deep learning and
show that the leading term in the convergence rate O (-15)
is consistent with the convergence of the centralized mini-
batch SGD (Dekel et al., 2012) and the spectral gap only af-
fects the asymptotically smaller terms. Similar results have
been observed very recently for related schemes (Scaman
et al., 2017; 2018; Koloskova et al., 2019; 2020a;b; Vogels
et al., 2020). To reduce the communication overhead (num-
ber of peer-to-peer communications), sparse topologies have
been studied recently (Assran et al., 2019; Wang et al., 2019;
2020a; Nadiradze et al., 2020). Whilst a few recent works fo-
cus on the impact of the topology on the optimization perfor-
mance (Luo et al., 2019; Neglia et al., 2020), we here iden-
tify the consensus distance as a more canonical parameter
that can characterize the overall effect of decentralized learn-
ing, beyond only the topology. Through this, we are able to
provide deeper understanding of the more fine-grained im-

pact of the evolution of the actual consensus distance on the
optimization/generalization performance of deep learning.

Prior works propose to either perform a constant number
of gossip steps every round (Tsianos & Rabbat, 2016; Sca-
man et al., 2017; Jiang et al., 2017; 2018; Sharma et al.,
2019) to increase the averaging quality, or choose carefully
tuned learning rates (Tsitsiklis, 1984; Nedi¢ & Ozdaglar,
2009; Duchi et al., 2012; Yuan et al., 2016) to improve the
convergence. However, these works do not analyze the vary-
ing effect of consensus distance in the phases of training
explicitly. In contrast, we identify the existence of criti-
cal consensus distance, adapt gossip step numbers to the
target distance on the fly, and provide insights into how
consensus distance at different training phases impacts the
decentralized deep learning.

Appendix B.1 further details the relationship between con-
sensus distance and other training metrics influential to the
final performance (e.g. gradient diversity in Yin et al. (2018);
Johnson et al. (2020)). Besides, we connect the insights into
better generalization (Lin et al., 2020b) with other interpre-
tations in Izmailov et al. (2018); Gupta et al. (2020).

2.2. Critical Learning Phase in Deep Learning

The connection between optimization and generalization
of deep learning training is not fully understood. A line
of work on understanding the early phase of training has
recently emerged as a promising avenue for studying this
connection. For instance, Keskar et al. (2017); Sagun et al.
(2018); Achille et al. (2019); Golatkar et al. (2019); Frankle
et al. (2020) point out the existence of a “critical phase” for
regularizing deep networks, which is decisive for the final
generalization ability. Achille et al. (2019); Jastrzebski et al.
(2019); Fort & Ganguli (2019); Jastrzebski et al. (2020)
empirically demonstrate the rapid change in the local shape
of the loss surface in the initial training phase.

In this work, we reach a similar conclusion for decentralized
deep learning: we identify the importance of the initial
training phase through the lens of consensus distance.

3. Theoretical Understanding

In this section, we study the trade-off between training per-
formance and the exactness of parameter averaging, and
establish the notion of critical consensus distance.

For the sake of simplicity, we consider decentralized
stochastic gradient descent (D-SGD) without momentum
in this section, and focus on the optimization difficulty
in our theoretical analysis. Theoretically analyzing the
generalization performance for deep learning is an open
problem and not intended in this work. Instead we provide
extensive empirical evaluation, addressing generalization
for both D-SGD with and without momentum in Section 4.
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All proofs are deferred to Appendix C.

3.1. Notation and Setting

The agents are tasked to solve a sum-structured optimization
problem f: R% — R of the form

J* = mingepa [f(x) == £ 0, )], (D

where the components f; : R? — R are distributed among
the n nodes and are given in stochastic form: f;(x) :=
E¢p, [Fi(x,€)], where D; denotes the local data distribu-

tion on node ¢ € [n]. For data-center settings, where data
is re-shuffled periodically among nodes, these distributions
are identical, but in other scenarios there can be differences
between nodes. In D SGD, each agent ¢ € [n] maintains

local parameters x ) e R?, and updates them as:

K =5 wy (x-S E)) L 0-SGD)

that is, by a stochastic gradient step based on a sample
fz@ ~ D,, followed by gossip averaging with neighboring
nodes in the network encoded by the mixing weights w;;.
As parameters can differ across nodes, we define x :=
L3 xiand X = [x1,...,%,] € R, and X :=
x,....x]=X1 11T
Assumptlon 1 (Mlxmg matrix). Every sample of the (pos-
sibly randomized) mixing matrix W = {w;;} € R™*" is
doubly stochastic and there exists a parameter p > 0 s.t.
Ew |[XW - X% < (1 -p) [|X - X||%, VX e RT*". (2)
This assumption covers a broad variety of settings (see e.g.
Koloskova et al., 2020b), such as D-SGD with fixed (con-
stant) mixing matrix with spectral gap p, with parameter
p=1-(1-p)? = O(p), but also for randomly chosen
mixing matrices, for instance random matchings.

Assumption 2 (L-smoothness). FEach  function
fi(x): RY — R, i € [n] is differentiable and there
exists a constant L > 0 such that for each x,y € R%:
IV fi(x) = Vi)l < Llx—y] -

Assumption 3 (Bounded noise o and diversity (). There
exists constants 02, (2 s.t. Vxq,... %, € R¢

1 n
n ZE&: VE;(xi,&) — Vfi(xi)||3 < o2,
izl 3)
1
=D IV = VI < ¢
i=1

3.2. Decentralized Consensus Optimization

Under the above standard assumptions in decentralized opti-
mization, the convergence rate of (D-SGD) has been shown
as follows:

Theorem 3.1 (Koloskova et al. (2020b)). Let f; be L-

smooth and stepsize ¥ < Ymax = O(%). Then

there exists an optimal stepsize v < Ymax Such that

7 t 0 EHVf ®) H < e for
VPO ¢ *
10 L B L) L) - 1),

In comparison, for centralized mini-batch SGD (C-SGD)
we are allowed to choose a potentially much larger stepsize
VL o :2(’)(%), and can bound the number of iterations
by O(% + E)' While asymptotically both these rates are
equivalent, they differ in the low accuracy setting when ¢
is not too small. That is, especially in the first phase of
optimization where the lower order terms matter.

As our first theoretical contribution, we show that if the
individual iterates of the agents stay sufficiently close, then
D-SGD can converge as fast as C-SGD. To measure this
difference between agents, we use the consensus distance

= _ 2
2 . 1 Zz 1 HX Et)“
Proposition 3.2 (Critical Consensus Distance (CCD)). If
the consensus distance is bounded by

(2 ol
= < (nwz + 573 ||VFED)|

for all t, then in D-SGD we may choose larger stepsizes
V< Vax = (9(%) and recover the convergence rate of C-
SGD, that is 0(7‘;—62 + %) (Dekel et al., 2012; Bottou et al.,
2018). We refer to T'? as critical consensus distance (CCD).

Note that the CCD does not depend on the graph topology
and that I'? > 0, which means that we do not need perfect
consensus between agents to recover the C-SGD rate, but
we allow consensus distance =7 > 0 (i.e. the 27 = 0 V¢, as
we have for centralized optimization, is sufficient but not
necessary). In Section 4, we empirically examine the exis-
tence of the critical consensus distance =2 in decentralized
deep learning, as we cannot compute the crltlcal consensus
distance in a closed-form (through L and o?).

We now estimate the magnitude of the consensus distance
in D-SGD and compare it to the CCD.

Proposition 3.3 (Typical consensus distance). Let ¢? :=
N ||Vf¢(xl(»t))||2. Then under the assumption that
v, p are constant, and the ¢, does not change too fast be-
tween iterations, i.e. not decreasing faster than exponen-
tially: ¢7 < (1 + p/4)d7,,, the consensus distance in
D-SGD satisfies

=(1-p O(ft p). (5)

While these assumptions do not hold in epochs with learning
rate decay, we observe in practice that during epochs of a
constant learning rate the gradients indeed do not change
too fast (see Figure 6(b)). Thus these assumptions are rea-
sonable approximations to capture the practical behavior.
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3.3. Controlling the Consensus Distance

We now investigate scenarios where the typical consensus
distance derived in Proposition 3.3 can be smaller than the
critical value (CCD). This reveals two orthogonal strategies
to control the consensus distance in D-SGD. We here assume
diversity ¢ = 0 as with i.i.d. training data, and that the
stepsize v < O( 1) as for C-SGD, and give a more refined
discussion in Appendix C.3.

