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Abstract
Among dissimilarities between probability distri-
butions, the Kernel Stein Discrepancy (KSD) has
received much interest recently. We investigate
the properties of its Wasserstein gradient flow to
approximate a target probability distribution π on
Rd, known up to a normalization constant. This
leads to a straightforwardly implementable, deter-
ministic score-based method to sample from π,
named KSD Descent, which uses a set of parti-
cles to approximate π. Remarkably, owing to a
tractable loss function, KSD Descent can lever-
age robust parameter-free optimization schemes
such as L-BFGS; this contrasts with other popular
particle-based schemes such as the Stein Vari-
ational Gradient Descent algorithm. We study
the convergence properties of KSD Descent and
demonstrate its practical relevance. However, we
also highlight failure cases by showing that the
algorithm can get stuck in spurious local minima.

1. Introduction
An important problem in machine learning and computa-
tional statistics is to sample from an intractable target distri-
bution π. In Bayesian inference for instance, π corresponds
to the posterior probability of the parameters, which is re-
quired to compute the posterior predictive distribution. It
is known only up to an intractable normalization constant.
In Generative Adversarial Networks (GANs, Goodfellow
et al., 2014), the goal is to generate data which distribu-
tion is similar to the training set defined by samples of π.
In the first setting, one has access to the score of π (the
gradient of its log density), while in the second, one has
access to samples of π. Assessing how different the tar-
get π and a given approximation µ are can be performed
through a dissimilarity function D(µ|π). As summarized
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by Simon-Gabriel (2018), classical dissimilarities include
f -divergences such as the KL (Kullback-Leibler) or the χ2

(Chi-squared), the Wasserstein distances in Optimal Trans-
port (OT), and Integral Probability Metrics (IPMs), such
as the Maximum Mean Discrepancy (MMD, Gretton et al.,
2012). Dissimilarity functions can hence be used to charac-
terize π since, under mild assumptions, they only vanish at
µ = π. Setting F(µ) = D(µ|π), assuming also in our case
that π ∈ P2(Rd), the set of probability measures µ with
finite second moment (

∫
‖x‖2dµ(x) < ∞), the sampling

task can then be recast as an optimization problem over
P2(Rd)

min
µ∈P2(Rd)

F(µ). (1)

Starting from an initial distribution µ0, one can then apply
a descent scheme to (1) to converge to π. In particular,
one can consider the Wasserstein gradient flow of F over
P2(Rd). This operation can be interpreted as a vector field
continuously displacing the particles constituting µ.

Among dissimilarities, the Kernel Stein Discrepancy (KSD,
introduced independently by Liu et al., 2016; Chwialkowski
et al., 2016; Gorham & Mackey, 2017) writes as follows

KSD(µ|π) =

 ∫∫
kπ(x, y)dµ(x)dµ(y), (2)

where kπ is the Stein kernel, defined through the score of
π, s(x) = ∇ log π(x), and through a positive semi-definite
kernel k (see Section 2.1 for the meaning of∇·1 or of ∇2)

kπ(x, y) = s(x)T s(y)k(x, y) + s(x)T∇2k(x, y)

+∇1k(x, y)T s(y) +∇ ·1 ∇2k(x, y). (3)

The great advantage of the KSD is that it can be readily
computed when one has access to the score of π and uses a
discrete measure µ̂, since (2) writes as a finite double sum of
kπ in this case. Furthermore the definition of the KSD was
inspired by Stein’s method (see Anastasiou et al., 2021, for a
review) and no sampling over π is required in (2). This mo-
tivated the use of the KSD in a growing number of problems.
The KSD has been widely used in nonparametric statistical
tests for goodness-of-fit (e.g. Xu & Matsuda, 2020; Kana-
gawa et al., 2020). It was also used for sampling tasks: to
select a suitable set of static points to approximate π, adding
a new one at each iteration (Chen et al., 2018; 2019); to com-
press (Riabiz et al., 2020) or reweight (Hodgkinson et al.,
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2020) Markov Chain Monte Carlo (MCMC) outputs; and
to learn a static transport map from µ0 to π (Fisher et al.,
2021). In this paper, we consider F(µ) = 1/2 KSD2(µ|π)
and its Wasserstein gradient ∇W2

F to define a flow over
particles to approximate π.

