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Abstract

Dirichlet-based uncertainty (DBU) models are a
recent and promising class of uncertainty-aware
models. DBU models predict the parameters of a
Dirichlet distribution to provide fast, high-quality
uncertainty estimates alongside with class predic-
tions. In this work, we present the first large-
scale, in-depth study of the robustness of DBU
models under adversarial attacks. Our results sug-
gest that uncertainty estimates of DBU models
are not robust w.r.t. three important tasks: (1)
indicating correctly and wrongly classified sam-
ples; (2) detecting adversarial examples; and (3)
distinguishing between in-distribution (ID) and
out-of-distribution (OOD) data. Additionally, we
explore the first approaches to make DBU mod-
els more robust. While adversarial training has
a minor effect, our median smoothing based ap-
proach significantly increases robustness of DBU
models.

1. Introduction

Neural networks achieve high predictive accuracy in many
tasks, but they are known to have two substantial weak-
nesses: First, neural networks are not robust against ad-
versarial perturbations, i.e., semantically meaningless input
changes that lead to wrong predictions (Szegedy et al., 2014;
Goodfellow et al., 2015). Second, standard neural networks
are unable to identify samples that are different from the
ones they were trained on and tend to make over-confident
predictions at test time (Lakshminarayanan et al., 2017).
These weaknesses make them impracticable in sensitive do-
mains like financial, autonomous driving or medical areas
which require trust in predictions.

To increase trust in neural networks, models that provide pre-
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Figure 1. Visualization of the desired uncertainty estimates.

dictions along with the corresponding uncertainty have been
proposed. An important, quickly growing family of models
is the Dirichlet-based uncertainty (DBU) family (Malinin
& Gales, 2018a; 2019; Sensoy et al., 2018; Malinin et al.,
2019; Charpentier et al., 2020; Zhao et al., 2020; Nandy
et al., 2020; Shi et al., 2020; Sensoy et al., 2020). Con-
trary to other approaches such as Bayesian Neural Networks
(Blundell et al., 2015; Osawa et al., 2019; Maddox et al.,
2019), drop out (Gal & Ghahramani, 2016) or ensembles
(Lakshminarayanan et al., 2017), DBU models provide effi-
cient uncertainty estimates at test time in a single forward
pass by directly predicting the parameters of a Dirichlet
distribution over categorical probability distributions. DBU
models have the advantage that they provide both, aleatoric
uncertainty estimates resulting from irreducible uncertainty
(e.g. class overlap or noise) and epistemic uncertainty esti-
mates resulting from the lack of knowledge about unseen
data (e.g. an unknown object is presented to the model).
Both uncertainty types can be quantified from Dirichlet
distributions using different uncertainty measures such as
differential entropy, mutual information, or pseudo-counts.
These uncertainty measures show outstanding performance
in, e.g., the detection of OOD samples and thus are supe-
rior to softmax based confidence (Malinin & Gales, 2018a;
2019; Charpentier et al., 2020).
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Neural networks from the families outlined above are ex-
pected to know what they don’t know, i.e. they are sup-
posed to notice when they are unsure about a prediction.
This raises questions with regards to adversarial examples:
should uncertainty estimation methods detect these cor-
rupted samples by indicating a high uncertainty on them and
abstain from making a prediction? Or should uncertainty
estimation be robust to adversarial examples and assign the
correct label even under perturbations? We argue that being
robust to adversarial perturbations is the best option (see
Figure 1) for two reasons. First, in image classification a
human is usually not able to observe any difference between
an adversarial example and an unperturbed image. Second,
the size of the perturbation corresponding to a good ad-
versarial example is typically small w.r.t. the L,,-norm and
thus assumed to be semantically meaningless. Importantly,
robustness should not only be required for the class predic-
tions, but also for the uncertainty estimates. This means that
DBU models should be able to distinguish robustly between
ID and OOD data even if those are perturbed.

In this work, we focus on DBU models and analyze their
robustness capacity w.r.t. class predictions as well as un-
certainty predictions. In doing so, we go beyond simple
softmax output confidence by investigating advanced uncer-
tainty measures such as differential entropy. Specifically,
we study the following questions:

1. Is low uncertainty a reliable indicator of correct pre-
dictions?

2. Can we use uncertainty estimates to detect label attacks
on the class prediction?

3. Are uncertainty estimates such as differential entropy
a robust feature for OOD detection?

In addressing these questions we place particular focus
on adversarial perturbations of the input to evaluate the
worst case performance of the models on increasing com-
plex data sets and attacks. We evaluate robustness of DBU
models w.r.t. to these three questions by comparing their
performance on unperturbed and perturbed inputs. Per-
turbed inputs are obtained by computing label attacks and
uncertainty attacks, which are a new type of attacks we
propose. While label attacks aim at changing the class
prediction, uncertainty attacks aim at changing the uncer-
tainty estimate such that ID data is marked as OOD data
and vice versa. In total, we performed more than 138, 800
attack settings to explore the robustness landscape of DBU
models. Those settings cover different data sets, attack
types, attack losses, attack radii, DBU model types and
initialisation seeds. Finally, we propose and evaluate me-
dian smoothing and adversarial training based on label at-
tacks and uncertainty attacks to make DBU models more

robust. Our median smoothing approach provides certifi-
cates on epistemic uncertainty measures such as differential
entropy and allows to certify uncertainty estimation. The
code and further supplementary material is available online
(www.daml.in.tum.de/dbu-robustness).