Learning rate decay (changing ). We observe that
when v = O () then 7 < I'? (if the noise o is small, es-
pecially for o = 0, then the weaker assumption v = O(%)
is sufficient). However, choosing too small stepsizes can
impact performance in practice. In C-SGD the constraint on
the stepsize is loose (7 < %). Yet, after sufficient learning
rate decay, the desired CCD can be reached.

More gossip iterations (changing p). We observe that
when ﬁ = O(1 + vyLn), then 7 < I'? (again, when
the noise ¢ is small, especially when 02 = 0, a weaker
condition ﬁ = O(1+~L) is sufficient). Whilst designing
new mixing topologies to control p might not be possible
due to practical constraints (fixed network, denser graphs
increase latency, etc.), a simple and commonly used strategy

is to use repeated gossip steps in every round.

Lemma 3.4 (Repeated gossip (Xiao & Boyd, 2004; Boyd
et al., 2006)). Suppose W = Wy ... Wy, for k (possibly
randomized) mixing matrices with parameter p each. Then
the mixing parameter for W is at least pyw > 1 — (1 — p)F.

From this, we see that the mixing parameter can be im-
proved exponentially when applying more gossip steps. To

at most k < nU+yLn) _ (7)(1)
’ - p

ensure pw > 1 — ﬁ -

repetitions are required.

4. Inspecting Consensus Distance for
Decentralized Training

Our analysis in Section 3 shows that we can—at least in
theory—recover the convergence behavior of C-SGD by
controlling the consensus distance. Now, we direct our
focus on generalization in decentralized deep learning train-
ing. We show, empirically (not theoretically, see also Ap-
pendix B.2), that the critical consensus distance is an impor-
tant metric to capture the connection between optimization
and generalization in deep learning—e.g. Figure 2 in Sec-
tion 4.3 showcases that by addressing the optimization dif-
ficulty in the critical initial training phase (Figure 2(a) and
Figure 2(b)), the final generalization gap can be perfectly
closed (Figure 2(c), Table 2 and Table 3).

First we introduce and justify our experimental design in
Section 4.1. We describe the implementation in Section 4.2.
In Section 4.3, we present our findings on image classifica-
tion benchmark with standard SGD optimizer, which is the
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Figure 1: Evolution of the consensus distance = for ResNet-20
on CIFAR-10 (n = 32) with ring topology.

main focus of this work; a preliminary study on Transformer
with Adam optimizer and inverse square root learning rate
schedule can be found in Section 4.4.

4.1. Experiment Design: Controlled Training Phases

Phase-wise training. Since the consensus distance
evolves throughout training, identifying its impact at ev-
ery training step is infeasible. However, as the consensus
distance and critical consensus distance (CCD) both signif-
icantly depend on the learning rate (Propositions 3.2 and
3.3), we expect rather consistent observations during phases
in which the learning rate is kept fixed and more drastic
changes between such phases. On CV tasks, stage-wise
learning rate schedule is the common practice for SOTA
distributed training as described in Section 4.2: thus the
training can be naturally divided into phases through the
learning rate decay', in each of which training dynamics are
significantly different from the others, such as =; (Figure 1),
¢ (Figure 6(b)) and L-smoothness (Figure 6(c)). The trans-
former (NLP task) has no well-defined training phases due
to the conventional inverse square root learning rate, thus
for the sake of simplicity, we consider the entire transformer
training as one phase as a preliminary study.

Individual phase investigation. In order to eliminate the
coupling of effects from other phases, in each experiment
we place only one phase under consensus distance control
(the control refers to perform multiple gossip steps as in
Section 3.3 to reach certain distance targets), while perform-
ing exact averaging (All-Reduce for all nodes) on model
parameters for the other unstudied phases. We demonstrate
in Table 5 of Section 4.3 that the decentralization impacts
on different phases are rather orthogonal, which justifies our
design of examining one phase at a time.

For the ease of presentation, the term “phase-z” refers to
a training phase between (x—1)-th and z-th learning rate
decay. The notation “dec-phase-z” indicates that only in
“phase-z” the model is trained with a decentralized com-

! The learning rate warmup is only over a very small fraction
of training epochs (e.g. 5 out of 300 epochs on CIFAR-10). To
simplify the analysis, we do not consider it as a separate phase.
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munication topology, while for other phases we perform
All-Reduce on model parameters. We compare the result
of each individually decentralized phase with that of All-
Reduce centralized training (on all training phases), so as to
identify when (which phase) and how decentralized training
influences final generalization performance.

4.2. Experimental Setup

Datasets and models. We empirically study the decen-
tralized training behavior on the following two tasks, on
convolutional neural networks and transformer architec-
tures: (1) Image Classification for CIFAR-10 (Krizhevsky
& Hinton, 2009) and ImageNet-32 (i.e. image resolution of
32) (Chrabaszcz et al., 2017), with the standard data aug-
mentation and preprocessing scheme (He et al., 2016); and
(2) Neural Machine Translation for the Multi30k dataset (EI-
liott et al., 2016). For Image Classification, ResNet-20 (He
et al., 2016) with different widths are used on CIFAR (de-
fault width of 1) and ImageNet-32 (width factor of 3)>. For
Neural Machine Translation, a down-scaled transformer
architecture (by 2 w.r.t. the base model in Vaswani et al.
(2017)) is used. Weight initialization schemes follow Goyal
et al. (2017); He et al. (2015) and Vaswani et al. (2017)
respectively. Unless mentioned otherwise, our experiments
are repeated over three random seeds.

Training schemes. We use mini-batch SGD with a Nes-
terov momentum of 0.9 without dampening for image clas-
sification task (we confirm our findings in Section 4.3 for
SGD without momentum), and Adam is used for neural
machine translation task. Unless mentioned otherwise we
use the optimal learning rate (Ir) from centralized training
for our decentralized experiments® in order to observe the
impact of decentralization on normal centralized training.

e For image classification experiments, unless mentioned
otherwise, the models are trained for 300 and 90 epochs
for CIFAR-10 and ImageNet-32 respectively; the local
mini-batch size are set to 32 and 64. By default, all
experiments follow the SOTA learning rate scheme in
distributed deep learning literatures (Goyal et al., 2017,
He et al., 2019) with learning rate scaling and warmup
scheme. The learning rate is always gradually warmed
up from a relatively small value (i.e. 0.1) for the first
5 epochs. Besides, the learning rate will be divided by

2 Tt takes ~ 7h to finish 1 round of standard ImageNet-32
training with n = 16 V100 on a ring, and the cost increases to
e.g. 12h for our consensus distance controlled experiments. It is
infeasible to perform sufficient experiments on datasets of larger
scales with our computation budget.

3 We find that fine-tuning the learning rate for decentralized
experiments does not change our conclusions. E.g., no significant
difference can be found for the curves at phase-1 for “ring (fine-
tuned Ir)” and “dec-phase-1 (Emax)” in Figure 2(a) and 2(b). We
have similar observations in Table 14 after the sufficient learning
rate tuning on phase-1.

10 when the model has accessed specified fractions of
the total number of training samples (He et al., 2016);
we use {3, 3} and {1, 2, 3} for CIFAR and ImageNet
respectively. All results in tables are test top-1 accuracy.

e For experiments on neural machine translation, we
use standard inverse square root learning rate sched-
ule (Vaswani et al., 2017) with local mini-batch size
64. The warm-up step is set to 4000 for the mini-batch
size of 64 and is linearly scaled down by the global
mini-batch size.

