
Kernel Stein Discrepancy Descent

A. Background
A.1. The continuity equation

Let T > 0. Consider a weakly continuous family of probability measures on Rd, µ : (0, T )→ P2(Rd), t 7→ µt. It satisfies
a continuity equation (Ambrosio et al., 2008, Section 8.1) if there exists (vt)t∈(0,T ) such that vt ∈ L2(µt) and :

∂µt
∂t

+ div(µtvt) = 0 in Rd × (0, T ) (19)

holds in the sense of distributions, i.e. for any φ ∈ C∞c (Rd), the identity

d

dt

∫
Rd
φ(x)dµt(x) =

∫
Rd
〈∇φ(x), vt(x)〉dµt(x) (20)

holds for any t ∈ (0, T ). By an integration by parts, the r.h.s. of the previous identity can be written:∫
Rd
〈∇φ(x), vt(x)〉dµt(x) = −

∫
Rd
φ(x) div(µt(x)vt(x))dx. (21)

Hence, the identity (20) can be rewritten as∫
Rd
φ(x)

∂µt(x)

∂t
dx+

∫
Rd
φ(x) div(µt(x)vt(x))dx = 0. (22)

This equation expresses the law of conservation of mass for any volume of a moving fluid. Assume d = 3 and denote by
(vxt , v

y
t , v

z
t ) the projections of the vector field on the axes (−→x ,−→y ,−→z ). Then, the continuity equation has the form

∂µt
∂t

+ div(µtvt) =
∂µt
∂t

+
∂(µtv

x
t )

∂x
+
∂(µtv

y
t )

∂y
+
∂(µtv

z
t )

∂z
= 0. (23)

A.2. Differentiability and convexity on the Wasserstein space

Let (µ, ν) ∈ P2(Rd). The Wasserstein 2 distance is defined as :

W 2
2 (µ, ν) = inf

q∈Q(µ,ν)

∫
Rd×Rd

‖x− y‖2dq(x, y) (24)

where Q(µ, ν) is the set of couplings between µ and ν, i.e. the set of nonnegative measures q over Rd × Rd such that
P1#q = µ (resp. P2#q = ν) where P1 : (x, y) 7→ x (resp. P2 : (x, y) 7→ y).

The Wasserstein space (P2(Rd),W2) is not a Riemannian manifold but it can be equipped with a Riemannian structure and
interpretation (Otto, 2001). In this geometric interpretation, the tangent space to P2(Rd) at µ is included in L2(µ), and is
equipped with the scalar product, defined for f, g ∈ L2(µ) by:

〈f, g〉L2(µ) =

∫
Rd
f(x)g(x)dµ(x). (25)

Let F : P2(Rd)→ R be a functional on the Wasserstein space. We clarify in this section the notions of differentiability
of F that we consider in this setting. The notion of Fréchet subdifferentiability and its properties have been extended to
the Wasserstein framework in (Ambrosio et al., 2008, Chapter 10). We first recall that if it exists, the first variation of F
evaluated at µ ∈ P2(Rd) is the unique function ∂F(µ)

∂µ : Rd → R s.t.

lim
ε→0

1

ε
(F(µ+ εξ)−F(µ)) =

∫
Rd

∂F(µ)

∂µ
(x)dξ(x) (26)

for all ξ = ν − µ, where ν ∈ P2(Rd). Under mild regularity assumptions, the W2 gradient of F corresponds to the gradient
of the first variation of F , as stated below.
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Definition 4. (Ambrosio et al., 2008, Lemma 10.4.1). Let µ ∈ P2(Rd), absolutely continuous with respect to the Lebesgue
measure, with density in C1(Rd) and such that F(µ) <∞. The subdifferential of F at µ is the map ∇W2F(µ) defined by:

∇W2F(µ)(x) = ∇∂F(µ)

∂µ
(x) for µ-a.e. x ∈ Rd, (27)

and for every vector field ξ ∈ C∞c (Rd;Rd),∫
Rd
〈∇W2

F(µ)(x), ξ(x)〉dµ(x) = −
∫
Rd

∂F(µ)

∂µ
(x) div(µ(x)ξ(x))dx. (28)

Moreover, ∇W2
F(µ) belongs to the tangent space of P2(Rd) at µ, which is included in L2(µ).

A.3. Cauchy-Lipschitz assumptions for the existence and uniqueness of the Wasserstein gradient flow

Let T > 0, and denote by L1 the standard one-dimensional Lebesgue measure on [0, T ] and L1 the space of measurable
and integrable functions w.r.t. Lebesgue measure. The Cauchy-Lipschitz assumptions below for existence and uniqueness
of the flow on [0, T ] are adapted to our flows from their general differential inclusion version by Bonnet & Frankowska
(2021). They hold for an initial distribution µ0 ∈ Pc(Rd), the space of probability measures with compact support. If v only
depends on time and not on µt, they then write as

(B1) (Carathéodory vector fields) v : [0, T ]× Rd → Rd is such that t 7→ v(t, x) is L1-measurable for all x ∈ Rd and
x 7→ v(t, x) is continuous for L1-almost every t ∈ [0, T ].

(B2) (Sublinear growth) There exists a map m(·) ∈ L1 ([0, T ];R+) such that |v(t, x)| ≤ m(t)(1 + |x|) for L1-almost every
t ∈ [0, T ] and all x ∈ Rd.

(B3) (Lipschitz vector field) For any compact set K ⊂ Rd, there exists a map lK(·) ∈ L1 ([0, T ],R+) such that
Lip(v(t, ·);K) ≤ lK(t) for L1 -almost every t ∈ [0, T ].

For R > 0, we denote by K := B(0, R) the closed ball of radius R in Rd; and for any function f , we denote by
‖f(·)‖∞,K := supx∈K |f(x)| its supremum over K and by Lip(f(·);K) the Lipschitz constant of the restriction of f on K.
If v only depends on µt, then the following assumptions should hold for every R > 0 :

(C1) For any µ ∈ Pc
(
Rd
)
, v|K(µ)(·) ∈ C0

(
K;Rd

)
.

(C2) There existsm > 0 such that for any µ ∈ Pc
(
Rd
)
, for all y ∈ Rd, we have ‖v(µ)(y)‖ ≤ m

(
1 + ‖y‖+

∫
‖x‖ dµ(x)

)
(C3) There exists lK > 0 such that for any µ ∈ Pc(K), we have Lip(v(µ)(·);K) ≤ lK,

(C4) There exists LK > 0 such that for any µ, ν ∈ Pc(K), we have ‖v|K(µ)(·)− v|K(ν)(·)‖∞,K ≤ LKW2(µ, v).

Relation with Assumption (A1). Consider µ ∈ Pc
(
Rd
)

and take R > 0 such that supp(µ) ⊂ K := B(0, R). Our
Assumption (A1) implies that y 7→ vµ(y) =

∫
∇2kπ(x, y)dµ(x) is Lipschitz with constant lK = supy∈K L(y), so

Assumptions (C1) and (C3) hold. Assumption (C2) corresponds to Assumption (A2). Finally, for ν ∈ Pc(K), since
∇2kπ(·, y) is lK-Lipschitz for y ∈ K, we have that x 7→ ‖∇2kπ(x, y)‖ is also lK-Lipschitz, hence

‖vµ(y)− vν(y)‖ ≤ sup

ß∫
M

f(x)d(µ− ν)(x) | Lipschitz f : K → R,Lip(f) ≤ lK
™

= lKW1(µ, ν) ≤ lKW2(µ, ν),

where the last inequality between 1-Wasserstein distance W1 and W2 is a consequence of Jensen’s inequality, so Assump-
tion (C4) is satisfied.

For other kernel-based updates as presented in Appendix A.4, the kernel is at most multiplied once by the score s, so for
uniformly Lipschitz s and kernels with bounded derivatives, the Lipschitz constant is uniform for v(µ)(·). This was for
instance assumed in Arbel et al. (2019). However for updates involving the Stein kernel such as in KSD Descent, the
analysis is more intricate. As a matter of fact, when π is a standard Gaussian distribution, we have s(x) = x. Hence the
Stein kernel verifies, for a smooth translation-invariant kernel with k(x, x) = 1, that kπ(x, x) = C + ‖x‖2 for x ∈ Rd, with
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C a constant determined by the last term in kπ . So, for a Gaussian π, the Lipschitz constant of v(δy)(·) is larger than 2‖y‖,
explaining the reason why we only required for a y-dependent Lipschitz constant in Assumption (A1) and did not assume it
to be uniform. This is related to the fact that kπ(x, x) is in general unbounded for the Stein kernel, which precludes most of
the classical assumptions made in the kernel literature.