2. Related work

The existence of adversarial examples is a problematic prop-
erty of neural networks (Szegedy et al., 2014; Goodfellow
et al., 2015). Previous works have study this phenomena
by proposing adversarial attacks (Carlini & Wagner, 2017;
Brendel et al., 2018; Ziigner et al., 2018), defenses (Cisse
et al., 2017; Gu & Rigazio, 2015) and verification tech-
niques (Wong & Kolter, 2018; Singh et al., 2019; Cohen
et al., 2019; Bojchevski et al., 2020; Kopetzki & Giinne-
mann, 2021). This includes the study of different settings
such as i.i.d. inputs, sequential inputs and graphs (Zheng
et al., 2016; Bojchevski & Giinnemann, 2019; Cheng et al.,
2020; Schuchardt et al., 2021).

In the context of uncertainty estimation, robustness of the
class prediction has been studied in previous works for
Bayesian Neural Networks (Blundell et al., 2015; Osawa
et al., 2019; Maddox et al., 2019), drop out (Gal & Ghahra-
mani, 2016) or ensembles (Lakshminarayanan et al., 2017)
focusing on data set shifts (Ovadia et al., 2019) or adver-
sarial attacks (Carbone et al., 2020; Cardelli et al., 2019;
Wicker et al., 2020). Despite their efficient and high quality
uncertainty estimates, the robustness of DBU models has
not been investigated in detail yet — indeed only for one
single DBU model, (Malinin & Gales, 2019) has briefly
performed attacks aiming to change the label. In contrast,
our work focuses on a large variety of DBU models and
analyzes two robustness properties: robustness of the class
prediction w.r.t. adversarial perturbations and robustness
of uncertainty estimation w.r.t. our newly proposed attacks
against uncertainty measures.

This so called uncertainty attack directly targets uncertainty
estimation and are different from traditional label attacks,
which target the class prediction (Madry et al., 2018; Dang-
Nhu et al., 2020). They allow us to jointly evaluate robust-
ness of the class prediction and robustness of uncertainty
estimation. This goes beyond previous attack defenses that
were either focused on evaluating robustness w.r.t. class
predictions (Carlini & Wagner, 2017; Weng et al., 2018)
or detecting attacks against the class prediction (Carlini &
Wagner, 2017).

Different models have been proposed to account for uncer-
tainty while being robust. (Smith & Gal, 2018) and (Lee
et al., 2018) have tried to improve label attack detection
based on uncertainty using drop-out or density estimation.
In addition to improving label attack detection for large un-
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seen perturbations, (Stutz et al., 2020) aimed at improving
robustness w.r.t. class label predictions on small input per-
turbations. They used adversarial training and soft labels
for adversarial samples further from the original input. (Qin
et al., 2020) suggested a similar adversarial training proce-
dure, that softens labels depending on the input robustness.
These previous works consider the aleatoric uncertainty that
is contained in the predicted categorical probabilities, but
in contrast to DBU models they are not capable of taking
epistemic uncertainty into account.

Recently, four studies tried to obtain certificates on aleatoric
uncertainty estimates. (Tagasovska & Lopez-Paz, 2019)
and (Kumar et al., 2020) compute confidence intervals and
certificates on softmax predictions. (Bitterwolf et al., 2020)
uses interval bound propagation to compute bounds on soft-
max predictions within the L,-ball around an OOD sample
using ReL.U networks. (Meinke & Hein, 2020) focuses on
obtaining certifiably low confidence for OOD data. These
four studies estimate confidence based on softmax predic-
tions, which accounts for aleatoric uncertainty only. In this
paper, we provide certificates which apply for all uncertainty
measures. In particular, we use our certificates on epistemic
uncertainty measures such as differential entropy which are
well suited for OOD detection.

3. Dirichlet-based uncertainty models

Standard (softmax) neural networks predict the parame-
ters of a categorical distribution p(* = [pg”, o p(é)] for
a given input (¥ € R, where C'is the number of classes.
Given the parameters of a categorical distribution, the
aleatoric uncertainty can be evaluated. The aleatoric un-
certainty is the uncertainty on the class label prediction
y® € {1,...,C}. For example if we predict the outcome
of an unbiased coin flip, the model is expected to have high
aleatoric uncertainty and predict p(head) = 0.5.

In contrast to standard (softmax) neural networks,
DBU models predict the parameters of a Dirichlet dis-
tribution — the natural prior of categorical distribu-
tions — given input () (ie. ¢® = Dir(a”) where
fo(x®) = o) € RY). Hence, the epistemic distribution
¢ expresses the epistemic uncertainty on (%), i.e. the
uncertainty on the categorical distribution prediction p(*).
From the epistemic distribution, follows an estimate of the
aleatoric distribution of the class label prediction Cat(p(")
where E ) [p®¥] = p). An advantage of DBU models is
that one pass through the neural network is sufficient to
compute epistemic distribution, aleatoric distribution, and
predict the class label:

¢ =Dir(a?), ) = y¥) = argmax [p{¥)]
c

(1)

i)’
Qg

where a((f) = ZCC:l ol This parametrization allows to
compute classic uncertainty measures in closed-form such
as the total pseudo-count m&’g = Zc agi), the differential
entropy of the Dirichlet distribution m\/J; = h(Dir(a(?)))
or the mutual information ml(vz[% = I(y®,p@) (App. 6.1,
(Malinin & Gales, 2018a)). Hence, these measure can effi-
ciently be used to assign high uncertainty to unknown data,
which makes DBU models specifically suited for detection
of OOD samples.