Related works. Minimizing a dissimilarity D is a popular
approach to fit an unnormalized density model in the ma-
chine learning and computational statistics literature. For
instance, Hyvärinen & Dayan (2005) proposed to minimize
the Fisher divergence. Alternatively, D is often taken as the
KL divergence. Indeed, since the seminal paper by Jordan
et al. (1998), the Wasserstein gradient flow of the KL has
been extensively studied and related to the Langevin Monte
Carlo (LMC) algorithm (e.g. Wibisono, 2018; Durmus et al.,
2019). However, an unbiased time-discretization of the KL
flow is hard to implement (Salim et al., 2020). To tackle this
point, a recent successful kernel-based approximation of the
KL flow was introduced as the Stein Variational Gradient
Descent (SVGD, Liu & Wang, 2016). Several variants were
considered (see Chewi et al., 2020, and references therein).
Another line of work considers D as the MMD (Mroueh
et al., 2019; Arbel et al., 2019) with either regularized or
exact Wasserstein gradient flow of the MMD, especially for
GAN training. However, these two approaches require sam-
ples of π to evaluate the gradient of the MMD. As the KSD
is a specific case of the MMD with the Stein kernel (Chen
et al., 2018), our approach is similar to Arbel et al. (2019)
but better suited for a score-based sampling task, owing to
the properties of the Stein kernel.

Contributions. In this paper, in contrast with the afore-
mentioned approaches, we choose the dissimilarity D in
(1) to be the KSD. As in SVGD, our approach, KSD De-
scent, optimizes the positions of a finite set of particles to
approximate π, but through a descent scheme of the KSD
(in contrast to the KL for SVGD) in the space of probability
measures. KSD Descent comes with several advantages.
First, it benefits from a closed-form cost function which
can be optimized with a fast and hyperparameter-free algo-
rithm such as L-BFGS (Liu & Nocedal, 1989). Second, our
analysis comes with several theoretical guarantees (namely,
existence of the flow and a descent lemma in discrete time)
under a Lipschitz assumption on the gradient of kπ. We
also provide negative results highlighting some weaknesses
of the convergence of the KSD gradient flow, such as the
absence of exponential decay near equilibrium. Moreover,
stationary points of the KSD flow may differ from the target
π and even be local minima of the flow, which implies that
some particles are stuck far from high-probability regions
of π. Sometimes a simple annealing strategy mitigates this
convergence issue. On practical machine learning problems,
the performance of KSD Descent highly depends on the
local minimas of log π. KSD Descent achieves comparable
performance to SVGD on convex (i.e., π log-concave) toy

examples and Bayesian inference tasks, while it is outper-
formed on non-convex tasks with several saddle-points like
independent component analysis.

This paper is organized as follows. Section 2 introduces
the necessary background on optimal transport and on the
Kernel Stein Discrepancy. Section 3 presents our approach
and discusses its connections with related works. Section 4
is devoted to the theoretical analysis of KSD Descent. Our
numerical results are to be found in Section 5.

2. Background
This section introduces the high-level idea of the gradient
flow approach to sampling. It also summarizes the known
properties of the KSD.

2.1. Notations

The space of l continuously differentiable functions on Rd
is Cl(Rd). The space of smooth functions with compact
support is C∞c (Rd). If ψ : Rd → Rp is differentiable,
we denote by Jψ : Rd → Rp×d its Jacobian. If p = 1,
we denote by ∇ψ the gradient of ψ. Moreover, if ∇ψ
is differentiable, the Jacobian of ∇ψ is the Hessian of ψ
denoted Hψ. If p = d,∇ · ψ denotes the divergence of ψ,
i.e. the trace of the Jacobian. We also denote by ∆ψ the
Laplacian of ψ, where ∆ψ =∇ ·∇ψ. For a differentiable
kernel k : Rd × Rd → R, ∇1k (resp. ∇2k) is the gradient
of the kernel w.r.t. the first (resp. second) variable, while
H1k denotes its Hessian w.r.t. the first variable.