Comment on Assumption (C2). The main role of Assumption (C2) is to impede the well-known phenomenon of finite-time
explosion of a trajectory as for the system z′(t) = z(t)2 in R. It could in principle be replaced by any assumption preventing
particles from escaping to infinity in finite time. One such lighter assumption would write as follows:

“ For any r > 0, T > 0 and µ0 ∈ Pc
(
Rd
)

with supp(µ0) ⊂ rB(0, 1) there exists R(r, T ) <∞ such that
supp(µt) ⊂ R(r, T )B(0, 1) for (µt)t∈[0,T ] solving (7).“

A.4. Descent updates of the algorithms presented in Section 3.3

From a computational viewpoint, both the SVGD, LAWGD and MMD flow algorithms, presented in Section 3.3, only
propose gradient descent schemes with the following respective updates xin ← xin − γDi with

DiSV GD =
1

N

N∑
j=1

[
k(xjn, x

i
n)s(xjn) +∇1k(xjn, x

i
n)
]
,

DiLAWGD =
1

N

N∑
j=1

∇2kLπ (xjn, x
i
n),

DiMMD−GD =
1

N

N∑
j=1

[
∇2k(xjn, x

i
n)−∇2k(yj , xin)

]
.

where the MMD-GD update requires extra samples (yj)Nj=1 ∼ π, since it is sample-based rather than score-based. Notice
that all these updates have the same iteration complexity of order O(N2). Intriguingly LAWGD has the same update rule as
ours (12) but for their kernel kLπ which, as discussed in Section 3.3, does not incorporate an off-the-shelf kernel k, unlike
the Stein kernel kπ (3).

A.5. Background on diffusion operator Lπ

In this section, for the convenience of the reader who is not familiar with the spectral theory of diffusion operators, we
formulate Lemma 12 which provides a formal construction of the diffusion operator Lπ = −〈∇ log π,∇〉 −∆ on the space
L2(π) and gathers a number of technical facts about it. Those facts form a background for the proofs of results related to
lack of exponential convergence near equilibrium of KSD flow, which are presented in Appendix B. We provide the proof of
lemma 12 in Appendix B.11.

Lemma 12. Let π ∝ e−V be a probability measure on Rd and assume that V : Rd → R is in C1(Rd). Let L̂π =
〈∇V,∇〉 −∆ on C∞c (Rd). This operator can be extended to a positive self-adjoint operator on L2(π) with dense domain
D(Lπ) ⊂ L2(π) which we denote by Lπ . Moreover, C∞c (Rd) is dense in D(Lπ), for the norm:

‖φ‖Lπ =
Ä
〈φ,Lπφ〉+ ‖φ‖2L2(π)

ä1/2
. (29)

From that it follows, that D(Lπ) is the subset of the weighted Sobolev space W 1,2
0 (π)4 (that is, the closure of C∞c (Rd) in

W 1,2(π) ) and for all f ∈ D(Lπ) we have

‖∇f‖2L2(π) = 〈f,Lπf〉L2(π), (30)

where∇f is the weak derivative of f . This implies that the kernel of Lπ consists of π-almost everywhere constant functions.

Furthermore, for any f ∈ D(Lπ) we can find a sequence φn ∈ C∞c (Rd), such that limn→∞ ‖φn − f‖L2(π) = 0 and
limn→∞ ‖Lπφn − Lπf‖L2(π) = 0.

4Note that the meaning of 0 in the notation W 1,2
0 (π) differs from the meaning of 0 in L2

0(π) = {φ ∈ L2(π),
∫
φdπ = 0}.
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A.6. A Descent lemma for KSD Descent

A descent lemma for (10) is a proposition stating that F decreases at each iteration of the time-discretized flow. It should
hold for both continuous or discrete initializations. Arbel et al. (2019) proved a similar result for F = 1

2 MMD2 which we
recall below for completeness.

Proposition 13. (Arbel et al., 2019, Proposition 4) Let µn be defined by (10) for F = 1
2 MMD2 and assume that

k ∈ C1,1(Rd×Rd) with l-Lipschitz gradient: ‖∇k (x, x′)−∇k (y, y′)‖ ≤ l (‖x− y‖+ ‖x′ − y′‖) for all x, x′, y, y′ ∈ Rd.
Then, for γ ≤ 2

l , the sequence (F(µn))n≥0 is decreasing and for any n ≥ 0:

F(µn+1)−F(µn) ≤ −γ
Å

1− 3γl

2

ã
‖∇W2F(µn)‖2L2(µn)

. (31)

Although KSD Descent is a special case of MMD Descent, assuming a uniform Lipschitz constant for kπ is excessive,
even for targets as simple as a single Gaussian distribution, as discussed in Appendix A.3. In contrast, we consider the
weaker Assumption (A1) on the Stein kernel: there exists a map L(·) ∈ C0(Rd;R+) such that, for any y ∈ Rd, the maps
x 7→ ∇1kπ(x, y) and x 7→ ∇1kπ(y, x) are L(y)-Lipschitz.

We shall assume below the convexity of L(·) and the boundedness of its L2-norm along the trajectory, i.e. (‖L‖L2(µn))n≥0
is bounded. An example of more explicit, though tighter, assumptions are that L satisfies a subpolynomial growth at
infinity, i.e. there exists R > 0, c > 0 and m ∈ N such that L(x) ≤ L̃(x) = c‖x‖m for x ∈ Rd with ‖x‖ ≥ R, combined
with boundedness of the corresponding moment along the flow, i.e. there exists Mm such that Ex∼µn‖x‖2m ≤ Mm.
In this case, instead of the continuous L, one can consider the convex and continuous function defined by L̃(x) =
c‖x‖m + supy∈B(0,R) L(y).

Proposition 14. Suppose Assumption (A1) holds and that µ0 ∈ Pc(Rd). Assume additionally that L(·) is convex, belongs
to L2(µn), and that ‖L(·)‖L2(µn) ≤M for any n ≥ 0, where µn is defined by (10). Then, for any γ ≤ 1

M :

F(µn+1)−F(µn) ≤ −γ (1− γM) ‖∇W2
F(µn)‖2L2(µn)

≤ 0. (32)

See the proof in Appendix B.12.

B. Proofs
We shall often use that, for smooth and symmetric k, ∇2k(x, y) = ∇1k(y, x), for any x, y ∈ Rd. Moreover if k is
translation-invariant,∇1k(x, y) = −∇2k(x, y).

Remark 2. For any k ∈ C2(Rd × Rd,R) and π such that s ∈ C1(Rd), kπ and its gradient are written

kπ(x, y) = s(x)>s(y)k(x, y) + s(x)>∇2k(x, y) + s(y)>∇1k(x, y) +∇ ·1 ∇2k(x, y). (33)

∇2kπ(x, y) = s(x)>s(y)∇2k(x, y) + Js(y)>s(x)k(x, y) +H2k(x, y)s(x)

+ Js(y)>∇1k(x, y) +∇2(∇ ·1 ∇2k(x, y)). (34)

If k is translation-invariant, since∇1k(x, y) = −∇2k(x, y), we have:

kπ(x, y) = s(x)>s(y)k(x, y) + (s(x)− s(y))>∇2k(x, y) +∇ ·1 ∇2k(x, y), (35)

∇2kπ(x, y) = s(x)>s(y)∇2k(x, y) + Js(y)>s(x)k(x, y) +H1k(x, y)s(x)

− Js(y)>∇2k(x, y)−∇2(∇ ·2 ∇2k(x, y)). (36)

Notice that, in this case, odd derivatives of k vanish for x = y.

B.1. Proof of Lemma 1

To prove that Assumption (A1) holds, we want to show that x 7→ ∇1kπ(x, y) and x 7→ ∇2kπ(x, y) are L(y)-Lipschitz for
some L(·) ∈ C0(Rd,R+) that is µ-integrable for any µ ∈ P2(Rd), so L should have a quadratic growth at most. We will
leverage the regularity of k and s to write this problem as that of upper-bounding over Rd the gradients of these functions
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(which are related to the Hessian of kπ). To prove that Assumption (A4) holds, we want on the other hand to identify an
integrable function that upper bounds ‖H1kπ(x, y)‖op.

We denote by Js(x) the Jacobian of s at x, which is also the Hessian of log(π), and by Hs(x) the Hessian of s at x, which
is also the tensor of third derivatives of log(π), i.e. Hs(x)ijk = ∂3 log(π)

∂xi∂xj∂xk
(x).