Several recently proposed models for uncertainty estima-
tions belong to the family of DBU models, such as PriorNet,
EvNet, DDNet and PostNet. These models differ in terms
of their parametrization of the Dirichlet distribution, the
training, and density estimation. An overview of theses
differences is provided in Table 1. In our study we evaluate
all recent versions of these models.

Contrary to the other models, Prior Networks (PriorNet)
(Malinin & Gales, 2018a; 2019) require OOD data for train-
ing to “teach” the neural network the difference between
ID and OOD data. PriorNet is trained with a loss function
consisting of two KL-divergence terms. The fist term is
designed to learn Dirichlet parameters for ID data, while the
second one is used to learn a flat Dirichlet distribution for
OO0D data:

LPriorNet = % Z

(9 €ID data

[KL[Dir(a)]l¢]]
2
[KL[Dir(a®°P)[|¢]

D

(1) €00 Ddata

I OOD

where o' and o are hyper-parameters. Usually o'P
is set to le® for the correct class and 1 for all other classes,
while a©OP is set to 1 for all classes. There a two variants
of PriorNet. The first one is trained based on reverse KL-
divergence (Malinin & Gales, 2019), while the second one
is trained with KL-divergence (Malinin & Gales, 2018a). In
our experiments, we include the most recent reverse version
of PriorNet, as it shows superior performance (Malinin &
Gales, 2019).

Evidential Networks (EvNet) (Sensoy et al., 2018) are
trained with a loss that computes the sum of squares be-
tween the on-hot encoded true label y+(*) and the predicted
categorical p(*) under the Dirichlet distribution:

|I?

1 7 1
Lpvwer = 3 D Epinpirta)|ly +7 —pf 3)

Ensemble Distribution Distillation (DDNet) (Malinin et al.,
2019) is trained in two steps. First, an ensemble of M
classic neural networks needs to be trained. Then, the soft-

labels {p5,i) M_ provided by the ensemble of networks are
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Table 1. Summary of DBU models. Further details on the loss functions are provided in the appendix.

a()-parametrization Loss

PostNet  fo(x() =1+ a® Bayesian loss ~ No
PriorNet fp(z()) = a® Reverse KL Yes
DDNet  fo(z®) = a® Dir. Likelihood No
EvNet fo(x®) =1+ a®  Expected MSE No

OOD training data Ensemble training Density estimation
No Yes
No No
Yes No
No No

distilled into a Dirichlet-based network by fitting them with
the maximum likelihood under the Dirichlet distribution:

1 M o
LppNet = =37 Z Z In g™ (x™)] S
m=1

i
where 7°™ denotes the soft-label of mth neural network.

Posterior Network (PostNet) (Charpentier et al., 2020) per-
forms density estimation for ID data with normalizing flows
and uses a Bayesian loss formulation:

1 L .
LpostNet = N Z Eq(p(i)) [CE(p(l), y(l))] - H(q(l)>
1 5)

where CE denotes the cross-entropy. All loss functions
can be computed in closed-form. For more details please
have a look at the original paper on PriorNet (Malinin &
Gales, 2018a), PostNet (Charpentier et al., 2020), DDNet
(Malinin & Gales, 2019) and EvNet (Sensoy et al., 2018).
Note that EvNet and PostNet model the Dirichlet parameters
as fo(x() =14 a'” while PriorNet, RevPriorNet and
DDNet compute them as fp(x®) = a(?.

4. Robustness of Dirichlet-based uncertainty
models

We analyze robustness of DBU models on tasks in connec-
tion with uncertainty estimation w.r.t. the following four
aspects: accuracy, confidence calibration, label attack de-
tection and OOD detection. Uncertainty is quantified by
differential entropy, mutual information or pseudo counts.
A formal definition of all uncertainty estimation measures
is provided in the appendix (see Section 6.1).

Robustness of Dirichlet-based uncertainty models is evalu-
ated based on label attacks and a newly proposed type of
attacks called uncertainty attacks. While label attacks aim
at changing the predicted class, uncertainty attacks aim at
changing the uncertainty assigned to a prediction. All previ-
ous works are based on label attacks and focus on robustness
w.r.t. the class prediction. Thus, we are the first to propose
attacks targeting uncertainty estimates such as differential
entropy and analyze desirable robustness properties of DBU
models beyond the class prediction. Label attacks and un-
certainty attacks both compute a perturbed input () close
to the original input () ie. ||z — ||, < 7 where

r is the attack radius. This perturbed input is obtained by
optimizing a loss function {(x) using Fast Gradient Sign
Method (FGSM) or Projected Gradient Descent (PGD). Fur-
thermore, we include a black box attack setting (Noise)
which generates 10 noise samples from a Gaussian distribu-
tion, which is centered at the original input. From these 10
perturbed samples we choose the one with the greatest effect
on the loss function and use it as attack. To complement
attacks, we compute certificates on uncertainty estimates
using median smoothing (yeh Chiang et al., 2020).

The following questions we address by our experiments have
a common assessment metric and can be treated as binary
classification problems: distinguishing between correctly
and wrongly classified samples, discriminating between non-
attacked input and attacked inputs or differentiating between
ID data and OOD data. To quantify the performance of the
models on these binary classification problems, we compute
the area under the precision recall curve (AUC-PR).