Consensus distance control. For consensus control, we
adopt the “more gossip iterations” strategy introduced in
Section 3.3. That is, we perform multiple gossip steps (if
needed) until reaching the desired target consensus distance
value. Two metrics are considered to set the consensus
distance target value during the specified training phase:

e constant target distance (main approach*): the target con-
sensus distance = for a phase is the maximum consensus
distance =y, of the current phase in normal (uncon-
trolled) decentralized training, multiplied by a factor. For
a given topology, the smaller the factor, the tighter the
consensus.

e adaptive target distance (in Appendix E.3.1): the target
consensus distance = for the current step is the averaged
local gradient norm ¢; ¢ scaled by a factor. For stability,
we use the exponentially moving averaged value ¢§™ of
#}"® (accumulated during the corresponding phase).

We use a ring as the main decentralized communication
topology, as it is a particularly hard instance with a small
spectral gap (cf. Table 10) which allows us to study a wide
range of target consensus distances by modifying the num-
ber of gossip steps (in appendix we show consistent findings
on time varying exponential topology in Table 18 and 19)..

4.3. Findings on Computer Vision Tasks

In this section we present our empirical findings and provide
insights into how consensus distance at different phases
impacts the training generalization for CV tasks (i.e. CIFAR-
10, Imagenet-32).

Critical consensus distance exists in the initial training
phase—consensus distance below this critical threshold
ensures good optimization and generalization. In the
initial training phase, both training and generalization per-
formance are heavily impacted by the consensus distance
(“dec-phase-1” in Figure 2 and Table 2). A smaller con-
sensus distance in the early phase results in considerably
faster optimization (training loss) and higher generalization
performance (test accuracy), and these advantages persist

* We use this one primarily since we can directly regulate the
magnitude of consensus distance. In experiments, target = = Zmax
refers to the normal (i.e. uncontrolled) decentralized training.
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Figure 2: Learning curves for ResNet-20 on CIFAR-10 (n = 32). We compare fine-tuned normal (w/o control) decentralized training (i.e.

“ring”) with dec-phase-1 on different target consensus distances.

Table 2: The impact of consensus distance of different phases on generalization performance (test top-1 accuracy) of training ResNet-
20 on CIFAR-10 on ring. The All-Reduce performance for n =32 and n =64 are 92.82 4 0.27 and 92.71 4 0.11 respectively. The
fine-tuned normal (w/o control) decentralized training performance for n =32 and n =64 are 91.74 +0.15 and 89.87 & 0.12 respectively.

dec-phase-1

dec-phase-2 dec-phase-3

target =
# nodes Zmax 1/2 Zpax 1/4 Zpax

Zmax

172 Zax 1/4 Znax

- 172 Znax 1/4 Zax

n=32 91.78 £0.35 92.36 £0.21 92.74 +£0.10
n=64 90.31 £0.12 92.18 £ 0.07 92.45 £ 0.17

93.04 £0.01 92.99 £0.30 92.87 +£0.11
93.14 +£0.04 92.94 £ 0.10 92.79 £ 0.07

92.60 £ 0.00 92.82£0.21 92.85+£0.24
92.23 £ 0.12 92.50 £ 0.09 92.60 £ 0.10

Table 3: The impact of different consensus distances on generalization for different phases of training ResNet-20-3 on ImageNet-32

on ring. The centralized baseline performances for n=16 and n=

32 are 51.74 £ 0.06 and 51.98 & 0.37 respectively, while those of

decentralized training (on a fixed ring) are 51.04 &£ 0.06 and 50.17 4= 0.04. The reported test top-1 accuracies are over two seeds.

dec-phase-1 dec-phase-2

dec-phase-3 dec-phase-4

W
# nodes Emax 12Zmx 1/4 Emax

172 Z

Zmax

174 = o

Zmax 1/2 Eax 1/4 Emax 1/2 Emax 1/4 Zax

Zmax

n=16 51.224£0.08 51.79 £0.10 51.71 £ 0.03
n=32 50.76 £0.18 51.27 +0.07 51.60 £0.21

51.59 £ 0.02 51.67 £0.01 51.65+0.13
51.39 £ 0.07 51.59 +0.04 51.66 £ 0.12

72+£0.02 51.76 £ 0.01 51.74 4 0.06

51.80+0.10 51.81 £0.13 51.81 £0.04|51.
51.70 £0.02 51.71 £0.02 51.70 £ 0.02

51.79£0.06 51.73 £0.10 51.77 £0.10

over the entire training.

When the consensus distance is larger (e.g. 1/2 Ey,x for
CIFAR-10), the optimization (training performance) can
eventually catch up with the centralized convergence (c.f.
Figure 2(a) and 2(b)) but a considerable generalization gap
still remains (92.36 v.s. 92.82 for the setup in Figure 2) as
shown in Table 2. A consistent pattern can be found in
ImageNet-32 experiments’, as shown in Table 3. These
observations to some extent are consistent with the insights
of the critical learning phase described in Golatkar et al.
(2019); Jastrzebski et al. (2020); Frankle et al. (2020) for
centralized training, where it is argued that the initial learn-
ing phase is crucial for the final generalization.

Notably, perfect consensus distance is not required to re-
cover the centralized training performance. For instance,
1/4 Zax is sufficient in CIFAR-10 experiments to approach
the optimal centralized training performance in both opti-
mization and generalization at the end. Smaller distances
(e.g. 1/8 Ehax, 1/16 =) do not bring significant gain
(92.77 and 92.72 respectively in Table 12). The perfor-
mance saturates (c.f. 92.74 for 1/4 =,,x) with significantly
increased communication overhead (e.g. Figure 10 of Ap-
pendix E.1). This confirms that our analysis and discovery
in Section 3 are sensible in the initial training phase: there

3 1/2 Sax has already been tight enough to recover the central-
ized performance for ImageNet-32 (n = 32), while a significant
performance drop can be observed between Zmax and 1/2 SEpax.

exists a critical consensus distance for the training, below
which the impact of decentralization is negligible.

A non-negligible consensus distance at middle phases
can improve generalization over centralized training.
Surprisingly, it is not always the case that the generalization
performance improves with a shrinking consensus distance.
We observe that at the phase right after the initial training
plateaus (e.g. phase-2 for CIFAR-10, phase-3 for Imagenet-
32), a non-negligible consensus distance® actually boosts
the generalization performance over the centralized training
which has been deemed optimal. In CIFAR-10 dec-phase-2
experiments (Table 2), the generalization performance in-
creases monotonically with the evaluated consensus distance
and is consistently superior to that of the centralized training
(e.g. 93.04, 92.99, 92.87 over 92.82 for n=32). Analogous
observation can be obtained in Imagenet-32 dec-phase-3
experiments (Table 3).

This coincides with the observations firstly introduced in
post-local SGD (Lin et al., 2020b), where for better gen-
eralization, consensus distance is created among local ma-
chines by less frequent model parameter synchronization
(All-Reduce) in late training phases (e.g. phase-2, phase-
3 for CIFAR). Thus non-negligible consensus distance at
middle phases can be viewed as a means of injecting proper

® Table 19 of Appendix E.3.1 shows that there exists optimal
consensus distance at middle phases, beyond which the gain in
generalization (brought by noise injection) starts to diminish.
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Table 4: The impact of consensus distance on generalization performance with vanilla SGD (without momentum) (test top-1
accuracy) of training ResNet-20 on CIFAR-10 on ring. The All-Reduce performance for n = 32 and n = 64 are 90.64 £ 0.19 and
90.58 £ 0.26 respectively. The fine-tuned normal (w/o control) decentralized training performance for n =32 and n =64 are 90.30£0.14
and 88.92 £ 0.23 respectively. We repeat experiments for n =32 for 3 seeds and n =64 for 2 seeds.

dec-phase-1

\ dec-phase-2

target =
# nodes Znax

1/2Z max

1/4% nax

1/25 max 1/4Z max

Smax

n =232
n =064

90.51 £ 0.05 90.74 £ 0.14 90.88 +0.37]90.64 £ 0.18 90.55 +0.19 90.57 £ 0.17
88.80 £ 0.03 89.89 +0.03 90.43 4+ 0.05|90.63 £ 0.37 90.46 + 0.15 90.63 £ 0.25

noise as argued in Lin et al. (2020b), which reduces commu-
nication cost and in the meanwhile benefits generalization.