We compute the gradient of the first term in (33):

∇x
(
s(x)>s(y)k(x, y)

)
= Js(x)>s(y)k(x, y) + s(x)>s(y)∇1k(x, y). (37)

Differentiating a second time, we get that

H1

(
s(x)>s(y)k(x, y)

)
= Hs(x)s(y)k(x, y) +∇1k(x, y)s(y)>Js(x) +

(
Js(x)>s(y)

)
∇1k(x, y)> + s(x)>s(y)H1k(x, y),

where Hs(x)s(y) is a d× d matrix of entries [Hs(x)s(y)]jk =
∑n
i=1Hs(x)ijks(y)i.

Then, the gradient of the second term in (33) is

∇x
(
s(x)>∇2k(x, y)

)
= Js(x)>∇2k(x, y) +∇1,2k(x, y)s(x), (38)

where∇1,2k(x, y) = [∂xi∂yjk(x, y)]i,j , and its Hessian is given by:

H1

(
s(x)>∇2k(x, y)

)
= Hs(x)∇2k(x, y) + Js(x)>∇1,2k(x, y) + ∇1,2k(x, y)Js(x) + ∇1,1,2k(x, y)s(x), (39)

where∇1,1,2k(x, y) = [∂xi,xj∂ylk(x, y)]i,j,l is a tensor of third derivatives of k.

The Hessian of the last two terms in (33) is straightforward to compute. Hence, collecting all the terms together, we derive
that

H1kπ(x, y) =Hs(x)s(y)k(x, y) +∇1k(x, y)s(y)>Js(x) +
(
Js(x)>s(y)

)
∇1k(x, y)> + s(x)>s(y)H1k(x, y) (40)

Hs(x)∇2k(x, y) + Js(x)>∇1,2k(x, y) +∇1,2k(x, y)Js(x) +∇1,1,2k(x, y)s(x)

+∇1,1,1k(x, y)s(y) +H1 Tr(∇ ·2 ∇1k(x, y)).

In this expression, the only problematic terms to upper boundH1kπ uniformly w.r.t. x are the ones where s(x) appears (since
Js(x) andHs(x) are bounded by assumption). However, since s isC1-Lipschitz, we have that ‖s(x)‖ ≤ ‖s(y)‖+C1‖x−y‖.
We then use that the kernel, its derivatives, and the derivatives up to order 3 multiplied by ‖x− y‖ are bounded for all x and
y by a given B ≥ 0. Hence, for instance,

‖s(x)>s(y)H1k(x, y)‖ ≤ ‖s(y)‖ · (‖s(y)‖+ C1‖x− y‖) · ‖H1k(x, y)‖ ≤ B‖s(y)‖2 + C1B‖s(y)‖.

As ‖Js(x)‖op ≤ C1 and ‖Hs(x)‖op ≤ C2 for all x ∈ Rd, we have that ‖s(x)‖ ≤ C1‖x‖ + ‖s(0)‖ and a similar
computation gives that

‖H1kπ(x, y)‖op ≤ C2B‖s(y)‖+ 2C1B‖s(y)‖+B‖s(y)‖2 + C1B‖s(y)‖ (41)
+ C2B + 2C1B +B‖s(y)‖+ C1B +B‖s(y)‖+B

≤ C̃2‖y‖2 + C̃0, (42)

where C̃2 ≥ 0 and C̃0 ≥ 0 only depend on B, C2, C1 and ‖s(0)‖. Consequently, the function (x, y) 7→ ‖H1kπ(x, y)‖op is
integrable for any µ, ν ∈ P2(Rd), so Assumption (A3) holds.5

Similarly, one can show based on (34) that

∇1,2kπ(x, y) =(Js(x)>s(y))∇2k(x, y)> + s(x)>s(y)∇1,2k(x, y) + Js(y)>Js(x)k(x, y) +∇1k(x, y)s(x)>Js(y)

+H2k(x, y)Js(x) +∇1,2,2k(x, y)s(x) + Js(y)>H1k(x, y) +∇1,2 Tr(∇ ·2 ∇1k(x, y)).

5We could do without the assumption of Lipschitzianity of s to prove that Assumption (A3) holds. We could also merely require that
the derivatives of k are bounded, without considering the multiplication by ‖x− y‖. As a matter of fact, assuming that ‖Hs(x)‖op ≤ C2

for all x ∈ Rd implies that ‖Js(x)‖op ≤ C2‖x‖+ C1 and ‖s(x)‖ ≤ C2‖x‖2 + C0 for some C0 ≥ 0 and C1 ≥ 0. Hence (40) yields
an upper bound that is quadratic in ‖x‖ and ‖y‖, so µ⊗ ν-integrable as in Assumption (A3).



Kernel Stein Discrepancy Descent

Using the same inequalities that led to (42), we can find two constants Ĉ2 ≥ 0 and Ĉ0 ≥ 0 such that

‖∇1,2kπ(x, y)‖op ≤Ĉ2‖y‖2 + Ĉ0.

Setting L(y) = max(C̃2, Ĉ2)‖y‖2+max(C̃0, Ĉ0), the functions x 7→ ∇1kπ(x, y) and x 7→ ∇2kπ(x, y) are L(y)-Lipschitz
since L(y) is an upper bound of the norm of their Jacobians. Furthermore, L(·) ∈ C0(Rd,R+), and is µ-integrable for any
µ ∈ P2(Rd), so Assumption (A1) holds.

To prove that Assumption (A4) holds, notice that, based on (33),

|kπ(x, x)|op =
∣∣∣‖s(x)‖2k(x, x) + s(x)>∇2k(x, x) + s(x)>∇1k(x, x) +∇ ·1 ∇2k(x, x)

∣∣∣
≤B

(
‖s(x)‖2 + 2‖s(x)‖+ 1

)
.

Since, for all x ∈ Rd, ‖s(x)‖ ≤ C1‖x‖+ ‖s(0)‖, the function x 7→ kπ(x, x) is bounded by a quadratic function and is thus
µ-integrable for any µ ∈ P2(Rd). This shows that Assumption (A4) holds.

We now prove that Assumption (A2) is also satisfied if there exists M > 0 and M0 such that, for all x ∈ Rd, ‖s(x)‖ ≤
M
√
‖x‖+M0. Then, based on (34) and as

√
‖x‖ ≤ ‖x‖+ 1,

‖∇2kπ(x, y)‖ ≤ ‖s(x)‖ · ‖s(y)‖ · ‖∇2k(x, y)‖+BC1‖s(x)‖+B‖s(x)‖+BC1 +B

≤ (‖s(y)‖+ C1‖x− y‖) · ‖s(y)‖ · ‖∇2k(x, y)‖+ (BC1 +B) · (M
»
‖x‖+M0 + 1)

≤ B‖s(y)‖2 +BC1‖s(y)‖+ (BC1 +B) · (M‖x‖+M +M0 + 1)

≤ B(M
»
‖y‖+M0)2 +BC1(M‖y‖+M +M0) + (BC1 +B) · (M‖x‖+M +M0 + 1)

≤ m(1 + ‖y‖+ ‖x‖),

for some m > 0 depending on B, M , C1 and M0. Integrating over µ for any µ ∈ P2(Rd) gives that
‖
∫
∇2kπ(x, y)dµ(x)‖ ≤ m

(
1 + ‖y‖+

∫
‖x‖ dµ(x)

)
, so Assumption (A2) holds, which concludes the proof.

B.2. Proof of Proposition 2

Lemma 15. Suppose Assumption (A1) holds. The first variation of F evaluated at µ ∈ P2(Rd) is then the function defined
for any y ∈ Rd by:

∂F(µ)

∂µ
(y) =

∫
Rd
kπ(x, y)dµ(x).

Proof. Let µ, ν ∈ P2(Rd), and ξ = µ− ν. Using the symmetry of kπ , we get

1

ε
[F(µ+ εξ)−F(µ)] =

1

2ε

ï∫∫
X

kπ(x, y)d(µ+ εξ)(x)d(µ+ εξ)(y)−
∫∫

X

kπ(x, y)dµ(x)dµ(y)

ò
=

∫∫
Rd
kπ(x, y)dµ(x)dξ(y) +

ε

2

∫∫
X

kπ(x, y)dξ(x)dξ(y)

Hence,

lim
ε→0

1

ε
(F(µ+ εξ)−F(µ)) =

∫∫
Rd
kπ(x, y)dµ(x)dξ(y).