Experiments are performed on two image data sets (MNIST
(LeCun & Cortes, 2010) and CIFAR10 (Krizhevsky et al.,
2009)), which contain bounded inputs and two tabular data
sets (Segment (Dua & Graff, 2017) and Sensorless drive
(Dua & Graff, 2017)), consisting of unbounded inputs. Note
that unbounded inputs are challenging since it is impossible
to describe the infinitely large OOD distribution. As Prior-
Net requires OOD training data, we use two further image
data sets (FashionMNIST (Xiao et al., 2017) and CIFAR100
(Krizhevsky et al., 2009)) for training on MNIST and CI-
FAR10, respectively. All other models are trained without
OOD data. To obtain OOD data for the tabular data sets, we
remove classes from the ID data set (class window for the
Segment data set and class 9 for Sensorless drive) and use
them as the OOD data. Further details on the experimental
setup are provided in the appendix (see Section 6.2).

4.1. Uncertainty estimation under label attacks

Label attacks aim at changing the predicted class. To obtain
a perturbed input with a different label, we maximize the
cross-entropy loss &Y ~ arg max, I(x) = CE(p¥,y?)
under the radius constraint. For the sake of completeness we
additionally analyze label attacks w.r.t. to their performance
of changing the class prediction and the accuracy of the
neural network under label attacks constraint by different
radii (see Appendix, Table 8). As expected and partially
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shown by previous works, none of the DBU models is robust
against label attacks. However, we note that PriorNet is
slightly more robust than the other DBU models. This might
be explained by the use of OOD data during training, which
can be seen as some kind of robust training. From now
on, we switch to the core focus of this work and analyze
robustness properties of uncertainty estimation.

Is low uncertainty a reliable indicator of correct predic-
tions?

Expected behavior: Predictions with low uncertainty are
more likely to be correct than high uncertainty predictions.
Assessment metric: We distinguish between correctly clas-
sified samples (label 0) and wrongly classified ones (label
1) based on the differential entropy scores produced by the
DBU models (Malinin & Gales, 2018a). Correctly classi-
fied samples are expected to have low differential entropy,
reflecting the model’s confidence, and analogously wrongly
predicted samples are expected to have higher differential
entropy. Observed behavior: Note that the positive and neg-
ative class are not balanced, thus, the use of AUC-PR scores
(Saito & Rehmsmeier, 2015) are important to enable mean-
ingful measures. While uncertainty estimates are indeed
an indicator of correctly classified samples on unperturbed
data, none of the models maintains its high performance on
perturbed data computed by PGD, FGSM or Noise label
attacks (see. Table 2, 14 and 15). Thus, using uncertainty es-
timates as indicator for correctly labeled inputs is not robust
to adversarial perturbations. This result is notable, since the
used attacks do not target uncertainty.

Can uncertainty estimates be used to detect label at-
tacks against the class prediction?

Expected behavior: Adversarial examples are not from the
natural data distribution. Therefore, DBU models are ex-
pected to detect them as OOD data by assigning them
a higher uncertainty. We expect that perturbations com-
puted based on a bigger attack radius r are easier to de-
tect as their distance from the data distribution is larger.
Assessment metric: The goal of attack-detection is to distin-
guish between unperturbed samples (label 0) and perturbed
samples (label 1). Uncertainty on samples is quantified
by the differential uncertainty (Malinin & Gales, 2018a).
Unperturbed samples are expected to have low differential
entropy, because they are from the same distribution as the
training data, while perturbed samples are expected to have
a high differential entropy. Observed behavior: Table 8
shows that the accuracy of all models decreases significantly
under PGD label attacks, but none of the models is able to
provide an equivalently increasing attack detection rate (see
Table 3). Even larger perturbations are hard to detect for
DBU models.

Similar results are obtained when we use mutual informa-
tion or the precision o to quantify uncertainty (see ap-

pendix Table 13 and 12). Although PGD label attacks do
not explicitly consider uncertainty, they seem to generate
adversarial examples with similar uncertainty as the original
input. Such high-certainty adversarial examples are illus-
trated in Figure 2, where certainty is visualized based on the
precision oy, which is supposed to be high for ID data and
low for OOD data. While the original input (perturbation
size 0.0) is correctly classified as frog and ID data, there
exist adversarial examples that are classified as deer or bird.
The certainty (ag-score) on the prediction of these adver-
sarial examples has a similar or even higher value than on
the prediction of the original input. Using the differential
entropy to distinguish between ID and OOD data results in
the same ID/OOD assignment since the differential entropy
of the three right-most adversarial examples is similar or
even smaller than on the unperturbed input.

Under the less powerful FGSM and Noise attacks (see Ap-
pendix), DBU models achieve mostly higher attack detec-
tion rates than under PGD attacks. This suggests that un-
certainty estimation is able to detect weak attacks, which
is consistent with the observations in (Malinin & Gales,
2018b) but fails under stronger PGD attacks.

x5 . truck dog . bird —
EE ship deer H sutomobile
3p ™= horse - cht = zirplans
frog

e S S B  S—
— — — S E—
o e e —— — —
=} - ™ [0 =) [=] [=]
o [=] (=] (=] [ =

—
perturbation L2 norm

Figure 2. Input and predicted Dirichlet-parameters under label at-
tacks (dotted line: threshold to distinguish ID and OOD data).

On tabular data sets, PostNet shows a better label attack de-
tection rate for large perturbations. This observation might
be explained by the fact that the density estimation of the
ID samples has been shown to work better for tabular data
sets (Charpentier et al., 2020). Overall, none of the DBU
models provides a reliable indicator for adversarial inputs
that target the class prediction.