Consider the set P2(Rd) of probability measures µ on Rd
with finite second moment and Pc

(
Rd
)

the set of proba-
bility measures with compact support. For µ ∈ P2(Rd),
we denote by dµ/dπ its Radon-Nikodym density if µ is
absolutely continuous w.r.t. π. For any µ ∈ P2(Rd),
L2(µ) is the space of functions f : Rd → R such that∫
‖f‖2dµ < ∞. We denote by ‖ · ‖L2(µ) and 〈·, ·〉L2(µ)

respectively the norm and the inner product of the Hilbert
space L2(µ). Given a measurable map T : Rd → Rd and
µ ∈ P2(Rd), T#µ is the pushforward measure of µ by T .
We consider, for µ, ν ∈ P2(Rd), the 2-Wasserstein distance
W2(µ, ν), and we refer to the metric space (P2(Rd),W2)
as the Wasserstein space. In a Riemannian interpretation
of (P2(Rd),W2), the tangent space of P2(Rd) at µ is de-
noted TµP2(Rd) and is a subset of L2(µ) (Otto, 2001). We
refer to Appendix A.2 for more details on the Wasserstein
distance and related flows.

2.2. Lyapunov analysis and gradient flows

To sample from a target distribution π, a now classical ap-
proach consists in identifying a continuous process which
moves particles from an initial probability distribution µ0

toward samples of π. This can be expressed as searching for
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vector fields vt : Rd → Rd transporting the distribution µt
through the continuity equation (see Appendix A.1)

∂µt
∂t

+ div(µtvt) = 0 (4)

where vt should ensure the convergence of µt to π, for some
topology over measures, in finite or infinite time. Due to vt,
eq. (4) is nonlinear over µt. Cauchy-Lipschitz-style assump-
tions for existence and uniqueness of the solution of (4) are
provided in Appendix A.3. The continuity equation ensures
that the mass is conserved and that it is not teleported as for
a mixture µt = (1− t)µ0 + tπ. In order to adjust the posi-
tion of particles only depending on the present distribution
µt and to have an automated choice of vt at any given time,
it is favorable to have vt as a function of µt, written as vµt .

A principled way to select such a vµt is to define it based
on a Lyapunov functional F(µ) over measures, decreasing
along the Wasserstein gradient flow (see Appendix A.2)

Ḟ(µt) :=
dF(µt)

dt
= 〈∇W2F(µt), vµt〉L2(µt) ≤ 0. (5)

Any dissimilarity F(·) = D(·|π) is a valid Lyapunov can-
didate since it is non-negative and vanishes at π. Hence,
(4) can be seen as a continuous descent scheme of (1) or,
conversely, (1)-(5) can be interpreted as a way to choose
vµt in (4) to steer µ0 to π. In short, any Lyapunov-based
approach rests upon three quantities (F(µt), vµt , Ḟ(µt)),
related by (5). A natural choice of vµt satisfying (5) and re-
alizing the steepest descent is the Wasserstein gradient itself,
vµt = −∇W2

F(µt). Depending on the choice of F , this
vµt may be hard to implement, or require specific analysis
of the resulting dissipation function Ḟ(µt). Otherwise, to
ensure that Ḟ(µt) only vanishes at π, one can choose vµt
so that both F(µt) and Ḟ(µt) are known dissimilarities. As
a matter of fact, if there exists a dissimilarity D̃ separating
measures such that −Ḟ(µ) ≥ D̃(µ|π), then π is asymptoti-
cally stable for the flow and, if D̃(µ|π) ≥ F(µ), then π is
exponentially stable (by Gronwall’s lemma). This relates the
Lyapunov analysis to functional inequalities (Villani, 2003),
expressing domination w.r.t. F of the Wasserstein gradient
of F under specific assumptions on π, e.g. log-Sobolev for
the KL, or Poincaré for the χ2 (Chewi et al., 2020).