Assume µ satisfies the assumptions of Definition 4. To obtain the expression for the W2 gradient of F , we first need to
exchange the integration and the gradient with respect to y. Since y 7→ ∇2kπ(x, y) is L(x)-Lipschitz, we have for all
v ∈ Rd, 0 < ε ≤ 1: ∣∣∣∣kπ(x, y + εv)− kπ(x, y)

ε
− 〈∇2kπ(x, y), v〉

∣∣∣∣ ≤ L(x)ε‖v‖22
2

≤ L(x)‖v‖22
2

where the right hand side is integrable. Therefore by the Lebesgue dominated convergence theorem, we have the following
interchange of the gradient and the integral when computing the W2-gradient:

∇W2
F(µ)(y) = ∇∂F(µ)

∂µ
(y) =

∫
∇2kπ(x, y)dµ(x). (43)



Kernel Stein Discrepancy Descent

Then, using the continuity equation (7) and an integration by parts,6 the dissipation of F along its W2 gradient flow is
obtained as follows:

dF(µt)

dt
=

∫
∂F(µt)

∂µt

∂µt
∂t

=

∫
∂F(µt)

∂µ
div

Å
µt∇

∂F(µt)

∂µ

ã
= −

∫ ∥∥∥∥∇∂F(µt)

∂µ

∥∥∥∥2 dµt.

Plugging (43) in the r.h.s. of this equality leads to the final formula.

B.3. Proof of Proposition 3

We compute the second time derivative F̈(ρt) where ρt is a path from µ to (I +∇ψ)#µ given by: ρt = (I + t∇ψ)#µ, for
all t ∈ [0, 1]. By Lemma 22, F̈(ρt) is well-defined and F̈(µ) = F̈(ρt)|t=0 is given by:

F̈(µ) =

∫ [
∇ψ>(z)∇1∇2kπ(z, z′)∇ψ(z′)

]
dµ(z′)dµ(z) +

∫ [
∇ψ>(z)H1kπ(z, z′)∇ψ(z)

]
dµ(z′)dµ(z). (44)

B.4. Proof of Corollary 4

Under Assumption (A3), by the dominated convergence theorem, we can exchange the order of the integral and derivative in
the second term of (44):∫∫ [

∇ψ>(z)H1kπ(z, z′)∇ψ(z)
]
dρt(z

′)dρt(z) =

∫ ï
∇ψ>(z)H1

Å∫
kπ(z, z′)dρt(z

′)

ã
∇ψ(z)

ò
dρt(z). (45)

The latter (45) vanishes when ρt = π, thanks to the property of the Stein kernel :
∫
kπ(z, z′)dπ(z′) = 0.

Hence, by considering ψ ∈ C∞c (Rd) and a path ρt from π to (I +∇ψ)#π given by: ρt = (I + t∇ψ)#π, for all t ∈ [0, 1].,

F̈(π) = Hessπ(ψ,ψ),

where

Hessπ(ψ,ψ) =

∫∫ [
∇ψ>(z)∇1∇2kπ(z, z′)∇ψ(z′)

]
dπ(z′)dπ(z).

By an integration by parts7 w.r.t. x, we have, for Lπ : f 7→ −∆f + 〈−∇ log π,∇f〉,

Hessπ(ψ,ψ) =

d∑
i,j=1

∫∫
∂ψ(x)

∂xi
.
∂2kπ(x, y)

∂xi∂yj
.
∂ψ(y)

∂yj
dπ(x)dπ(y)

= −
d∑

i,j=1

∫∫
∂2ψ(x)

∂x2i
.
∂kπ(x, y)

∂yj
.
∂ψ(y)

∂yj
dπ(x)dπ(y)−

d∑
i,j=1

∫∫
∂ψ(x)

∂xi
.
∂ log π(x)

∂xi
.
∂kπ(x, y)

∂yj
.
∂ψ(y)

∂yj
dπ(x)dπ(y)

=

d∑
j=1

∫∫
Lπψ(x).

∂kπ(x, y)

∂yj
.
∂ψ(y)

∂yj
dπ(x)dπ(y).

We then repeat the same steps, performing an integration by parts w.r.t. yj and using Lemma 21 in the last equality,

Hessπ(ψ,ψ) =

∫
Lπψ(x)kπ(x, y)Lπψ(y)dπ(x)dπ(y) = ‖Sπ,kπ (Lπψ)‖2Hkπ .

Notice that under Assumption (A4), we haveHkπ ⊂ L2(π), so Sπ,kπ and its adjoint are well-defined (see Section 2.3).

6By the regularity of µ, from the assumptions of Definition 4, there are no boundary terms in the integration.
7First, differentiate the product ∂ψ(x)

∂xi
π(x), then integrate ∂2kπ(x,y)

∂xi∂yj
w.r.t. xi. Since ψ is compactly supported, it vanishes at infinity.

Since π has a C1-density w.r.t. the Lebesgue measure, any integral over dπ bearing on the boundary of the support of π vanishes. We thus
do not have any extra integral on the boundary when performing the integration by parts.
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B.5. Proof of Proposition 5

Denote by L2
0(π) the closed subspace of L2(π) consisting of functions φ such that

∫
φ(x)dπ(x) = 0. For any f ∈ D(Lπ),∫

Lπf(x)dπ(x) = 0; hence Im(Lπ) is a subset of L2
0(π), which is itself a subset of L2(π).

Let Tπ,kπ = S∗π,kπ ◦ Sπ,kπ , and assume that V = − log(π) is a C1(Rd) function. We want to show that exponential decay
near equilibrium (16) holds, if and only if L−1π : L2

0(π)→ L2
0(π), the inverse of Lπ|L2

0(π)
, is a well-defined linear operator,

and
〈φ, Tπ,kπφ〉L2(π) ≥ λ〈φ,L

−1
π φ〉L2(π) (46)

holds for all φ ∈ L2
0(π).

Proof. First, assume that the exponential convergence near equilibrium holds. We will show that L−1π is a well-defined
bounded linear operator on L2

0(π), and then that the inequality 46 holds. Let ψ ∈ C∞c (Rd). By Corollary 4, the Hessian of
F at π can be written as

Hessπ(ψ,ψ) = 〈Sπ,kπ (Lπψ), Sπ,kπLπψ〉Hkπ = 〈Tπ,kπ (Lπψ),Lπψ〉L2(π),

where Tπ,kπ = S∗π,kπ ◦ Sπ,kπ . By Lemma 12, we have that ‖∇ψ‖2L2(π) = 〈ψ,Lψ〉L2(π), and exponential convergence near
equilibrium can be written:

〈Tπ,kπ (Lπψ),Lπψ〉L2(π) ≥ λ〈ψ,Lπψ〉L2(π). (47)

Note, that by Assumption (A4), Tkπ,π is a bounded operator (Steinwart & Christmann, 2008, Theorem 4.27), and it follows
by an application of the Cauchy-Schwartz inequality that (47) implies:

‖Lπψ‖2L2(π) ≥
λ

‖Tkπ,π‖op
〈ψ,Lπψ〉L2(π), (48)

where ‖ · ‖op denotes the operator norm. Now, let ψ be an arbitrary element of D(Lπ), the domain of Lπ. By Lemma 12,
there exists a sequence (ψn)∞n=1 ⊂ C∞c (Rd) converging strongly to ψ, such that Lπψn converges strongly to Lπψ as well.
Hence, (48) holds for all ψ ∈ D(Lπ).

We will now show, that the spectrum of Lπ, σ(Lπ) is contained in {0} ∪ [ λ
‖Tkπ,π‖op

,∞). Suppose that there exists a

σ ∈ (0, λ
‖Tkπ,π‖op

) ∩ σ(Lπ). If σ is in the point spectrum of Lπ, then by definition there would exist a vector v ∈ D(Lπ)

such that Lπv = σv, which would contradict the inequality (48). On the other hand, if σ is not in the point spectrum of
Lπ, then by Weyl’s criterion (Pankrashkin, 2014, Theorem 7.22) we can find an orthonormal sequence (un)∞n=1 ∈ D(Lπ)
such that (Lπ − σ)un converges to 0 in L2(π). An obvious calculation shows that this would contradict (48). Hence,
σ(Lπ) ⊂ {0} ∪ [ λ

‖Tkπ,π‖
,∞).