4.2. Attacking uncertainty estimation

DBU models are designed to provide sophisticated uncer-
tainty estimates (beyond softmax scores) alongside predic-
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Table 2. Distinguishing between correctly predicted and wrongly predicted labels based on the differential entropy under PGD label

attacks (metric: AUC-PR).

CIFAR10 \ Sensorless
Att.Rad. 00 01 02 05 10 20 | 00 01 02 05 1.0 20
PostNet 987 886 562 7.8 12 04 997 83 39 36 70 98
PriorNet 929 777 60.5 37.6 249 113 99.8 105 32 07 02 02
DDNet 97.6 91.8 783 181 08 0.0 99.7 119 1.6 04 02 0.1
EvNet 979 859 572 102 40 24 99.9 229 130 6.0 37 32

Table 3. Label Attack-Detection by normally trained DBU models based on differential entropy under PGD label attacks (AUC-PR).

CIFARI10 ‘ Sensorless
Att. Rad. 0.1 0.2 0.5 1.0 2.0 ‘ 0.1 0.2 0.5 1.0 2.0
PostNet 63.4 66.9 421 329 31.6 477 423 369 485 85.0
PriorNet 53.3 56.0 556 49.2 422 38.8 33.6 314 33.1 409
DDNet 55.8 605 57.3 387 323 53.5 422 350 328 326
EvNet 484 469 463 463 44.5 482 42.6 382 360 372

tions and use them to detect OOD samples. In this sec-
tion, we propose and analyze a new attack type that tar-
gets these uncertainty estimates. DBU models enable us
to compute uncertainty measures i.e. differential entropy,
mutual information and precision aq in closed from (see
(Malinin & Gales, 2018a) for a derivation). Uncertainty
attacks use this closed form solution as loss function for
PGD, FGSM or Noise attacks. Since differential entropy
is the most widely used metric for ID-OOD-differentiation,
we present results based on the differential entropy loss

function (¥ ~ arg max [(z) = Diff-E(Dir(a®)):
Diff-E(Dir(o(")) Z InT(a)) —InT(a!)
=32l - 1)+ (Bal®) - Wal))
(6)
where a =>. a(z) Result based on further uncertainty

measures, loss functions and more details on attacks are
provided in the appendix.

We analyze the performance of DBU models under uncer-
tainty attacks w.r.t. two tasks. First, uncertainty attacks are
computed on ID data aiming to indicate it as OOD data,
while OOD data is left non-attacked. Second, we attack
OOD data aiming to indicate it as ID data, while ID data is
not attacked. Hence, uncertainty attacks target at posing ID
data as OOD data and vice versa.

Are uncertainty estimates a robust feature for OOD de-
tection?
Expected behavior: We expect DBU models to be able to

perurbation L2 norm

Iﬁlﬁlﬁlﬁlﬁlﬁlﬁl

(a) OOD uncertainty attack

(b) ID uncertainty attack

Figure 3.ID and OOD input with corresponding Dirichlet-
parameters under uncertainty attacks (dotted line: threshold to
distinguish ID and OOD).

distinguish between ID and OOD data by providing reliable
uncertainty estimates, even under small perturbations. Thus,
we expect uncertainty estimates of DBU models to be robust
under attacks. Assessment metric: We distinguish between
ID data (label 0) and OOD data (label 1) based on the dif-
ferential entropy as uncertainty scoring function (Malinin &
Gales, 2018a). Differential entropy is expected to be small
on ID samples and high on OOD samples. Experiments
on further uncertainty measure and results on the AUROC
metric are provided in the appendix. Observed behavior:
OOD samples are perturbed as illustrated in Figure 3. Part
(a) of the figure illustrates an OOD-samples, that is cor-
rectly identified as OOD. Adding adversarial perturbations
> 0.5 changes the Dirichlet parameters such that the re-
sulting images are identified as ID, based on precision or
differential entropy as uncertainty measure. Perturbing an
ID sample (part (b)) results in images that are marked as
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Table 4. OOD detection based on differential entropy under PGD uncertainty attacks against differential entropy computed on ID data and

OOD data (metric: AUC-PR).

ID-Attack (non-attacked OOD)

| OOD-Attack (non-attacked ID)

Att. Rad. 0.0 0.1 02 05 1.0

2.0

| 00 01 02 05 10 20

CIFAR10 - SVHN

PostNet 81.8 643 472 224 17.6 169 81.8 60.5 40.7 233 21.8 19.8
PriorNet 544 40.1 30.0 179 156 154 544 407 30.7 195 165 15.7
DDNet 828 714 592 289 160 154 828 720 572 208 156 154
EvNet 803 624 454 217 179 165 80.3 582 465 34.6 28.0 239
Sens. — Sens. class 10, 11
PostNet 74.5 39.8 36.1 36.0 459 46.0 745 433 42.0 321 351 82.6
PriorNet 323 26.6 26.5 265 26.6 283 323 267 266 266 270 304
DDNet 31.7 26.8 26.6 265 266 27.1 31.7 27.1 26.7 267 268 269
EvNet 66.5 30.5 282 27.1 28.1 31.8 66.5 387 36.1 302 282 2838

OOD samples. OOD detection performance of all DBU
models rapidly decreases with the size of the perturbation,
regardless of whether attacks are computed on ID or OOD
data (see Table 4). This performance decrease is also ob-
served with AUROC as metric, attacks based on FGSM,
Noise, when we use mutual information or precision g
to distinguish between ID samples and OOD samples (see
appendix Table 21 - 28). Thus, using uncertainty estimation
to distinguish between ID and OOD data is not robust.