2.3. Kernel Stein Discrepancy

Consider a positive semi-definite kernel k : Rd × Rd → R
and its corresponding RKHS Hk of real-valued functions
on Rd. The spaceHk is a Hilbert space with inner product
〈·, ·〉Hk and norm ‖·‖Hk . Moreover, k satisfies the reproduc-
ing property: ∀ f ∈ Hk, f(x) = 〈f, k(x, ·)〉Hk ; which for
smooth kernels also holds for derivatives, e.g. ∂if(x) =
〈f, (∇1k(x, ·))i〉Hk (see Saitoh & Sawano, 2016). Let
µ ∈ P2(Rd). If

∫
k(x, x)dµ(x) < ∞, then the integral

operator associated to the kernel k and measure µ, denoted
by Sµ,k : L2(µ)→ Hk and defined as

Sµ,kf =

∫
k(x, ·)f(x)dµ(x), (6)

is a Hilbert-Schmidt operator and Hk ⊂ L2(µ). In this
case, the identity embedding ι : Hk → L2(µ) is a bounded
operator and it is the adjoint of Sµ,k (i.e., ι∗ = Sµ,k (Stein-
wart & Christmann, 2008, Theorems 4.26 and 4.27). Hence,
for any (f, g) ∈ Hk × L2(µ), 〈ιf, g〉L2(µ) = 〈f, Sµ,kg〉Hk .
We denote by Hdk the Cartesian product RKHS consisting
of elements f = (f1, . . . , fd) with fi ∈ Hk, and with inner
product 〈f, g〉Hdk =

∑d
i=1〈fi, gi〉Hk . For vector-inputs, we

extend Sµ,k, applying it component-wise.

The Stein kernel kπ (3) is a reproducing kernel and satisfies
a Stein identity (

∫
Rd kπ(x, ·)dπ(x) = 0) under mild regular-

ity assumptions on k and π.1 It allows for several interpreta-
tions of the KSD (2) as already discussed by Liu et al. (2016).
It can be introduced as an IPM in the specific case of a Stein
operator applied toHk (e.g. Gorham & Mackey, 2017). It
can then be identified as an asymmetric MMD inHkπ (see
Section 3.3). Alternatively, the squared KSD can be seen
as a kernelized Fisher divergence, where the Fisher infor-
mation ‖∇ log

Ä
dµ
dπ

ä
‖2L2(µ) is smoothed through the kernel

integral operator, i.e. KSD2(µ|π) = ‖Sµ,k∇ log
Ä
dµ
dπ

ä
‖2Hdk .

In this sense, the squared KSD has also been referred to as
the Stein Fisher information (Duncan et al., 2019). Hence,
minimizing the KSD can be thought as a kernelized version
of score-matching (Hyvärinen & Dayan, 2005).

The metrization of weak convergence by the KSD, i.e. that
limt→∞KSD(µt|π) = 0 implies the weak convergence of
µt to π, depends on the choice of the kernel relatively to
the target. This question has been considered by Gorham
& Mackey (2017), who show this is the case under assump-
tions akin to strong log-concavity of π at infinity (namely
distant dissipativity, Eberle, 2016), and for a kernel k with
a slow decay rate. This includes finite Gaussian mixtures
with common covariance and kernels that are translation-
invariant with heavy-tails and non-vanishing Fourier trans-
form, such as the inverse multi-quadratic (IMQ) kernel
defined by k(x, y) = (c2 + ‖x − y‖22)β for c > 0 and
β ∈ (−1, 0), or its variants considered in Chen et al. (2018).

3. Sampling as optimization of the KSD
This section defines the KSD Descent and relates it to other
gradient flows, especially the MMD gradient flow, of which
the KSD Descent is a special case. In all the following, we
assume that k ∈ C3,3(Rd × Rd,R), and that π is such that
s = ∇ log π ∈ C2(Rd).

1e.g., k is a Gaussian kernel and π is a smooth density fully
supported on Rd, see Liu et al. (2016, Theorem 3.7).
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3.1. Continuous time dynamics

Consider the functional F : P2(Rd) → [0,+∞), µ 7→
1
2 KSD2(µ|π) defined over the Wasserstein space. If µ ∈
P2(Rd) satisfies some mild regularity conditions (i.e., it
has a C1 density w.r.t. Lebesgue measure, and it is in the
domain of F , see Appendix A.2), the gradient of F at µ is
well-defined and denoted by∇W2F(µ) ∈ L2(µ). We shall
consider the following assumptions on the Stein kernel:

(A1) There exists a map L(·) ∈ C0(Rd,R+), which is µ-
integrable for any µ ∈ P2(Rd), such that, for any y ∈
Rd, the maps x 7→ ∇1kπ(x, y) and x 7→ ∇2kπ(x, y)
are L(y)-Lipschitz.