At the last phase of training, the consensus distance only
marginally impacts the generalization performance.
Similar to the initial training phase, the final convergence
phase seems to favor small consensus distances in CIFAR-
10 experiments. However, its impact is less prominent in
comparison: for dec-phase-3, performance of a smaller con-
sensus distance (1/4 Z,.x) is only 0.25% and 0.37% higher
than that of =,,x for n =32, 64 respectively (Table 2). In
Imagenet-32 experiments, dec-phase-3 performance is not
even affected by changes in consensus.

Quality propagation across phases. Our previous exper-
iments only consider a single phase of decentralized training.
We now evaluate the lasting impact of consensus across the
sequence of multiple phases. In Table 5, we control the con-
sensus distance for both phase-1 and phase-2 when training
on CIFAR-10. Our previous findings hold when we view
each controlled phase separately. For instance, when we
apply 1/2 Eax consensus control to phase-2 (the middle
column in Table 5), we can still observe that a smaller con-
sensus distance in phase-1 results in a higher performance
as in our previous finding. Hence our previous findings are
valid in more general cases of decentralized training.

Longer training cannot close the generalization gap
caused by large consensus distances in the initial train-
ing phase. As discussed above, large consensus distances
in the initial phase can result in significant generalization
loss. Table 6 investigates whether a prolonged training on
the initial phase can address this difficulty: we prolong the
phase-1 for CIFAR-10 with a range of consensus distances

Table 5: Quality propagation across training phases with dif-
ferent consensus distances on ResNet-20 for CIFAR-10 (Ring
with n=232). In phase-1 and phase-2, the model parameters reach
inexact consensus of different target consensus distance =, while
phase-3 performs All-Reduce on model parameters.

hase-2 - - -
phase—l P Smax 172 Enax 1/4 Epax
1/2 Emax 92.48 +£0.19 92.46 £0.11 92.31 £0.23
1/4 = hax 92.73+0.11 92.66 +0.08 92.69 +0.19
1/8 Znax 93.10 £ 0.22 92.88+0.15 92.91 £0.06

Table 6: The impact of different numbers of training epochs
(at phase-1) on generalization, for training ResNet-20 on CIFAR-
10 (dec-phase-1 with n =32). The number of epochs at phase-1
is chosen from {150, 200, 250}, while the other training setting is
identical to that of dec-phase-1 in Table 2.

training epochs at phase-1

target =
150 200 250
Emax 91.78 £0.35 91.914+0.19 92.04+0.14
12 Zmax - 9236 £0.21 9255 £0.07 92.67£0.13
/4 Zhx  92.74£0.10 92.914+0.15 92.84 £0.20

and leave the other training phases centralized. We can
observe that although longer training is beneficial for each
consensus distance, it cannot recover the generalization gap
resulting from large consensus distance. For instance, the
maximum gain (among all evaluated cases) of increasing the
epoch number from 150 to 250 is 0.31% at 1/2 Zp.x, which
is lower than the average gain (around 0.6%) of merely
reducing the consensus distance from =, to 1/2 4. Ta-
ble 15 in Appendix E.2 evaluates cases where dec-phase-2
and dec-phase-3 are prolonged. We find longer training in
these two phases brings about negligible performance gain.

Consistent findings on decentralized SGD without mo-
mentum. To validate the coherence between our theory
and experiments, we perform similar consensus distance
control experiments on vanilla SGD optimizer (i.e. without
momentum) for dec-phase-1 and dec-phase-2 on CIFAR-10.
The patterns illustrated in Table 4 are consistent with our
previous observations in Table 2 and Table 3, supporting
the claim on the relation between consensus distance and
generalization performance (which stands regardless of the
use of momentum).

4.4. Preliminary study on training transformer models

The critical consensus distance also exists in NLP tasks.
Figure 3(a) demonstrates that 1/4 =, target control
on a ring is sufficient to recover the centralized training
performance. Besides, the target consensus distance in
this case can be reached by exponential graph (and thus
target test performance, as shown in Figure 3(b) and 3(c)).
These justify the importance of designing an efficient
communication topology/scheme in practice so as to
effectively reach the CCD.
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Figure 3: Learning curves for training Transformer on Multi30k (n =32).

Table 7: The importance of phase-1 for training ResNet-20 on CIFAR-10 (n=32), in terms of (1) target consensus distance and (2)
the number of training epochs. In phase-2 and phase-3, we perform decentralized training (w/o consensus distance control).

target = = = = = =
# of epochs =max 1/2 Einax 1/4 Zax 1/8 Emax 0 Emax
150 91.74£0.15 92.314+0.12 92.81+0.22 92.91+£0.15 92.944+0.07
200 91.81 £0.22 92.884+0.20 93.00+0.18 93.01 £0.10 92.904+0.17
250 92.09 £0.23 92.744+0.11 93.15+0.26 92.99+0.24 93.31 +0.06

5. Impact on Practice

Practical guidelines: prioritizing the initial training
phase. Apart from effectiveness (generalization/test per-
formance), efficiency (time) stands as the other crucial goal
in deep learning, and thus how to allocate communication
resource over the training becomes a relevant question.

ring ‘
100 exponential graph
random matching
o bipartite exponential graph
i
| 1072
x
N
" 10—4
1076 —\—\

0 4 8 12 16 20 24 28 32
gossip steps
Figure 4: Consensus distance evolution against the number of
gossip steps on different topologies (n = 32). The initial z;’s
are sampled uniformly from [0, 10]. Results on different topology
scales are deferred to Appendix E.1.

As indicated by our first empirical finding (and theory
in Section 3), the initial training phase bears the greatest
importance over all other training phases; therefore the
communication expenditure should be concentrated on the
initial phase to maintain a consensus distance lower than the
CCD. We suggest a list of communication topologies with
superior spectral properties, i.e. exponential graph (Assran
et al., 2019) and random matching (Nadiradze et al., 2020)
in Figure 4 (the definition of the topology is detailed
in Appendix E.l), which be utilized to achieve fast
convergence in gossip averaging.

The late training phases should be less prioritized for com-
munication resources, due to the generalization benefits
from a reasonable consensus distance in the middle phases.

Providing a rigorous way to quantify the optimal consensus
distance is non-trivial, and is left as future work.

In Table 7 we show that the above-mentioned guideline is
practically feasible: as long as the quality of the initial phase
is ensured, we can afford to slacken the consensus control
for later phases, in particular the middle phase. For instance,
when the number of epochs is 150, a consensus control of
1/4 =2« in the initial phase with uncontrolled middle and
final phase is adequate to recover the centralized training
performance (92.81 v.s. 92.82). Note that here the noise in-
jection from the uncontrolled middle phase also contributes
positively to the performance. Table 18 in Appendix E.3.1
additionally justifies the applicability of applying this guide-
line on exponential graphs.

Practical implementation of Consensus Control in Data-
Centers. Computing the exact consensus distance re-

quires the average of all model parameters in R?, which
is prohibitively expensive (All-Reduce). We propose there-
fore to use the following efficient quantity estimator

1 n ) n
07 = o Z Qgt) with 01@ = Z wijx§t) - th)
i=1 j=1

instead (in Lemma A.1 we prove that =; < %@t is an
upper-bound of consensus distance and thus a valid control
parameter, see also Section A.2 for numerical validation).

2

2

The values 01@ € R can be computed locally on each node
when updating the parameters at negligible cost (compared
to gradient computations), and computing © requires only
averaging of scalars. While this can be implemented effi-
ciently in data-centers (the cost of averaging these scalar
values is negligible compared to averaging high-dimensional
parameter vectors in the gossip steps), this might not be effi-
cient over arbitrary decentralized network.

Table 8 and 9 in Appendix A.2 show the feasibility of inte-
grating the control of ©, with our practical guidelines for ef-
ficient training in data-centers, which serves as a strong start-
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ing point for designing decentralized training algorithms
with a desired balance between communication cost and
training performance.