4.3. How to make DBU models more robust?

Our robustness analysis based on label attacks and uncer-
tainty attacks shows that predictions, uncertainty estimation
and the differentiation between ID and OOD data are not
robust. Next, we explore approaches to improve robust-
ness properties of DBU models w.r.t. these tasks based on
randomized smoothing and adversarial training.

Randomized smoothing was originally proposed for cer-
tification of classifiers (Cohen et al., 2019). The core idea
is to draw multiple samples " ~ A/(z?), o) around the
input data (¥, to feed all these samples through the neural
network, and to aggregate the resulting set of predictions
(e.g. by taking their mean), to get a smoothed prediction.
Besides allowing certification, as a side effect, the smoothed
model is more robust. Our idea is to use randomized smooth-
ing to improve robustness of DBU models, particularly w.r.t.
uncertainty estimation. In contrast to discrete class pre-
dictions, however, certifying uncertainty estimates such as
differential entropy scores requires a smoothing approach
that is able to handle continuous values as in regression
tasks. So far, only few works for randomized smoothing for
regression models have been proposed (Kumar et al., 2020;

yeh Chiang et al., 2020). We choose median smoothing (yeh
Chiang et al., 2020), because it is applicable to unbounded
domains as required for the uncertainty estimates covered in
this work. In simple words: The set of uncertainty scores ob-
tained from the 2\ ~ N(x™, o) is aggregated by taking
their median.

In the following experiments we focus on differential en-
tropy as the uncertainty score. We denote the resulting
smoothed differential entropy, i.e. the median output, as
m(z*). Intuitively, we expect that the random sampling
around a data point as well as the outlier-insensitivity of
the median to improve the robustness of the uncertainty
estimates w.r.t. adversarial examples.

To measure the performance and robustness of our smoothed
DBU models, we apply median smoothing on the same tasks
as in the previous sections, i.e., distinguishing between cor-
rectly and wrongly labeled inputs, attack detection, OOD
detection and compute the corresponding AUC-PR score un-
der label attacks and uncertainty attacks. The bold, middle
part of the columns in Tables 5, 6, and 7 show the AUC-PR
scores on CIFAR10, which we call empirical performance
of the smoothed models. To facilitate the comparison with
the base model of Section 4, we highlight the AUC-PR
scores in blue in cases where the smooth model is more
robust. The highlighting clearly shows that randomized
smoothing increases the robustness of the empirical per-
formance on OOD detection. OOD detection under strong
PGD attacks (attack radius > 0.5) performs comparable to
random guessing (i.e. AUC-PR scores around 50% whith
50% ID and 50% OOD data). This shows that DBU models
are not reliably efficient w.r.t. this task. In attack detection
and distinguishing between correctly and wrongly predicted
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Table 5. Distinguishing between correctly and wrongly predicted labels based on differential entropy under PGD label attacks. Smoothed
DBU models on CIFAR10. Column format: guaranteed lowest performance - empirical performance - guaranteed highest performance
(blue: normally/adversarially trained smooth classifier is more robust than the base model).

Att. Rad. 0.0 0.1 0.5 1.0 2.0

PostNet 80.5-91.5-94.5 52.8-71.6-952 319-51.0-96.8 5.6-11.7-100.0 0.3- 0.6-100.0 0.0- 0.0-100.0
Smoothed PriorNet 81.9-86.8-88.0 69.6-78.0-90.1 50.9-65.8-89.4 36.5-59.9- 97.0 24.3-39.3-100.0 9.2-17.9-100.0
models DDNet 65.9-81.2-83.0 55.8-70.5-87.2 37.8-56.8-88.1 10.1-21.9- 943 0.9- 1.6- 99.6 0.0- 0.0-100.0

EvNet 76.3-90.2-91.7 54.7-74.3-95.7 31.6-51.5-945 5.8-11.9- 86.9 1.9. 7.0-100.0 1.1- 4.0-100.0
Smoothed PostNet - 52.1-71.8-95.6 31.2-47.9-96.1 7.8-14.7- 98.6 1.8- 4.4-100.0 0.3- 0.5-100.0
+adv. w.  PriorNet - 57.6-71.7-889 46.1-64.5-90.1 38.1-59.3- 99.5 32.3-51.7-100.0 22.1-41.6- 974
label DDNet - 58.6-78.4-92.2 49.4-66.0-90.5 12.0-21.4- 98.1 0.8- 1.0- 96.6 0.0- 0.0-100.0
attacks EvNet - 24.3-34.2-51.8 326-49.5-95.5 59-13.0-100.0 2.6- 5.2- 99.9 2.9- 5.9-100.0
Smoothed PostNet - 52.8-74.2-94.6 33.0-49.4-875 7.7-14.2- 99.0 0.6- 1.2-100.0 0.7- 1.1-100.0
+adv. w.  PriorNet - 50.6-68.1-88.6 44.4-66.1-96.0 35.1-57.4- 98.4 18.4-32.2-100.0 15.2-29.3-100.0
uncert. DDNet - 68.8-84.4-93.2 45.1-60.8-86.8 12.3-22.0- 91.0 0.8- 1.7- 87.0 0.0- 0.0-100.0
attacks EvNet - 54.2-73.7-96.1 30.5-50.0-99.5 7.1-13.9-100.0 3.7- 8.7 75.2 3.3+ 5.8-100.0

Table 6. Attack detection (PGD label attacks) based on differential entropy. Smoothed DBU models on CIFAR10. Column format:
guaranteed lowest performance - empirical performance - guaranteed highest performance (blue: normally/adversarially trained smooth

classifier is more robust than the base model).