We note that L2
0(π) is itself a Hilbert space with the inner product inherited from L2(π). The image of Lπ is contained

in L2
0(π) (recall that for any f ∈ D(Lπ),

∫
Lπf(x)dπ(x) = 0), and it is dense in L2

0(π) since Im(T ) = (Ker(T ))⊥

for self-adjoint operators T (Brezis, 2010, Corollary 2.18). Furthermore, since σ(Lπ) ⊂ {0} ∪ [ λ
‖Tkπ,π‖op

,∞) and the

kernel of Lπ consists of constants (Appendix A.5), the operator L̃π = Lπ|L2
0(π)

(the restriction of Lπ to L2
0(π)) is strictly

positive and self-adjoint on L2
0(π). Since consequently σ(L−1π ) ∈ (0,

‖Tkπ,π‖op
λ ], L−1π := L̃−1π is a well-defined, bounded,

self-adjoint and positive operator from L2
0(π) to L2

0(π). We now take an arbitrary ψ ∈ D(Lπ) and denote φ = Lπψ. We
can write ψ = ψ′ + C, where C =

∫
ψ(x)dπ(x) is a constant and ψ′ ∈ L2

0(π) ∩ D(Lπ). We then have Lπψ = Lπψ′
and L−1π Lπψ = ψ′ = ψ − C. We also note, that since φ ∈ Im(Lπ) ⊂ L2

0(π) we have 〈C, φ〉L2(π) = 0. Now by a direct
substitution of φ = Lπψ in (47) we obtain:

〈Tπ,kπφ, φ〉L2(π) ≥ λ〈ψ′ + C, φ〉L2(π) = λ〈L−1π φ, φ〉L2(π). (49)

for all φ in the image of Lπ . Given that this image is dense in L2
0(π), and that Tkπ,π and Lπ are continuous, this is equivalent

to (49) holding for all φ ∈ L2
0(π).

Now we prove the reverse implication, that is that if L−1π is well-defined, bounded, and (49) holds for all φ ∈ L2
0(π), then

(47) holds for all ψ ∈ C∞c (Rd). This follows trivially from the fact, that for ψ ∈ C∞c (Rd) we have Lπψ ∈ L2
0(π) and

L−1π Lπψ = ψ − C where C =
∫
ψ(x)dπ(x) as previously. Again, using the fact that 〈C,Lπψ〉L2(π) = 0 and a direct

substitution φ = Lπψ into (49), we obtain (47) for all ψ ∈ C∞c (Rd).
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B.6. Proof of Corollary 6

We begin this section by an additional result, that shows that the assumption that the spectrum of L−1π is necessarily discrete
if exponential decay near equilibrium (16) holds and the RKHS of kπ is infinite dimensional.

Lemma 16. If exponential decay near equilibrium (16) holds, and the RKHS for kπ is infinite dimensional, then L−1π has a
discrete spectrum.

Proof. By Proposition 5, exponential convergence near equilibrium implies that L−1π is a well-defined bounded linear
operator on L2

0(π) and the inequality (18) holds for all φ ∈ L0
2(π). Let (ln)n∈N be the eigenvalues of Tk,πk in descending

order. Using the max-min variational formula for the eigenvalues of a compact operator, and applying Proposition 5, we get:

ln = sup
E⊂L2

0(π)
dim(E)=n

inf
φ∈E
φ 6=0

〈φ, Tk,πkφ〉L2(π)

〈φ, φ〉L2(π)
≥ λ sup

E⊂L2
0(π)

dim(E)=n

inf
φ∈E
φ6=0

〈φ,L−1π φ〉L2(π)

〈φ, φ〉L2(π)
. (50)

We will now show, that this implies that the spectrum of L−1π is discrete. Let L1/2
π be the square root of Lπ|L2

0(π)
, the

restriction of Lπ to L2
0(π). As a consequence of the analysis in Appendix B.5, the operator L1/2

π is well-defined, strictly
positive and self-adjoint from D(Lπ) ∩ L2

0(π) to L2
0(π). By retricting the supremum to φ of the form φ = L1/2

π ψ, where
ψ ∈ D(Lπ) ∩ L2

0(π), we obtain the following lower bound:

sup
E⊂L2

0(π)
dim(E)=n

inf
φ∈E
φ6=0

〈φ,L−1π φ〉L2(π)

〈φ, φ〉L2(π)
≥ sup
E⊂L1/2

π (L2
0(π)∩D(Lπ))

dim(E)=n

inf
φ∈E
φ 6=0

〈φ,L−1π φ〉L2(π)

〈φ, φ〉L2(π)
(51)

= sup
E⊂L2

0(π)∩D(Lπ)
dim(E)=n

inf
ψ∈E
ψ 6=0

〈ψ,ψ〉L2(π)

〈ψ,Lπψ〉L2(π)
=

Ö
inf

E⊂L2
0(π)∩D(Lπ)

dim(E)=n

sup
ψ∈E
ψ 6=0

〈ψ,Lπψ〉L2(π)

〈ψ,ψ〉L2(π)

è−1
It now follows that Lπ|L2

0(π)
has discrete spectrum. Indeed, if it was not the case, by (Pankrashkin, 2014, Theorem 8.1)

the quotients within the parenthesis on the right hand side of (51), would be upper bounded by inf σess(Lπ|L2
0(π)

) > 0,
where σess is the essential spectrum, and thus the right hand side of (51) would be lower bounded by a constant equal toÄ

inf σess(Lπ|L2
0(π)

)
ä−1

> 0. This is not possible since the eigenvalues (ln)n∈N converge to zero. Since Lπ is positive and
unbounded on L2

0(π) and its spectrum is purely discrete, it follows that L−1π is compact and, by extension, (Lπ + I)−1 :
L2(π)→ L2(π) is compact, which means that Lπ has compact resolvent.

The proof of Corollary 6 now follows readily:

Proof of Corollary 6. We denote by (ln)n∈N the eigenvalues of Tk,πk in descending order and by (λn)n∈N the eigenvalues of
compact operator L−1π : L2

0(π)→ L2
0(π) also in descending order. By max-min variational characterization of eigenvalues

for compact operators, it follows from (50) that ln ≥ λ.λn, hence λn = O(ln).

B.7. Bound on eigenvalue decay and proof of Theorem 7

Lemma 17. Let γd ∼ N (0, Id) be the standard d-dimensional Gaussian measure, and let Lγd = −∆ + 〈x,∇〉 be the
Ornstein-Uhlenbeck operator on L2(γd). If we denote by ρn the n-th smallest eigenvalue of Lγd , then we have:

ρn = O(n1/d).

Proof. For a multi-index α = (k1, . . . , kd), the multivariate Hermite polynomial is for any x = (x1, . . . , xd) ∈ Rd:

Hα(x) =

d∏
i=1

Hki(xi)



Kernel Stein Discrepancy Descent

where for ki ∈ N, Hki denotes the usual one-dimensional kith-order Hermite polynomial. It is well known that multivariate
Hermite polynomials form an orthogonal basis of L2(γd) and that we have

LγdHα = |α|Hα

where |α| =
∑d
i=1 ki (Bakry et al., 2013, Section 2.7.1). Therefore any k ∈ N is an eigenvalue of Lγd , with multiplicity

equal to

Sk =

Ç
k + d− 1

d− 1

å
which is the number of solutions of the equation k =

∑d
i=1 ki, where {ki}di=1 takes its values in the set of nonnegative

integers. This means, that

ρn = k ⇐⇒
k−1∑
i=1

Si < n ≤
k∑
i=1

Si.

Since Si is a polynomial in i of degree d − 1, then
∑k
i=1 Si is a polynomial in k of degree d. Therefore we have

ρn = O(n1/d).

Corollary 18. The conclusion of Lemma 17 holds for any Schrödinger operator on L2(Rd), defined for L > 0 as follows,

HνL := −∆ +
1

4
L2‖x‖2 − 1

2
dL. (52)

Proof. Let νL ∼ N (0, 1
LId) be a normal measure, and let LνL = −∆ + L〈x,∇〉 be the associated Ornstein-Uhlenbeck

operator on L2(νL). It is easy to see that the map RL : L2(γd)→ L2(νL) given by:

(RLφ)(x) = φ(
√
Lx)

is unitary, and that Lγd = R∗LLνLRL. Furthermore, it is standard that LνL is unitarily equivalent to HνL , see (Pavliotis,
2014, Proposition 4.7). Since unitary equivalence preserves the spectrum, the thesis follows.