6. Conclusion

In this work, we theoretically identify the consensus dis-
tance as an essential factor for decentralized training. We
show the existence of a critical consensus distance, below
which the consensus distance does not hinder optimization.
Our deep learning experiments validate our theoretical find-
ings and extend them to the generalization performance.
Based on these insights, we propose practical guidelines for
favorable generalization performance with low communica-
tion expenses, on arbitrary communication networks.
While we focused in this work on data-center training with
iid data as an important first step, consensus control may be
of even greater importance in non-iid scenarios (such as in
Hsieh et al., 2020).
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A. Efficient Implementation of Consensus Control for Data-Center Training

In our theoretical and experimental investigations in Sections 3 and 4, in order to understand the effect of decentralization
on the final performance, we focused on the controlling the consensus distance Z7. This quantity was inspired by theoretical
analysis and naturally measures the decentralization level. In practice, in order to control the consensus distance, one need
to know the exact value of it at every iteration. Computing the exact value of the =7 requires all-to-all communications of
the parameter vectors x;, which is costly and would cancel all the practical benefits of using decentralized algorithms.

In this section we give a more practical way to control the consensus distance without compromising the final test
performance. We mainly focus on the data-center training scenario, the most common use case of large-scale deep learning
training for both academic and industry. Though the prior arts use All-Reduce to compute the exactly averaged model
parameters, recent trends show promising faster training results by using decentralized training with gossip averaging (Assran
et al., 2019; Koloskova et al., 2020a), especially for the highly over-parameterized SOTA neural networks with large number
of model parameters.

A.1. Theoretical Justification

We upper bound the consensus distance =7 with a quantity that is efficiently computable in our scenario and control only
this quantity. This quantity additionally requires the centralized all-reduce applied only to one dimensional numbers, that is
fast to perform, and it utilizes the information available after decentralized communications step of parameters x; performed
by the (D-SGD) algorithm. For simplicity, in this section we only analyze the case of the fixed topology, i.e. mixing matrix
W is constant. Our result can be generalized for the randomized mixing matrix (Assumption 1) and in later sections we
provide the proofs under the general Assumption 1.

Lemma A.1 (Upper bound on the consensus distance). Let ©F := = 3" | HZ;;l wq;jxgt) - xz(-t) Hz =15 91@, where

wy; are the weights of the (fixed) mixing matrix W. We can upper bound the consensus distance as
2
=, < 20y, vxl L x® e rY,
p

where p is consensus rate of matrix W (Assumption 1).
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To ensure small consensus distance = it is sufficient to make small the quantity ©?. In particular by ensuring that
2
02 < %I‘f we automatically get that CCD condition holds: =2 < I'? (Proposition 3.2).

2
Practical way to compute ©7.  Recall that ©7 = 1 3" | HZ?::L wijx§t) - xgt) H2 Eachterm ¢, i € {1,...n} of this
sum is locally available to the node i after one round of decentralized communication with mixing matrix W because

2
) _ 0
2 -x,

wi; # 0 only for the neighbours j of the node i. So each node 7 can locally compute the norm HZ;LZI w; X and

then obtain the average ©7 using centralized all-reduce on only 1-dimensional numbers, that is much faster than averaging
full vectors from R¢.

Proof of the Lemma A.1
Proof. Using matrix notation we can re-write 27 = 1 || X® — X(® Hi and ©7 = 1 [|[X®OW — X® Hi

n

Since XMW = X® and X(t)% — XM 1LL _ X(%) we have that

n

(t) (t) ) _ x(t iy
XOW - X :(X>—X<>) W_ - I
n

Using Frobenius norm property (6),

11" - D p _
HX“)W X0l > i (W= 22— -1 HX(” _xw| P HX“) _X® O
F n F 2 F
Useful Inequalities
Lemma A.2. For A € R™" B € R"*", and B symmetric
where Amin(B) is the smallest eigenvalue by the absolute value.
Lemma A.3. Let W be a fixed mixing matrix satisfying Assumption 1. Then,
117
Ain (w__1> > 1 @)
n 2

Proof. Let UAU be SVD-decomposition of W. By Assumption 1, W is symmetric and doubly stochastic. Because of the
stochastic property of W, one of the eigenvalues is equal to 1 with the corresponding eigenvector u; = ﬁ 1.

. T
We can represent the matrix 11— and I as

1 0 0
117
0 0 0
Therefore,
1 0 0 -1 0 0
117 . —
w1 i_ula_ 0O 0 . 0 1luT .U 0 X-—1 0 uT
0 0 0 0 0 A — 1
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We will prove now that every A\;(W), i > 2 is smaller than /1T — p. Then it would follow that \;in (W — % — I) >
I-yI-p>%ffor0<p<1.

Lets assume that one of the A;(W) is greater than /1 — p. W.Lo.g. lets call this eigenvalue Ao Its corresponding eigenvector
is uy. Since the eigenvectors are orthogonal to each other and the ﬁrst is uy = 1, it should hold that u%TuQ =1Tuy = 0.

Lets take X such that its every column is equal to 1/n-+usy. Then X = 17 0d (I- LT X =X-X = (uz, . ,ug) =:U,
is a matrix with all columns equal to u,.
11’
- <W e

T T
(w20 0]

Since the Assumption | holds for the W for all X, it should also hold for our chosen above X and

<o)

We got a contradiction which concludes the proof. O

2

=10l =3 X - X|[},

T T 2
3% - X7 = wx - X7 = | (W ) (1 ) x

n

F

A.2. Experiments with the Efficient Consensus Control Scheme

We implement the efficient consensus control scheme to train ResNet-20 on CIFAR-10 with a ring topology (n = 32). We
compute © after each gossip step as an indicator of the exact consensus distance =. The gossip continues until © < q¢™?,
where ¢ is the control factor and ¢°™ is the exponential moving average estimator of the average norm of local gradients ¢.
Please refer to Section 4.2 for other training details.

We validate Lemma A.1 by Figure 5(a) and Figure 5(b). In Figure 5(a), we can observe that during an arbitrary interval of
the control phase the high correlation between = and © over gossips steps. In Figure 5(b), we can observe that this corrected
behavior also manifests in a large span of iterations. These observations justify our claim that the © can act as a decent
and much more inexpensive estimator of =Z. We also plot ¢ over iterations in Figure 5(c) to demonstrate that the critical
consensus distance I stays relatively constant within each training phase.

In Table 8, we show the test performance of the dec-phase-1 under the control of this efficient implementation. The pattern
is consistent with the discovery in the main text. Moreover, in Table 9, we follow the “prioritizing the initial training phase”
guideline in Section 5. Specifically, we control only the initial phase (phase-1) with the local estimate, while leaving the
other phases uncontrolled (normal decentralized training). We can observe that with our guideline, we can recover and
surpass the centralized training baseline with only the control on the initial phase. Therefore, combining the insights into
the effect of consensus distance and this efficient implementation, we open up the opportunities for practical decentralized
training schemes with a desired balance between communication cost and training performance. We leave more sophisticated
design for future work.

Table 8: Efficient consensus control of dec-phase-1 with local estimates of training ResNet-20 on CIFAR-10 (n=32).

| Centralized q=1le—4 q=1le-3 qg=1le—-2 w/o control
dec-phase-1 ‘ 92.824+0.27 92.854+0.16 92.69+0.31 92.44+0.02 91.78£0.35

Table 9: Efficient consensus control for data-center training—combining practical guideline with local estimates—for training
ResNet-20 on CIFAR-10 (n=32). Based on our practical guideline (Section 5), we control only the initial phase (phase-1) with the local
estimate (©), while leaving the other phases uncontrolled (normal decentralized training).

‘ Centralized q=1le—4 q=1le—3 q=1le-2 w/o control
guideline \ 92.82+0.27 93.10+0.13 92.79+0.17 92.644+0.14 91.78 £0.35

B. Related Work

B.1. Connection with Prior Work

Connection with gradient diversity. The connections between the consensus distance and gradient diversity measure
are not obvious and is an interesting direction for future works. On the one hand, low gradient diversity could cause
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Figure 5: Dec-phase-1: ResNet-20 on CIFAR-10 with a ring topology (n = 32), under the efficient implementation of the consensus
control with the ratio ¢ = le—3. To illustrate the evolution of the consensus distance, the plots are made over gossip steps. Note,
typically several gossip steps correspond to one training iteration for consensus control. In Figure 5(b), both = and © are plotted over
update iterations which correspond to the last gossip steps of all iterations (i.e. the troughs in Figure 5(a)); the gossip steps in Figure 5(a)
correspond to iteration steps 4824 — 4831 in Figure 5(b), and we only showcase an arbitrary interval in Figure 5(a) due to the consistent

pattern over the entire phase 1.

generalization degradation of decentralized methods as in the centralized case; one the other hand, high gradient diversity
increases the difficulty of reaching a low consensus distance.