Att. Rad. 0.1 0.2 0.5 1.0 2.0

PostNet 33.1-50.4-89.9 31.0-50.2-96.9 30.7-50.2-100.0 30.7-50.0-100.0 30.7-50.2-100.0
Smoothed PriorNet 35.9-50.6-74.5 33.0-50.3-82.8 31.2-50.0- 95.7 30.7-50.4- 99.9 30.7-50.4-100.0
models DDNet 36.3-50.3-76.4 32.8-49.9-84.6 30.8-50.1- 98.0 30.7-50.2-100.0 30.7-50.2-100.0

EvNet 32.9-50.4-89.8 31.4-50.1-94.0 30.8-50.0- 98.0 30.7-50.3-100.0 30.7-49.6-100.0
Smoothed PostNet 32.7-50.1-904 31.1-50.2-96.5 30.7-50.2- 99.7 30.7-50.3-100.0 30.7-50.2-100.0
+adv.w. PriorNet 352-51.8-78.6 32.8-51.1-84.4 30.8-50.2- 98.7 30.7-50.5-100.0 30.8-50.1- 98.2
label DDNet 35.5-50.6-79.2 33.4-50.3-84.1 30.8-50.1- 99.2 30.7-50.0-100.0 30.7-50.5-100.0
attacks EvNet 40.3-50.4-66.8 31.4-50.3-95.8 30.7-50.3-100.0 30.7-50.1-100.0 30.7-50.0-100.0
Smoothed PostNet 33.3-50.6-88.7 32.5-50.1-87.9 30.7-49.9- 99.8 30.7-50.1-100.0 30.7-50.0-100.0
+adv.w. PriorNet 34.5-51.0-80.1 31.4-50.6-92.8 30.9-50.0- 97.7 30.7-50.1-100.0 30.7-50.0-100.0
uncert. DDNet 37.4-50.8-745 334-50.2-83.0 309-50.1- 96.8 30.8-49.9- 98.1 30.7-49.9-100.0
attacks EvNet 32.8-50.1-92.0 30.8-50.0-99.6 30.7-50.1-100.0 31.2-50.2- 96.1 31.0-50.0-100.0

labels the smoothed DBU model are mostly more robust
than the base models for attack radii > 0.5.

Certified performance. Using the median based on
smoothing improves the empirical robustness, but it does not
provide formal guarantees how low/high the performance
might actually get under perturbed data (since any attack
is only a heuristic). Here, we propose novel guarantees by
exploiting the individual certificates we obtain via random-
ized smoothing. Note that the certification procedure (yeh
Chiang et al., 2020) enables us to derive lower and upper
bounds m(z?) < m(x®) < m(z*) which hold with
high probability and indicate how much the median might
change in the worst-case when () gets perturbed subject
to a specific (attack) radius.

These bounds allow us to compute certificates that bound
the performance of the smooth models, which we refer
to as the guaranteed lowest performance and guaranteed
highest performance. More precisely, for the guaranteed

lowest performance of the model we take the pessimistic
view that all ID data points realize their individual upper
bounds 77(x(?)), i.e. have their highest possible uncertainty
(worst case). On the other hand, we assume all OOD sam-
ples realize their lower bounds m(wgz)). Using these values
as the uncertainty scores for all data points we obtain the
guaranteed lowest performance of the model. A guaranteed
lowest performance of e.g. 35.0 means that even under the
worst case conditions an attack is not able to decrease the
performance below 35.0. Analogously, we can take the op-
timistic view to obtain the guaranteed highest performance
of the smoothed models. Tables 5, 6 and 7 show the guar-
anteed lowest/highest performance (non-bold, left/right of
the empirical performance). Our results show that the dif-
ference between guaranteed highest and guaranteed lowest
performance increases with the attack radius, which might
be explained by the underlying lower/upper bounds on the
median being tighter for smaller perturbations.
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Table 7. OOD detection based on differential entropy under PGD uncertainty attacks against differential entropy on ID data and OOD
data. Smoothed DBU models on CIFAR10. Column format: guaranteed lowest performance - empirical performance - guaranteed highest

performance (blue: normally/adversarially trained smooth classifier is more robust than the base model).

Att. Rad. 0.0 0.1 0.2 0.5 1.0 2.0
ID-Attack

PostNet 72.1-82.7-88.0 35.0-56.6-97.4 31.9-65.6-99.8 30.7-50.6-100.0 30.7-46.9-100.0 30.7-51.6-100.0
Smoothed PriorNet 50.2-53.1-55.9 33.5-43.3-65.3 31.3:-39.7-69.1 31.3-48.3- 98.2 30.7-44.4- 99.9 30.7-45.4-100.0
models DDNet 72.0-75.8-79.8 35.6-46.2-69.8 32.9-50.3-87.1 31.1-58.7- 98.6 30.7-59.3-100.0 30.7-44.5-100.0