(A2) There exists m > 0 such that for any µ ∈ Pc
(
Rd
)
,

for all y ∈ Rd, we have ‖
∫
∇2kπ(x, y)dµ(x)‖ ≤

m
(
1 + ‖y‖+

∫
‖x‖ dµ(x)

)
.

(A3) The map (x, y) 7→ ‖H1kπ(x, y)‖op is µ⊗ν-integrable
for every µ, ν ∈ P2(Rd).

(A4) For all µ ∈ P2(Rd),
∫
kπ(x, x)dµ(x) <∞.

The KSD gradient flow is defined as the flow induced by the
continuity equation:

∂µt
∂t

+ div(µtvµt) = 0 for vµt := −∇W2
F(µt). (7)

Assumptions (A1) and (A2) ensure that the KSD gradient
flow exists and is unique, they are further discussed in Ap-
pendix A.3. Assumptions (A1) and (A3) are needed so that
the Hessian of F is well defined (see Section 4). Assump-
tion (A4) guarantees that the integral operator Sµ,kπ (6) is
well-defined and that F(µ) <∞ for all µ ∈ P2(Rd).
Lemma 1. Assume that k, its derivatives up to order 3,
and their product by ‖x− y‖ are uniformly bounded over
Rd; and that s is Lipschitz and has a bounded Hessian
over Rd. Then Assumptions (A1), (A3) and (A4) hold. If,
furthermore there exists M > 0 and M0 such that, for all
x ∈ Rd, ‖s(x)‖ ≤M

√
‖x‖+M0, then Assumption (A2)

also holds.

See the proof in Appendix B.1. Smoothed Laplace distribu-
tions π paired with Gaussian k satisfy the assumptions of
Lemma 1. For Gaussian π, s is linear, so Assumptions (A1),
(A3) and (A4) hold for smooth kernels, but Assumption (A2)
does not hold in general because of the s(x)>s(y) term in
kπ. Notice that most of our results are stated without As-
sumption (A2), which is only required to establish the global
existence of KSD flow, in the sense that the particle trajec-
tories are well-defined and do not explode in finite-time.
Proposition 2. Under Assumptions (A1) and (A2), the W2

gradient of F evaluated at µ and its dissipation (5) along (7)
are

∇W2
F(µ) = Ex∼µ[∇2kπ(x, ·)], (8)

Ḟ(µt) = −Ey∼µt
[
‖Ex∼µt [∇2kπ(x, y)]‖2

]
. (9)

Since the r.h.s. of (9) is negative, Proposition 2 shows that
the squared KSD w.r.t. π decreases along the KSD gradient
flow dynamics. In other words, F is indeed a Lyapunov
functional for the dynamics (7) as discussed in Section 2.2.

3.2. Discrete time and discrete measures

A straightforward time-discretization of (7) is a gra-
dient descent in the Wasserstein space applied to
F(µ) = 1

2 KSD2(µ|π). Starting from an initial distribution
µ0 ∈ P2(Rd), it writes as follows at iteration n ∈ N,

µn+1 = (I − γ∇W2
F(µn))# µn, (10)

for a step-size γ > 0. However for discrete measures
µ̂ = 1

N

∑N
j=1 δxj , we can make the problem more explicit

setting a loss function

F ([xj ]Nj=1) := F(µ̂) =
1

2N2

N∑
i,j=1

kπ(xi, xj). (11)

Problem (1) then corresponds to a standard non-convex op-
timization problem over the finite-dimensional, Euclidean,
space of particle positions. The gradient of F is readily
obtained as

∇xiF ([xj ]Nj=1) =
1

N2

N∑
j=1

∇2kπ(xj , xi).

since, by symmetry of kπ, ∇1kπ(x, y) = ∇2kπ(y, x). As
both F and∇xiF can be explicitly computed, one can im-
plement the KSD Descent either using a gradient descent
(Algorithm 1) or through a quasi-Newton algorithm such as
L-BFGS (Algorithm 2). As a matter of fact, L-BFGS (Liu &
Nocedal, 1989) is often faster and more robust than the con-
ventional gradient descent. It also does not require choosing
critical hyper-parameters, such as a learning rate, since L-
BFGS performs a line-search to find suitable step-sizes. It
only requires a tolerance parameter on the norm of the gradi-
ent, which is in practice set to machine precision. A techni-