Lemma 19. Suppose that π ∝ e−V where V is a C2(Rd) potential such that∇V is L-Lipschitz and assume that Lπ has
discrete spectrum. If we denote by λ̃n the n-th smallest eigenvalue of the operator Lπ (counting the multiplicities), then

λ̃n ≤ O(n1/d)

Proof. It is easy to show, that if∇V is Lipschitz and
∫
e−V (x)dx is finite, then lim|x|→∞ V (x) =∞. This is a consequence

of the fact that limR→∞
∫
|x|>R e

−V (x)dx = 0 and that on the set {y : ||x − y|| ≤ 1, 〈∇V (x), y − x〉 ≤ 0} we have
−V (y) ≥ −V (x)− L

2 ‖x− y‖
2
2. Therefore V (x) has to diverge to∞ as |x| → ∞. It follows, that V attains a minimum

on Rd. Assume, without loss of generality, that V attains its (not necessarily unique) minimum at 0. The operator Lπ is
unitarily equivalent to the Schrödinger operator (Equation 4.130, Pavliotis (2014))

Hπ = −∆ +
1

4
‖∇V ‖2 − 1

2
∆V

on L2(Rd). Since unitary equivalence preserves the spectrum, this operator has by assumption a discrete spectrum. We will
show that the eigenvalues ofHνL + dLI dominate those ofHπ whereHνL is defined in (52). For any φ ∈ D(HL), we have

+∞ > 〈φ,HνL + dLIφ〉L2(Rd) = 〈φ,Hπφ〉L2(Rd) +
1

4

∫ (
L2‖x‖2 − ‖∇V (x)‖2 + 2dL+ 2∆V (x)

)
φ(x)2dx

≥ 〈φ,Hπφ〉L2(Rd),

where the last inequality follows from the L-Lipschitz regularity of ∇V . It follows from the above calculation that the
domain of the quadratic form 〈φ,HνL + dLI〉L2(Rd), denoted Q(HνL + dLI) is contained in the domain of the quadratic
form 〈φ,Hπφ〉L2(Rd), denoted Q(Hπ). It is now a simple consequence of the the Rayleigh-Ritz variational formula that the
eigenvalues ofHνL + dLI dominate those ofHπ (Pankrashkin, 2014, Corollary 8.6), that is, λ̃n ≤ ρn + dL where ρn is the
n-th smallest eigenvalue of the operatorHνL . By Corollary 18, we have that ρn = O(n1/d), which concludes the proof.
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Proof of Theorem 7. Let (ln)∞n=1 be the eigenvalues of Tkπ,π and (λn)∞n=1 be the eigenvalues of L−1π both in descending
order. Since Tkπ,π is a trace class operator (Steinwart & Christmann, 2008, Theorem 4.27), we know that

∑∞
n=1 ln < +∞.

By Corollary 18 exponential convergence near equilibrium would imply that
∑∞
n=1 λn < +∞ as well. On the other

hand we have that λn = λ̃n
−1

, where λ̃n are the positive eigenvalues of Lπ in a nondecreasing order. By Lemma 19 we
have λ̃n = O(n1/d), which implies that there exists an N ∈ N and a constant C > 0, such that for all n ≥ N we have
λ̃n ≤ Cn1/d and thus λn ≥ Cn−1/d. This contradicts the summability of λn, and concludes the proof.

B.8. Proof of Lemma 8

Let H0 =
{∑m

i=1 αikπ(·, xi);m ∈ N;α1, . . . , αm ∈ R;x1, . . . , xm ∈ Rd
}

. Recall that Hkπ is the set of functions on
Rd for which there exists an H0-Cauchy sequence (fn)n ∈ HN

0 converging pointwise to f . Let c ∈ R. Let f0 =∑m
i=1 αikπ(·, xi) ∈ H0 and assume that f0 = c. Integrating f0 w.r.t. π yields

c =

∫
f0(x)dπ(x) =

m∑
i=1

αi

∫
kπ(xi, x)dπ(x) = 0.

Hence c = 0. Similarly, let f ∈ Hkπ such that f = c, fix (fn)n ∈ HN
0 such that ‖fn − f‖Hkπ → 0.

Under Assumption (A4), the injection ι : Hkπ → L2(π) is continuous, linear and bounded. Indeed, for any g ∈ Hkπ

‖ιg‖2L2(π) =

∫
g(x)2dπ(x) =

∫
〈g, kπ(x, ·)〉2Hkπ dπ(x) ≤ ‖g‖2Hkπ

∫
kπ(x, x)dπ(x) =: c2π‖g‖2Hkπ ,

where cπ < +∞ exists by Assumption (A4). So ‖fn−f‖Hkπ → 0 implies that ‖fn−f‖L2(π) → 0. Since
∫
fn(x)dπ(x) =

0, by the reproducing property and Cauchy-Schwartz inequality, we have:

|c| =
∣∣∣∣∫ f(x)dπ(x)

∣∣∣∣ =

∣∣∣∣∫ (fn − f)(x)dπ(x)

∣∣∣∣ ≤ ∫ |〈fn − f, kπ(x, ·)〉Hkπ |dπ(x) ≤ ‖fn − f‖Hkπ c
2
π.

which shows that c = 0 since ‖fn − f‖Hkπ → 0.

B.9. Proof of Proposition 10

Rather than providing a proof only for the more restrictive smooth submanifolds considered in Proposition 10, we express
the result below for general closed nonempty sets. This formulation involves contingent cones which are crucial quantities
for studying the invariance of non-smooth sets. They can be informally described as the collection of directions at x
that point either inward or that are tangent to the set M. More formally, for dM(y) the distance of y ∈ Rd to M,
TM(x) := {v| lim infh→0+ dM(x + hv)/h = 0}. Non-smooth sets were experimentally met whenever we considered
Gaussian mixtures with more than three components for which there was no simple axis of symmetry (as on Figure 8).
These are cases more intricate than the ones considered in Lemma 11.
Proposition 20. Let M ⊂ Rd be a closed nonempty set and µ0 ∈ Pc(Rd) with supp(µ0) ⊂ M. Assume that, for a
deterministic (vµt)t≥0 satisfying the Caratheodory-Lipschitz Assumptions (C1)-(C4), we have vµt(x) ∈ TM(x) where
TM(x) is the contingent cone ofM at x ∈M. ThenM is flow-invariant for (4).

Proof. Consider any x0 ∈ supp(µ0). By Assumption (C2) and Gronwall’s lemma, x′(t) = vµt(x(t)) can only generate
trajectories that do not explode in finite time, i.e. there is no T <∞ such that lim supt→T− ‖x(t)‖ = +∞. Since v(µ)(·)
is continuous by Assumption (C1), and vµt(x) ∈ TM(x), we can apply an invariance result (Aubin & Frankowska, 1990,
Theorem 10.4.1) stating that all the generated trajectories x(·) stay withinM at all times. This can be informally understood
as using directions that are always tangent or pointing withinM cannot push x(·) outside ofM.

The superposition principle (Ambrosio & Crippa, 2014, Theorem 3.4) states that supp(µt) is contained in the set of
positions x(t) reached by all the trajectories satisfying x′(t) = vµt(x(t)) for some x0 = x(0) ∈ supp(µ0). Consequently
supp(µt) ⊂M, namelyM is flow-invariant for (4).

B.10. Proof of Lemma 11

Assume that dπ(x) ∝ e−V (x)dλ(x), then s(x) = −∇V (x). Translating and reindexing, w.l.o.g. we can take M =
span(eI , . . . , ed). Thus by symmetry of π w.r.t.M, we have that si(x) = (∇ log π(x))i = 0 for all i < I and x ∈ M,
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so s(x) ∈ M. Hence, for every x ∈ M, ∂jsi(x) = 0, for i < I and I ≤ j ≤ d. Therefore, for any u ∈ M
[J(s)(x)]u = [J(s)(x)]|Mu, i.e.M is left invariant under the action of any Jacobian matrix [J(s)(x)] for x ∈M.

Consider a radial kernel k(x, y) = φ(‖x − y‖2/2) with φ ∈ C3(R). Then ∇2k(x, y) = (x − y)φ′(‖x − y‖2/2) and
H1k(x, y) = φ′(‖x−y‖2/2)Id+(x−y)⊗(x−y)φ′′(‖x−y‖2/2). As, for all x, y ∈M, x−y ∈M,∇2k(x, y) ∈M and
M is left invariant under the action ofH1k(x, y). Since∇·1∇2k(x, y) is radial as well,∇2(∇·1∇2k(x, y)) ∈ span(x−y).
We have thus shown that all the terms in (36) belong toM if x, y ∈M, so∇2kπ(x, y) ∈M.

Consequently ∇W2F(µ)(y) = Ex∼µ[∇2kπ(x, y)] ∈M for any µ such that supp(µ) ⊂M. Since the contingent cone of a
subspace at any point is equal to the subspace itself, we conclude by applying Proposition 20 toM.