EvNet 79.5-87.1-92.8 34.1-58.6-95.1 32.5-61.2-96.9 31.7-60.6- 98.7 30.7-62.4-100.0 30.7-57.3-100.0
Smoothed PostNet - 35.0-58.5-97.7 31.2-46.6-97.4 30.8-57.7- 99.7 30.7-49.8-100.0 30.7-50.9-100.0
+adv.w. PriorNet - 31.5-36.7-57.2 33.1-51.8-84.8 30.7-57.7- 98.7 30.7-40.0- 99.9 30.9-53.6- 96.7
label DDNet - 36.2-50.0-78.6 32.1-41.3-70.2 30.8-56.4-100.0 30.7-49.4-100.0 30.7-54.8-100.0
attacks EvNet - 46.8-61.0-79.7 32.3-58.9-99.1 30.7-45.0-100.0 30.7-63.3-100.0 30.8-38.1-100.0
Smoothed PostNet - 35.2-55.9-96.0 34.5-59.2-94.9 30.7-47.0-100.0 30.7-58.2-100.0 30.7-42.9-100.0
+adv. w.  PriorNet - 31.8-38.9-64.1 31.0-41.8-87.9 30.7-42.9- 99.2 30.7-48.6-100.0 30.7-46.6-100.0
uncert. DDNet - 39.7-52.1-75.7 36.4-56.8-83.8 31.0-51.5- 974 31.0-56.8- 97.8 30.7-49.1-100.0
attacks EvNet - 34.8-64.9-99.6 30.8-48.9-99.8 30.7-66.8-100.0 30.9-41.5- 93.8 31.1-55.1-100.0

0OO0OD-Attack

PostNet 72.0-82.7-838.0 35.1-56.8-97.3 32.0-65.8-99.8 30.7-50.7-100.0 30.7-46.5-100.0 30.7-51.7-100.0
Smoothed PriorNet 50.3-53.1-55.9 33.6-43.7-65.9 31.3-39.8-69.4 31.3-48.3- 98.2 30.7-44.5- 99.9 30.7-46.4-100.0
models DDNet 72.0-75.8-79.8 35.6-46.2-70.0 32.9-50.1-86.7 31.1-58.8- 98.6 30.7-59.3-100.0 30.7-44.6-100.0

EvNet 79.5-87.1-92.8 34.1-58.8-95.2 32.6-61.2-96.9 31.7-60.5- 98.7 30.7-62.4-100.0 30.7-57.6-100.0
Smoothed PostNet - 35.0-58.5-97.8 31.2-46.6-97.2 30.8-57.7- 99.7 30.7-50.2-100.0 30.7-51.5-100.0
+adv.w. PriorNet - 31.6-37.3-59.3 33.2-52.7-85.8 30.7-57.8- 98.7 30.7-40.1- 99.9 30.9-53.8- 96.8
label DDNet - 36.4-50.2-78.9 32.1-41.5-70.4 30.9-56.2-100.0 30.7-49.3-100.0 30.7-55.1-100.0
attacks EvNet - 47.2-61.1-80.0 32.4-59.1-99.1 30.7-45.0-100.0 30.7-63.2-100.0 30.8-38.0-100.0
Smoothed PostNet - 35.3-56.4-96.1 34.5-59.0-94.9 30.7-46.8-100.0 30.7-57.8-100.0 30.7-43.2-100.0
+adv. w.  PriorNet - 31.9-39.4-65.5 31.0-42.0-88.6 30.7-42.9- 99.2 30.7-48.4-100.0 30.7-47.1-100.0
uncert. DDNet - 40.2-52.9-76.5 36.4-56.9-83.9 31.1-51.5- 973 31.0-57.0- 97.8 30.7-49.1-100.0
attacks EvNet - 34.9-64.8-99.6 30.8-48.8-99.8 30.7-66.1-100.0 30.9-41.6- 93.6 31.1-54.7-100.0

Adversarial training. Randomized smoothing improves
robustness of DBU models and allows us to compute perfor-
mance guarantees. However, an open question is whether it
is possible to increase robustness even further by combining
it with adversarial training. To obtain adversarially trained
models we augment the data set using perturbed samples
that are computed by PGD attacks against the cross-entropy
loss (label attacks) or the differential entropy (uncertainty
attacks). These perturbed samples (%) are computed during
each epoch of the training based on inputs () and added
to the training data (with the label y(*) of the original input).
Tables 5, 6, and 7 illustrate the results. We choose the attack
radius used during training and the o used for smoothing to
be equal. To facilitate comparison, we highlight the empiri-
cal performance of the adversarially trained models in blue
if it is better than the performance of the base model. Our
results show that the additional use of adversarial training
has a minor effect on the robustness and does not result in a
significant further increase of the robustness.

We conclude that median smoothing is a promising tech-
nique to increase robustness w.r.t. distinguishing between
correctly labeled samples and wrongly labeled samples, at-
tack detection and differentiation between in-distribution
data and out-of-distribution data of all Dirichlet-based un-

certainty models, while additional adversarial training has a
minor positive effect on robustness.

5. Conclusion

This work analyzes robustness of uncertainty estimation by
DBU models and answers multiple questions in this con-
text. Our results show: (1) While uncertainty estimates
are a good indicator to identify correctly classified samples
on unperturbed data, performance decrease drastically on
perturbed data-points. (2) None of the Dirichlet-based un-
certainty models is able to detect PGD label attacks against
the class prediction by uncertainty estimation, regardless
of the used uncertainty measure. (3) Detecting OOD sam-
ples and distinguishing between ID-data and OOD-data is
not robust. (4) Applying median smoothing to uncertainty
estimates increases robustness of DBU models w.r.t. all
analyzed tasks, while adversarial training based on label or
uncertainty attacks resulted in minor improvements.
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