Connection with other methods like SWA/SWAP. Our empirical insights bear similarity to the ones in SWA (Izmailov
et al., 2018), SWAP (Gupta et al., 2020), and Post-local SGD (Lin et al., 2020b), but none of them considers decentralized

deep learning.

In SWA, models are sampled from the later stages of an SGD training run: the average of these model parameters result
in a model with much higher generalization performance. SWAP extends SWA to a parallel fashion: it uses a large batch
size to train the model until close to convergence and then switches to several individual runs with a small mini-batch size.
These individual runs serve as a way of sampling from a posterior distribution and sampled models are averaged for better
generalization performance (i.e. the idea of SWA).

Post-local SGD, SWA, SWAP, as well as the empirical insights presented in our paper, are closely related: we first
need sufficient small consensus distance to guarantee the optimization quality (in post-local SGD, SWA, and SWAP, the
consensus distance equals 0), and thus different model averaging choices can be utilized in the later training phase for better
generalization. Considering the later training phase, our empirical observations in decentralized learning suggest that we can
improve the generalization through the simultaneous SGD with gossip averaging. This is analogous to SWA and SWAP that
sample model independently (i.e., perform SGD) from the well-trained model and average over sampled models; and close
to Post-local SGD which performs simultaneous SGD steps with infrequent averaging.

B.2. Discussion on “Convergence analysis v.s. generalization performance”

From convergence analysis to better understand generalization. A line of recent research reveals the interference
between initial training (optimization) (Jastrzebski et al., 2020; Golatkar et al., 2019; Achille et al., 2019) and the later
reached local minima (generalization) (Neyshabur, 2017; Lin et al., 2020b;a; Gupta et al., 2020; Izmailov et al., 2018;
Keskar et al., 2017): the generalization of the deep nets cannot be studied alone via vacuous generalization bounds, and its
practical performance is contingent on the critical initial learning (optimization) phase, which can be characterized by the
conventional convergence analysis (Achille et al., 2019; Izmailov et al., 2018; Golatkar et al., 2019; Lin et al., 2020b; Gupta

et al., 2020; Jastrzebski et al., 2020).

This motivates us to derive the metric (i.e. critical consensus distance) from the convergence analysis, for the examination
of the consensus distance (on different phases) in decentralized deep learning training. For example, (1) we identify the
impact of different consensus distances at the critical learning phase on the quality of initial optimization, and the final
generalization (Jastrzebski et al., 2020; Golatkar et al., 2019; Achille et al., 2019; Lin et al., 2020b) (i.e. our studied case of
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dec-phase-1), and (2) we reveal similar observations as in Lin et al. (2020b;a); Gupta et al. (2020); Izmailov et al. (2018)
when the optimization is no longer a problem (our studied case of dec-phase-2), where the existence of consensus distance
can act as a form of noise injection (Lin et al., 2020b) or sampling models from the posterior distribution (Gupta et al., 2020;
Izmailov et al., 2018) as discussed above.

C. Theory

In this section, we prove the claims from Section 3.

C.1. Proof of Proposition 3.2, Critical Consensus Distance

The proof of this claim follows by the following Lemma:

Lemma C.1 (Koloskova et al. (2020b), Descent lemma for non-convex case). Under the given assumptions, and for any
stepsize v < 4 T, the iterates of D-SGD satisfy

L
Eun SO) < f(x0) = D05 482 + 20207
n
Proof. By replacing =; in the above inequality with (4), we simplify:

Eve &) < f(x0) 1| V7x®) H 2262,

This inequality now matches (up to differences in the constants) the standard recursion that one can derive for C-SGD (Dekel
et al., 2012; Bottou et al., 2018; Stich & Karimireddy, 2020). O

C.2. Proof of Proposition 3.3, typical consensus distance

We need an auxiliary (but standard) lemma, to estimate the change of the consensus distance between iterations.
Lemma C.2 (Consensus distance). It holds

3(1 — 2
=< (- w2+ 2 (6 pe?)

We give the proof of this statement shortly below. First, let us consider how this lemma allows the proof of the claim. For
this, we first consider a particular special case, and assume ¢; < ¢, for a constant ¢. In this case, we can easily verify by
unrolling the recursion:

t—1
- ;3(1 = p)y*(¢? + po? ¢? o
=< Y1 p/2 EDTERT) (2 (€4 7).
— p P op
Now, for the claim in the main text, we use assumption that ¢, are changing slowly, that is, not decreasing faster than
exponentially: ¢7 < (14 p/4)¢7, ;. With this assumption, and observing (1 — p/2)*(1 + p/4)" < (1 — p/4)%, we can

unroll as before

-
|

1
_ ;31 =p)y(dF_,_, + po?)
EP <) (1-p/2) pt e

o~ ﬂ .
I
=]

;31— p)y? (971 + po?) 2 (¢?1 02>
—p/4 — — .
<) (1-p/4) ) <12(1—-p)y 2

Il
o

i
Proof of Lemma C.2. We use the following matrix notation here

X® .= [x(lt), .,xg)} e R,

PO i(t)} _xmlqqT
b n )

n Isn

VFX®, W) = [VFl(xgt), ) VR, D))
VA VD)
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2 2. 1w ONIE
,and ¢; = ;Zi:l vai(xi )H .

e 1 [
2

As a reminder, =;
2 1
= H(X(t) —AVF(X® ¢®)y) <11T — W)
n
2

F

ng3,, = [XED - x|

= H(X@) —AVF(X® ¢®)y) <71111T - I> (71111T — W)

F
2

< (1 p) |(x©O — VPO, (217 1)
F
2
(L= [P £X0) - RO, 60)|

< - p o - 5wsx) (117 -1)
n F
2
’x@) (:LHT _ I) F(1-p)(A+at)y? HVf(X(t))Hi +(1—p)yoin

<(1-p)(1+a) .
O

3(1;29)72 va(X(t))Hi +(1-pian

a=5% P
< (1 - 5) n=2 +

C.3. Sufficient bounds to meet critical consensus distance
In this section, we show that the claimed bounds in Section 3.3 are sufficient conditions to reach the CCD.

According to Proposition 3.3, there exists an absolute constant C, (w.l.o.g. C' > 2) such that

2 2
—2 o0 O
= S C(l — p)7 <p2 + p)

By smoothness,
=13 [vred|
i=1
< ié HVfi(th)) - Vf(xff))’r + ié HVf(XEt)) - Vf(ic(t))H2 + % é va(g(t))HQ

2

< 3¢2 +3L%=2 +3 Hw(x(ﬂ)H

Supposing (1 — p)y? < 65%, we can therefore estimate
3||VFER®)|]® + 3022+ 3¢ o2
22 < C(1—p)y? [v/&=)] > (+3C o
p p
2
VIED)|"+¢2 o2 1
<3C(1-p)y* H +— | + 5
(1—p)y ( e o | T a%
and hence
2
_ VIO | ¢ o
:f §66’(17p)72 H 5 H +%+7 ®)
p p b

The claimed bounds can now easily be verified, by plugging the provided values into (8). For simplicity in the main text we

assume that ¢ = 0 (we are in the datacenter training scenario).
. . . ez 5 .
Small v. By choosing v < ﬁ, we check that our previous constraint 72 < (Sé'iﬁ is satisfied, and

I ONE 2 c>2
<s><”4;;g’ng“+jfL <@
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Cc>2 2

Small p. By choosing 1 — p < we note thatp > 1%. Moreover, our previous constraint (1 — p)y? < &= <

1
5C(14+~vLn)°’

2
51=c 1s satisfied (note that v < ﬁ throughout). Hence

12 (100 |V £(x®)|° . 1002> e

® = 5(1 4 ~vLn) 81 9

In the above calculations we for the simplicity assumed that ¢ = 0. For the general non-iid data case when ¢ > 0 we can
calculate similar bounds on v, p. These bounds would have similar dependence on parameters, and would be stricter. Indeed,
the typical consensus distance would be also influenced by non-iidness of the data ¢ and it is therefore harder to satisfy the
CCD condition.