B.11. Proof of Lemma 12

We start by noting, that L̃π(φ) = ∇V · ∇φ is well-defined on C∞c (Rd). Denote Z =
∫
Rd e

−V (x)dx. Using integration by
parts, we have for φ, ψ ∈ C∞c (Rd):

〈L̃πφ, ψ〉L2(π) =
1

Z

∫
Rd

(∇V · ∇φ(x)−∆φ(x))ψ(x)e−V (x)dx

=
1

Z

∫
Rd

(∇V · ∇φ(x))ψ(x)e−V (x) +∇φ(x) · (∇ψ(x)e−V (x))dx

=
1

Z

∫
〈∇φ(x),∇ψ(x)〉e−V (x)dx = 〈∇φ,∇ψ〉L2(π).

It follows that L̃π is symmetric, and since 〈L̃πf, f〉 = ‖∇f‖2L2(π)
, it is positive as well. We can now define Lπ as the

Friedriechs extension of L̃π over L2(π) (Pankrashkin, 2014, Definition 2.17). This means that, when we consider the
bilinear form F (φ, ψ) = 〈L̃πφ, ψ〉, there exists the smallest closed bilinear form F on L2(π) which extends it (Pankrashkin,
2014, Proposition 2.16). The operator associated with F is a self-adjoint extension of L̃π on L2(π), which is also positive.
We denote this extension by Lπ . Furthermore, the domain of Lπ is by definition contained in the domain of F , which is the
closure of C∞c for the norm (29) (Pankrashkin, 2014, Proposition 2.8). The claim of density of C∞c (Rd) in D(Lπ) for the
norm (29) now follows.

Recall, that we have shown that for φ ∈ C∞c (Rd) we have 〈φ,Lπφ〉 = ‖∇φ‖2L2(π). Therefore

‖φ‖2Lπ =
Ä
‖∇φ‖2L2(π) + ‖φ‖2L2(π)

ä
which is the W 1,2(π) Sobolev norm. This means, that the domain of the closure F is equal to W 1,2

0 (π), and hence
D(Lπ) ⊂ W 1,2

0 (π). In fact, one can establish that D(Lπ) = W 1,2
0 (π) = W 1,2(π), though we will not need this. It

now follows that for any f ∈ D(Lπ) there exists a weak derivative ∇f ∈ L2(π), and it is easy to establish the equality
‖∇f‖2L2(π)

= 〈f,Lπf〉L2(π) by approximating f in the norm ‖ · ‖W 1,2(π).

It is now easy to show, that the kernel of Lπ consists of constant functions. If Lπf = 0, we have ‖∇f‖2L2(π) =

〈f,Lπf〉L2(π) = 0. One can deduce, that if the weak derivative is zero then the function is constant by a standard argument
using mollifiers that we sketch below:

Define the convolution in L2(π) by f ? g(x) =
∫
f(x− y)g(y)dπ(y). By standard properties of the convolution, for any

φ ∈ C∞c , we have f ? φ ∈ C∞ ∩ L2(π) and ∇(f ? φ) = f ? (∇φ), and if f has a weak derivative then by definition
f ? (∇φ) = (∇f) ? φ. Let φn be now a mollifier then again, by standard arguments, f ? φn converges to f in L2(π), and
also f ? φn is smooth with∇(f ? φn) = (∇f) ? φn = 0, hence f ? φn is constant. It follows that f is constant.

We are left to show that the set {(φ,Lπφ) ∈ L2(π)×L2(π) : φ ∈ C∞c (Rd)} is dense in the graph of L2(π) for the topology
inherited from the normed space L2(π)× L2(π). The domain of the closed form F with the norm (29) is a Hilbert space
(Pankrashkin, 2014, Definition 2.5), with an inner product denoted by 〈·, ·〉Lπ . We have that for any f ∈ D(Lπ) there exists
a sequence (φn)∞n=1 such that limn→∞ ‖φn− f‖Lπ = 0. By the Cauchy-Schwarz inequality, we have that for any ψ ∈ C∞c :

|〈ψ,Lπ(f − φn)〉L2(π) + 〈ψ, f − φn〉L2(π)| = |〈ψ, f − φn〉Lπ | ≤ ‖ψ‖Lπ‖f − φn‖Lπ ,

and since φn converges to f in L2(π) strongly, we obtain limn→∞〈ψ,Lπ(f − φn)〉 = 0 for all ψ ∈ C∞c (Rd). Since
C∞c (Rd) is dense in L2(π), it follows that Lπφn converges weakly to Lπf . By a version of Mazur’s lemma on weakly and
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strongly closed convex sets (Renardy & Rogers, 2006, Lemma 10.19), it follows that there exists a sequence of finite convex
combinations of Lπφn converging strongly to Lπf . More precisely, there exists a function N : N→ N and a sequence of
sets of real numbers {αk,m}N(k)

m=k such that αk,m ≥ 0,
∑N(k)
m=k αk,m = 1, and

lim
k→∞

N(k)∑
n=k

αk,nLπφn = Lπf

in the strong topology on L2(π). It follows by linearity of Lπ, that the functions ψk =
∑N(k)
n=k αk,nφn are C∞c functions

that converge to f in L2(π) strongly, and Lπψk converges to Lπf strongly in L2(π) as well.

B.12. Proof of Proposition 14

To perform the computations related to Lemma 22 for the induction formula (10), we need a compactly-supported push-
forward, however ∇W2

F(µn)(·) is not compactly supported in general. We consequently leverage the compactness of
the measure it is applied on to perform our analysis. We thus first show by induction that, owing to (10), µn ∈ Pc(Rd)
for all n ∈ N, since µ0 ∈ Pc(Rd). Assume that µn ∈ Pc(Rd), then, by definition of the push-forward operation, since
∇W2F(µn) ∈ C1(Rd;Rd),

supp(µn+1) ⊂ (I − γ∇W2F(µn)) (supp(µn)) ⊂ supp(µn) + γ

Å
max

x∈supp(µn)
‖∇W2F(µn)(x)‖2

ã
B(0, 1) =: Sn. (53)

Hence µn+1 ∈ Pc(Rd) as claimed.

Consider a path between µn and µn+1 of the form ρt = (I − γt∇W2F(µn))# µn. Set φ(x) = −γ∇W2F(µn)(x), and
st(x) = x+ tφ(x) which is distributed according to ρt for x distributed as µn. In general the function (I − γ∇W2F(µn))
is not compactly supported so we cannot apply Lemma 22 outright. But since the push-forward is only applied to the
compactly supported µn in the definition of ρt, we can find, through a mollifier, a function fn,t ∈ C1(Rd;Rd) such that
it coincides with (I − γt∇W2

F(µn)) on Sn and is supported on Sn + B(0, 1). So ρt = (fn,t)#µn and we can apply
Lemma 22. Hence t 7→ F(ρt) is differentiable and absolutely continuous, and consequently

F (ρ1)−F (ρ0) = Ḟ (ρ0) +

∫ 1

0

î
Ḟ (ρt)− Ḟ (ρ0)

ó
dt, (54)

where
Ḟ (ρt) = Ex∼µn

x′∼µn

î
∇1kπ (st(x), st(x

′))
>

(φ(x))
ó
.

The first term in the r.h.s. of (54) is

Ḟ(ρ0) = −γEx∼µn
[
‖∇W2

F(µn)(x)‖2
]
.

Since st(x)− st′(x) = (t− t′)φ(x), by Assumption (A1), we derive through Jensen’s and Cauchy-Schwarz inequalities
that∣∣∣Ḟ (ρt)− Ḟ (ρt′)

∣∣∣ =

∣∣∣∣Ex∼µn
x′∼µn

î
(∇1kπ (st(x), st(x

′))−∇1kπ (st′(x), st′(x
′)))
>
φ(x)
ó∣∣∣∣

≤ Ex∼µn
x′∼µn

[(‖∇1kπ (st(x), st(x
′))−∇1kπ (st′(x), st(x

′))‖+ ‖∇1kπ (st′(x), st(x
′))−∇1kπ (st′(x), st′(x

′))‖) ‖φ(x)‖]

≤ |t− t′|Ex∼µn
x′∼µn

[(L(st(x
′))‖φ(x)‖+ L(st′(x)) ‖φ(x′)‖) ‖φ(x)‖]

≤ |t− t′|
(
Ex′∼µn [L(st(x

′))]Ex∼µn
[
‖φ(x)‖2

]
+ Ex∼µn [L(st′(x))‖φ(x)‖]Ex′∼µn [‖φ(x′)‖]

)
≤ |t− t′|

(
Ex∼µn [L(st(x))]Ex∼µn

[
‖φ(x)‖2

]
+ Ex∼µn

[
L(st′(x))2

] 1
2 Ex∼µn

[
‖φ(x)‖2

] 1
2 Ex′∼µn

[
‖φ(x′)‖2

] 1
2

)
≤ γ2|t− t′|

(
‖L‖L1(ρt) + ‖L‖L2(ρt′ )

)
Ex∼µn

[
‖∇W2F(µn)(x)‖2

]
since φ(x) = −γ∇W2F(µn)(x).