Algorithm 1 KSD Descent GD

Input: initial particles (xi0)Ni=1 ∼ µ0, number of itera-
tions M , step-size γ
for n = 1 to M do

[xin+1]Ni=1 = [xin]Ni=1 −
γ

N2

N∑
j=1

[∇2kπ(xjn, x
i
n)]Ni=1,

(12)end for
Return: [xiM ]Ni=1.

cal descent lemma for (10) (Proposition 14) showing that F
decreases at each iteration (10) is provided in Appendix A.6.
It requires the boundedness of (‖L(·)‖L2(µn))n≥0, the L2-
norm of the Lipschitz constants of Assumption (A1) along
the flow, as well as the convexity of L(·) and a compactly-
supported initialization.
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Algorithm 2 KSD Descent L-BFGS

Input: initial particles (xi0)Ni=1 ∼ µ0, tolerance tol

Return: [xi∗]
N
i=1 = L-BFGS(F,∇F, [xi0]Ni=1, tol).

Remark 1. As L-BFGS requires access to exact gradients,
Algorithm 2 cannot be used in a stochastic setting. However
this can be done for Algorithm 1 by subsampling over parti-
cles in the double sum in Equation (11). Moreover, in some
settings like Bayesian inference, the score itself writes as a
sum over observations. In this case, the loss F writes as a
double sum over observations, and a stochastic variant of
Algorithm 1 tailored for this problem could be devised, in
the spirit of Clémençon et al. (2016).

3.3. Related work

Several recent works fall within the framework sketched
in Section 2.2. In SVGD, Liu et al. (2016) take F as the
KL, and set vµt = −Sµ,k∇ ln

Ä
dµt
dπ

ä
to obtain Ḟ as the

(squared) KSD. Integrating this inequality w.r.t. time yields
a 1/T convergence rate for the average KSD between µt
and π for t ∈ [0, T ]. This enabled Korba et al. (2020,
Proposition 5, Corollary 6) to obtain a discrete-time de-
scent lemma for bounded kernels, as well as rates of con-
vergence for the averaged KSD. In contrast, since the dis-
sipation (9) of the KSD along its W2 gradient flow does
not correspond to any dissimilarity, our descent lemma
for (10) (Proposition 14) does not yield similar rates of
convergence. Alternatively, in the LAWGD algorithm re-
cently proposed by Chewi et al. (2020), F is the KL, and
vµt = −∇Sπ,kLπ

Ä
dµt
dπ

ä
with kLπ chosen such that Ḟ is

the χ2, by taking Sπ,kLπ as the inverse of the diffusion
operator:

Lπ : f 7→ −∆f − 〈∇ log π,∇f〉. (13)

Their elegant approach results in a linear convergence of the
KL along their flow, but implementing LAWGD in practice
requires to compute the spectrum of Lπ. It is in general as
difficult as solving a linear PDE, and Chewi et al. (2020)
admit it is unlikely to scale in high dimensions.2

Beyond studies on the KL, Mroueh et al. (2019) considered
F as the MMD and pick vµt based on a kernelized Sobolev
norm so that Ḟ resembles the MMD, but without proving
convergence of their scheme. Arbel et al. (2019) also ana-
lyzedF as the MMD, but for vµt = −∇W2

1
2 MMD2(µt, π)

with similar Ḟ as ours and with a dedicated analysis of
their MMD-GD flow. We recall that MMD2(µ, π) =
‖
∫
k(x, ·)dµ(x)−

∫
k(x, ·)dπ(x)‖2Hk . Since the Stein ker-

nel satisfies the Stein’s identity
∫
kπ(x, ·)dπ(x) = 0, the

2The update rules of SVGD, LAWGD and MMD-GD can be
found in Appendix A.4.