C4. Proof of Lemma 3.4, repeated gossip
By the assumption stated in the lemma, it holds for each component W of the product W = W, ... W, i € [1, k] that

Ew, |[XW; - X||% < (1 - p) || X - X%, VX € R,
Now lets estimate the parameter py . Using that W, are independent

Ew [XW - X% = Bw, .w, [|[XWi... W, - X% =
~Ewa..w,Ew, [ YW Y]}

where we defined Y = XWy, ... W5 and used that WZ-%ll—r = %11—'—, SO
_ 1 T 1 T _
Y =XW;..Wy-11' =X-11" =X.
n n
Therefore,
o112 o112
Ew || XW — X[, < (1 - p)Ew,..w, | XWi... Wy = X]| ...

Applying the same calculations to the rest, we conclude that 1 — pw = (1 — p)*.
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D. Detailed Experimental Setup

Comments on large-batch training. Coupling the quality loss issue of the decentralized training with the large-batch
training difficulty is non-trivial and is out of the scope of this paper. Instead, we use reasonable local mini-batch sizes
(together with the number of workers (denoted as n)), as well as the well-developed large-batch training techniques (Goyal
et al., 2017), to avoid the difficulty of extreme large-batch training.

Multi-phase experiment justification. The averaged local gradient norm ¢; as well as the L-smoothness of ResNet-20
on CIFAR-10 for a ring and a complete graph (n =32) are shown in Figure 6 and Figure 7 respectively.

The estimation procedure is analogous to that in (Santurkar et al., 2018; Lin et al., 2020a): we take 8 additional steps long the
direction of current update, each with 0.2 of normal step size. This is calculated at every 8 training steps. The smoothness is
evaluated as the maximum value of L satisfying Assumption 2.

s
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(a) The consensus distance for decentral- (b) The averaged norm of the local gradi- (c) The gradient Lipschitz curve for decen-
ized training. ents for decentralized training. tralized training.

Figure 6: Justification for our multiple-phase experimental design choice (on ring graph). We run ResNet-20 on CIFAR-10 (n=32)
with the ring topology. We can observe the three quantities most relevant to optimization all naturally form three phases, dictated by the
learning rate schedule.
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(a) The averaged norm of the local gradients for central- (b) The gradient Lipschitz curve for centralized training.

ized training.

Figure 7: Justification for our multiple-phase experimental design choice (on complete graph). We run ResNet-20 on CIFAR-10
(n=32) with the complete topology. We can again observe the three quantities most relevant to optimization all naturally form three
phases, dictated by the learning rate schedule.

E. Additional Results

E.1. Understanding on Consensus Averaging Problem

We study a host of communication topologies: (1) deterministic topologies (ring, and complete graph) and (2) undirected
time-varying topologies (illustrated below).

e Random matching (Boyd et al., 2006). At each communication step, all nodes are divided into non-overlapping pairs
randomly. Each node connects all other nodes with equal probability.

e Exponential graph (Assran et al., 2019). Each is assigned a rank from 0 to n— 1. Each node ¢ periodically communicates
with a list nodes with rank 7 + 20,7 + 21, ..., + 2ll°22("=D] In the one-peer-per-node experiments, each node only
communicates to one node by cycling through its list. The formed graph is undirected, i.e., both transmission and
reception take place in each communication.
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o Bipartite exponential graph (Lian et al., 2018; Assran et al., 2019). In order to avert deadlocks (Lian et al., 2018),
the node with an odd rank i cycles through nodes with even ranks i + 20 — 1,7 4+ 2! —1,...,i 4 2llog:(n=1] _ ] py

transmitting a message and waiting for a response. while the nodes with even ranks only await messages and reply upon
reception.

Table 10 displays the spectral gap and node degree of studied topologies, and Figure 8 provides the convergence curves for
different communication topologies on graph scales. Figure 9 in addition visualizes the spectral gap (in expectation) for
different communication topologies.

Table 10: Spectral gap and node degree of studied topologies.

Topologies Spectral Gaps (in expectation) Node degrees (n nodes)
Complete 1 n
Fixed ring O(-) 2
Exponential graph O(1) 2
Bipartite exponential graph O(1) 1
Random matching O(1) 1

—— ring —— ring Ly

-
o

—— exponential graph 10° ____ —— exponential graph 10° ____ —— exponential graph
random matching random matching random matching
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Figure 8: The convergence curves for the consensus averaging problem on different communication topologies and different scales (i.e.,
n =16, n=64 and n=128). This figure complements the Figure 4 in the main text.
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Figure 9: The spectral gap (in expectation) of different communication topologies on different graph scales.

Table 11 examines these topologies on a standard deep learning benchmark with different graph scales, while Figure 10
visualizes the required communication rounds (per gradient update step) for a range of consensus distance targets.

E.2. Understanding the Decentralized Deep Learning Training for CV Tasks

We use ring as our underlying decentralized communication topology in this subsection.

Elaborated results on consensus distance control. Table 12 is the elaborated version of Table 2 with more evaluated
consensus distances.
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Complete Fixedring  Exponential graph  Bipartite exponential graph Random matching
n=16 92.91+£0.12 92.51+0.19 92.63 £ 0.30 92.76 £ 0.04 92.65+0.15
n=32 92.82£0.27 91.93+0.05 92.64 £ 0.04 92.29 £0.15 92.27 £0.17

Table 11: The effect of communication topologies and scales (ResNet-20 on CIFAR-10 with n =32). The test top-1 accuracies are
over three seeds with fine-tuned learning rates.
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Figure 10: Target consensus distance v.s. the required communication rounds (per gradient update step), for training ResNet-20 on
CIFAR-10 with different communication topologies. We focus on the setup of dec-phase-1 and vary the target consensus distance for
different communication topologies. Due to the changing consensus distance over the training (of the interested phase-1), we consider the
averaged consensus distance. The topologies of exponential graph and random matching, empower the capability of fast convergence in
gossip averaging and thus only a few steps are required to reach the target consensus distance.

Table 12: The impact of consensus distance of different phases on generalization performance (test top-1 accuracy) of training
ResNet-20 on CIFAR-10. The centralized baseline performance for n =32 and n =64 are 92.82 4 0.27 and 92.71 £ 0.11 respectively.
The performance of decentralized training (all phases on a fixed ring and w/o consensus distance control) for n =32 and n = 64 are
91.74 £ 0.15 and 89.87 £ 0.12 respectively.

dec-phase-1 dec-phase-2 dec-phase-3 dec-phase-2 + dec-phase-3
Emax 172 Emax 1/4 Zmax 18 Zmax 1716 Znax Emax 172 Emax 174 S 1740 Zax Emax 1/2 Emax 1/4 Emax Zmax 172 Emax 1/4 Emax
n=32|91.78 £ 0.35 92.36 £0.21 92.74 £0.10 92.77 £ 0.25 92.72+0.05]93.04 £ 0.01 92.99 £ 0.30 92.87 £ 0.11 92.84 +0.27]92.60 £ 0.00 92.82+0.21 92.85 4+ 0.24]92.94 £ 0.07 93.03 £ 0.24 92.93 +0.15
n=64|90.31 £0.12 92.18 £ 0.07 92.45+£0.17 - 93.14 £ 0.04 92,944+ 0.10 92.79 £ 0.07 - 92.23 +£0.12 92.50 £ 0.09 92.60 £ 0.1092.95 £+ 0.07 92.83 £ 0.12 92.66 £ 0.07

SlowMo cannot fully address the decentralized optimization/generalization difficulty. Table 13 studies the effective-
ness of using SlowMo for better decentralized training. We can witness that even though the performance of decentralized
training can be boosted to some extent, it cannot fully address the quality loss issue brought by decentralized training.