Hence, for t′ = 0, we have∣∣∣Ḟ (ρt)− Ḟ (ρ0)
∣∣∣ ≤ tγ2 (‖L‖L1(ρt) + ‖L‖L2(µn)

)
Ex∼µn

[
‖∇W2

F(µn)(x)‖2
]
.



Kernel Stein Discrepancy Descent

Then, since ρt = ((1− t)I + t(I + φ))#µn, by convexity of L, we can write :

‖L‖L1(ρt) =

∫
|L((1− t)x+ t(x+ φ(x))|dµn(x)

≤ (1− t)‖L‖L1(µn) + t‖L‖L1(µn+1) ≤ (1− t)‖L‖L2(µn) + t‖L‖L2(µn+1) ≤M.

We can thus upper bound the second term in the r.h.s. of (54),∫ 1

0

|Ḟ (ρt)− Ḟ (ρ0) |dt ≤
∫ 1

0

(
t2Mγ2Ex∼µn

[
‖∇W2F(µn)(x)‖2

])
dt = γ2MEx∼µn

[
‖∇W2F(µn)(x)‖2

]
.

Finally, since γM ≤ 1, (54) leads to

F(µn+1)−F(µn) ≤ −γ(1− γM)Ex∼µn
[
‖∇W2F(µn)(x)‖2

]
≤ 0.

C. Additional results
C.1. On the kernel integral operator

Lemma 21. For any f, g ∈ L2(π), we have that

〈Sπ,kπf, Sπ,kπg〉Hkπ =

∫∫
f(x)>g(y)kπ(x, y)dπ(x)dπ(y).

Proof. By using the reproducing property, we deduce that

〈Sπ,kπf, Sπ,kπg〉Hdkπ = 〈
∫
kπ(x, ·)f(x)dπ(x),

∫
kπ(y, ·)g(y)dπ(y)〉Hdkπ

=

d∑
i=1

〈
∫
kπ(x, ·)fi(x)dπ(x),

∫
kπ(y, ·)gi(y)dπ(y)〉Hkπ

=

d∑
i=1

∫∫
fi(x)kπ(x, y)gi(y)dπ(x)dπ(y) =

∫∫
f(x)>g(y)kπ(x, y)dπ(x)dπ(y).

C.2. On the differentiation of the squared KSD

For Lemma 22 below, our computations are similar to the ones in Arbel et al. (2019, Lemma 22 and 23) with some terms
getting simpler owing to the Stein’s property of the Stein kernel, but under a weaker assumption than a uniform Lipschitz
constant for the kernel (see the discussion in Appendix A.6).

Lemma 22. Let q ∈ P2(Rd) and φ ∈ C1
c (Rd). Consider the path ρt from q to (I +∇φ)#q given by: ρt = (I + t∇φ)#q,

for all t ∈ [0, 1]. Suppose Assumptions (A1) and (A3) hold. Then, F(ρt) is twice differentiable in t with

Ḟ(ρt) =E (x)∼q
(x′)∼q

[
∇1kπ(x+ t∇φ(x), x′ + t∇φ(x′))>∇φ(x)

]
,

F̈(ρt) =E (x)∼q
(x′)∼q

[
∇φ(x′)>∇1∇2kπ(x+ t∇φ(x), x′ + t∇φ(x′))∇φ(x)

]
+ E (x)∼q∗

(x′)∼q∗

[
∇φ(x)>H1kπ(x+ t∇φ(x), x′ + t∇φ(x′))∇φ(x)

]
.

Proof. The function f : t 7→ kπ(x+ t∇φ(x), x′ + t∇φ(x′)) is differentiable for all x, x′ ∈ Rd, and its time derivative is :

ḟ = ∇1kπ(x+ t∇φ(x), x′ + t∇φ(x′))>∇φ(x) +∇2kπ(x+ t∇φ(x), x′ + t∇φ(x′))>∇φ(x′)

= ∇1kπ(x+ t∇φ(x), x′ + t∇φ(x′))>∇φ(x) +∇1kπ(x′ + t∇φ(x′), x+ t∇φ(x))>∇φ(x′) (55)
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using the symmetry of kπ . The two terms on the r.h.s. of the former equation are symmetric w.r.t. x and x′, so we will focus
on the first one. By the Cauchy-Schwartz inequality and Assumption (A1),

|∇1kπ(x+ t∇φ(x), x′ + t∇φ(x′))>∇φ(x)| ≤ ‖∇1kπ(x+ t∇φ(x), x′ + t∇φ(x′))‖‖∇φ(x)‖
≤ (L(x+ t∇φ(x))‖x′ + t∇φ(x′)‖+ ‖∇1kπ(x+∇φ(x), 0)‖) ‖∇φ(x)‖

The r.h.s. of the above inequality is integrable in x because ∇φ is compactly supported, L is continuous, and because
x′ 7→ ‖x′ + t∇φ(x′)‖ is integrable since q ∈ P2(Rd).Therefore, by the differentiation lemma (Klenke, 2013, Theorem
6.28), F(ρt) is differentiable and Ḟ(ρt) = E(x)∼q,(x′)∼q[ḟ ], i.e.

Ḟ(ρt) = E (x)∼q
(x′)∼q

[
∇1kπ(x+ t∇φ(x), x′ + t∇φ(x′))>∇φ(x)

]
.

Now define the function g : t 7→ ∇1kπ(x+ t∇φ(x), x′ + t∇φ(x′))>∇φ(x). Its time derivative writes as

ġ = ∇φ(x)>∇2∇1kπ(x+ t∇φ(x), x′ + t∇φ(x′))∇φ(x′) +∇φ(x)>H1kπ(x+ t∇φ(x), x′ + t∇φ(x′))∇φ(x).

The first term on the r.h.s. is integrable in (x, x′) because it is compactly supported and continuous. We now deal with the
second term. Under Assumption (A3), H1kπ(x, y) is dominated by a q-integrable function. Then,

|∇φ(x)>H1kπ(x+ t∇φ(x), x′ + t∇φ(x′))∇φ(x)| ≤ ‖H1kπ(x+ t∇φ(x), x′ + t∇φ(x′))‖op‖∇φ(x)‖2

The r.h.s. of the above inequality is integrable because (x, y) 7→ H1kπ(x, y) is integrable and∇φ is bounded.

D. Additional experiments
Implementation details. The code for KSD Descent is written in Python using Pytorch (Paszke et al., 2019). We use
Matplotlib (Hunter, 2007) for figures, Scipy (Virtanen et al., 2020) for the L-BFGS implementation, as well as Numpy (Harris
et al., 2020). It is available at https://github.com/pierreablin/ksddescent.

Different initializations and variance for Gaussian mixtures. To discuss in greater detail the results of our second toy
example presented in Section 5.1 and illustrated on Figure 3, we performed some more experiments for several choices
of initialization and variance, for a mixture of two Gaussians with equal variance (see Figure 7). We also investigated the
support of the stationary points of KSD Descent for a mixture of three Gaussians with different variances (see Figure 8). As
discussed in Appendix B.9, the support is not necessarily a smooth submanifold or an axis of symmetry.

A comparison between KSD Descent and Stein points. We finally compare KSD Descent and Stein points (Chen et al.,
2018). We choose a low dimensional problem, since the approach of Stein points cannot scale to large dimensions. We use
the classical 2-D “banana” density. Figure 9 shows the behavior of the two algorithms. Interestingly, KSD Descent succeeds
and does not fall into spurious local minima, even tough the density is not log-concave. We posit that this happens because
here the potential log(π) does not have saddle points.

https://github.com/pierreablin/ksddescent


Kernel Stein Discrepancy Descent

Variance Initialization exactly on the
symmetry axis

Initialization close to the
symmetry axis Gaussian i.i.d. initialization

0.1
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Figure 7. Results of KSD Descent for a mixture of two gaussians, depending on their variance and on the initialization of the algorithm.
The green crosses indicate the initial particle positions, while the blue ones are the final positions.

Figure 8. Using KSD Descent to sample from an unbalanced mixture of Gaussians. Some particles get stuck in spurious zones, which are
not a straight line nor a manifold. The green crosses indicate the initial particle positions, while the blue ones are the final positions.
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KSDD Stein points

Figure 9. Comparison of KSD Descent and Stein points on the “banana” dataset. Green points are the initial points for KSD Descent.
Both methods work successfully here, even though it is not a log-concave distribution. We posit that KSD Descent succeeds because there
is no saddle point in the potential.