Table 13: The effect of SlowMo for decentralized learning, for training ResNet20 on CIFAR-10 (n = 32). The results (over three
random seeds) use the tuned hyper-parameter of SlowMo mentioned in the original paper (Wang et al., 2020b). The centralized baseline
performance is 92.82 + 0.27.

topology w/o SlowMo  w/ SlowMo
exponential graph  92.63 £0.22 92.42 + 0.36
ring 91.74+0.15 92,53 +£0.10

On the ineffectiveness of tuning learning rate. Table 14 displays the results of training ResNet-20 on CIFAR-10 (32
nodes), with fine-tuned learning rate on phase-1; learning rate tuning cannot address the test quality loss issue caused by the
large consensus distance (i.e. over the CCD).

Prolonged training for dec-phase-2 and dec-phase-3. Table 15 shows the results for prolonged dec-phase-2 and dec-
phase-3 on CIFAR-10 with ResNet20. We can observe although longer training duration increases the performance, the
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Table 14: Phase-1 consensus distance control performance with fine-tuned learning rates of training ResNet-20 on CIFAR-10
(n=32). Setup in this table is identical to that of Table 2, except that we fine-tune the learning rate for each case from a grid of linear

scaling-up factors {30, 28, 26, 24, 22}. The results are over three seeds.
Emax 1/2 Epax 1/4 Znax
w/ tuned Ir from the search grid 91.95+0.26 92.35+0.24 92.54 +0.08
w/ default Ir 91.78 £0.35 92.36£0.21 92.74+0.10

improvement is rather small.

Table 15: The impact of different numbers of training epochs (at phase-2 and phase-3) on generalization, for training ResNet-20 on
CIFAR-10 (ring topology with n=232). The number of epochs at phase-1 is chosen from {75,100, 125}, while the rest of the training

reuses our default setup. Experiments are run over 2 seeds.
| dec-phase-3

W dec-phase-2
# nodes Emax 172 Emax 1/4 Emax ‘ Emax 172 Emax 1/4 Emax

93.04 £0.01 92.99 £0.30 92.87 £ 0.11]92.60 & 0.00 92.82 £ 0.21 92.85 +0.24

75 epochs
100 epochs 93.08 £0.08 93.05+0.16 92.94 £ 0.03]92.86 & 0.16 92.90 £ 0.18 92.93 £0.19
125 epochs 93.19 £ 0.16 93.11 £0.17 93.06 £ 0.07]92.87 £ 0.23 92.99 £ 0.25 92.97 £+ 0.20

The impact of half cosine learning rate schedule. Table 16 examines the existence of the critical consensus distance
with half cosine learning schedule (this scheme is visited in He et al. (2019) as a new paradigm for CNN training). We can
witness from Table 16 that the effect of critical consensus distance can be generalized to this learning rate schedule: there
exists a critical consensus distance in the initial training phase (as revealed in the inline Figure of Table 16) and ensures

good optimization and generalization.

Table 16: The impact of half cosine learning rate schedule on generalization, for training ResNet20 on CIFAR-10 (ring topology with
n=232). The inline figure depicts the uncontrolled consensus distance over the whole training procedure through the half-cosine learning
rate schedule. Only one training phase is considered for the consensus distance control and the numerical results in the table are averaged

15.0 /M
12.5
/

10.0 /»f

over 3 seeds.

ni 7.5 |
50 |
25

0.0 -
0 2000 4000 6000 8000 10000 12000 14000

epoch
Ring (1/25.x) Ring (1/4Z.x) Ring (1/8Z5m.x) Complete
92.40 £ 0.10 92.83 £0.11 92.78 £ 0.05 92.84 +0.22

Ring (Zmax)
92.10 + 0.06
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E.2.1. ADAPTIVE CONSENSUS DISTANCE CONTROL

In Table 17, we apply the adaptive consensus distance control in the experiments. The observations are consistent with
those in constant consensus distance control experiments.

Table 17: The impact of different consensus distances on optimization and/or generalization, for different phases of training
ResNet-20 on CIFAR-10 (n=32). The table is almost identical to Table 2, except the consensus distance is controlled by the (runtime)
averaged norm of the local gradients (i.e. adaptive consensus distance).
‘ Emax 4¢§:ma 2¢%ma ¢§ma O 5¢%ma
Phase 1 | 91.78 £ 0.35 91.65+0.31 92.474+0.18 92.63+0.04 92.80+0.16
Phase 2 | 93.04 £0.01 93.05+0.18 93.01£0.03 93.03+0.08 92.95+0.10
Phase 3 | 92.944+0.07 92.87+0.18 92.83+0.20 - -

E.3. Consensus control with other topologies

In Table 18, we exert consensus control with an exponential graph as the base communication topology; the local update
step corresponds to the number of local model update steps per communication round, and we use it as a way to increase
discrepancy (consensus distance) among nodes. We can observe that our findings from main experiments with a ring base
topology are valid.

Table 18: The impact of quality propagation across phases (in both phase 1 and phase 2) on an undirected time-varying exponential
graph (n=32), similar to Table 5.

W local update step = 1 local update step =2 local update step = 4

phase 1 S 240 g 0.5¢em o 2g0m g 0.5¢em S 25 g 0500
207 9243+ 0.16 92.44+0.24 92.36 £0.06 92.45 £ 0.01 - - - - - - -
Lggma 92.58 £0.09 92.37+£0.14 92.63 £ 0.09 92.51 £ 0.16 - - - - - - -
0.5¢¢™ 02,74+ 0.17 92.56 £0.19 92.56 +0.21 92.75+£0.24 92.79 £ 0.13 92.68 +0.21 92.65 £ 0.07 92.68 £ 0.22 92.85+0.09 92.76 £0.09 92.72 £+ 0.21 92.75 % 0.09
0.25¢5™* 92.71+£0.13 92.72+0.08 92.81 £ 0.20 92.76 £ 0.24 92.83 £0.21 92.86 £0.16 92.86 £0.13 92.81 £0.26 93.13 4+ 0.09 92.88 +0.16 92.85 4+ 0.26 92.77 £ 0.23

E.3.1. THE EXISTENCE OF THE OPTIMAL CONSENSUS DISTANCE FOR NOISE INJECTION.

Table 19 uses a different communication topology (i.e. time-varying exponential graph) for decentralized optimization. Here
exponential graph with large spectral gap is applied to CIFAR-10 dec-phase-2 training. We apply the adaptive consensus
distance control in this set of experiments. We can observe that increasing consensus distance further by taking local steps
improves generalization, however, too many local steps diminish the performance. For instance, for ratio=2, the performance
peaks at local update steps 2 and drops at local update 4. It points out that an optimal consensus distance is required to inject
proper stochastic noise for better generalization.

Table 19: The impact of different consensus distances at phase 2, for training ResNet-20 on CIFAR-10 with time-varying exponential
graph (n=32). The baseline performance of using exponential graph for the entire decentralized training is 92.64 =+ 0.04. The reported
test top-1 accuracies are averaged over three seeds.

local update step = 1 local update step = 2 local update step = 4
Em;]x Qc‘)ima qsgma 0.5(7)%“18 2()§ma d)gﬂ\ﬂ 05¢§ma 20‘)?"]8 qsgnla 0 S(nga

92.83+£0.12 92.80£0.09 92.744+0.27 92.77+0.19 93.04£0.08 92.85+0.17 92.804+0.02 9287+£0.10 92.90+£0.12 92.88+0.19

E.4. Results for Training Transformer on Multi30k

We additionally report the decentralized training results, for a downsampled transformer models (by the factor of 2 w.r.t. the
base model in Vaswani et al. (2017)) on Multi30k (Elliott et al., 2016). Figure 11 shows that the straightforward application
of Adam in the decentralized manner does encounter generalization problems, which are attributed to the fact that the
different local moment buffers (in addition to the weights) become too diverse. Tuning the learning rate schedule cannot
address the issue of decentralized Adam, as shown in the Figure 11(b).
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Figure 11: Learning curves for training the transformer model on the Multi30k dataset (n=32). In Figure 11(b), we tune the the
number of warmup steps as as way of tuning the learning rate, as the learning rate used in transformer training (Vaswani et al., 2017) is
deterministically controlled by the model’s dimensionality, the current step index, and the number of warmup steps.
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(b) Tuning the learning rate cannot alleviate the issue of decentral-
ized Adam.
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