KSD (2) can be identified to an MMD with the Stein kernel
(Chen et al., 2018). However, the assumptions of Arbel
et al. (2019) -∇k is L-Lipschitz for L ∈ R+- do not hold
in general for unbounded Stein kernels. Here, we provide
the right set of assumptions (A1)-(A2) on kπ for the flow to
exist and for a descent lemma to hold. Also, as noted on
Figure 1, the sample-based MMD flow, defined through

∇W2

1

2
MMD2(µ, π) =

∫
∇2k(x, ·)d(µ−π)(x) (14)

can fail dramatically while KSD flow succeeds. This sug-
gests that the geometrical properties of the KSD flow are
more favorable than the ones of the regular MMD flow. In
other words, choosing an appropriate (target-dependent)
kernel, as in our method or in LAWGD, appears more pro-
pitious than taking a kernel k unrelated to π.

Related to the optimization of the KSD, Stein points (Chen
et al., 2018) also propose to use the KSD loss for sampling,
but the loss is minimized using very different tools. While
KSD descent uses a first order information by following
the gradient (or L-BFGS) direction with a fixed number of
particles, Stein points use a Frank-Wolfe scheme, adding
particles one by one in a greedy fashion. Given N particles
x1, . . . , xN , in Stein points, the next particle is set as

xN+1 ∈ arg min
x

1

2
kπ(x, x) +

N∑
i=1

kπ(x, xi).

This problem is solved using derivative-free (a.k.a. zeroth-
order) algorithms like grid-search or random sampling. The
main drawback of such an approach is that it scales poorly
with the dimension d when compared to first-order meth-
ods. In the same spirit, (Futami et al., 2019) have recently
proposed a similar algorithm to optimize the MMD.

4. Theoretical properties of the KSD flow
In this section, we provide a theoretical study of the con-
vergence of the KSD Wasserstein gradient flow, assessing
the convexity of F and discussing the stationary points of
its gradient flow. Remarkably, we encounter pitfalls similar
to other deterministic flows derived from IPMs. This issue
arises because IPMs are always mixture convex, but seldom
geodesically convex. We first investigate the convexity prop-
erties of F along W2 geodesics and show that exponential
convergence near equilibrium cannot hold in general. Then,
we examine some stationary points of its W2 gradient flow,
which explain the failure cases met in Section 5, where µ̂n
converges to a degenerate measure.

4.1. Convexity properties of the KSD flow

As is well-known, decay along W2 gradient flows can be
obtained from convexity properties along geodesics. A nat-
ural object of interest is then the Hessian of the objective
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F . We define below this object, in a similar way as Duncan
et al. (2019). We recall that {∇ψ, ψ ∈ C∞c (Rd)} is by
definition dense in TµP2(Rd) ⊂ L2(µ) for any µ ∈ P2(Rd)
(Ambrosio et al., 2008, Definition 8.4.1).

Definition 1. Consider ψ ∈ C∞c (Rd) and the path ρt from
µ to (I + ∇ψ)#µ given by: ρt = (I + t∇ψ)#µ, for all
t ∈ [0, 1]. The Hessian of F at µ, HF|µ, is defined as a
symmetric bilinear form on C∞c (Rd) associated with the
quadratic form Hessµ F(ψ,ψ) := d2

dt2

∣∣∣
t=0
F(ρt).

Definition 1 can be straightforwardly related to the usual
symmetric bilinear form defined on TµP2(Rd)×TµP2(Rd)
(Otto & Villani, 2000, Section 3)3.

Proposition 3. Under Assumptions (A1) and (A3), the Hes-
sian of F at µ is given, for any ψ ∈ C∞c (Rd), by

Hessµ F(ψ,ψ) = Ex,y∼µ
[
∇ψ(x)T∇1∇2kπ(x, y)∇ψ(y)

]
+ Ex,y∼µ

[
∇ψ(x)TH1kπ(x, y)∇ψ(x)

]
. (15)

A proof of Proposition 3 is provided in Appendix B.3.
Our computations are similar to the ones in (Arbel et al.,
2019, Lemma 23) with some terms getting simpler owing
to the Stein’s identity satisfied by the Stein kernel. As for
the squared MMD (Arbel et al., 2019, Proposition 5), the
squared KSD is unlikely to be geodesically convex. Indeed,
while the first term is always positive, the second term in
(15) can in general take negative values, unless H1kπ(x, y)
is positive for all x, y ∈ supp(µ). Nevertheless, at µ = π,
this second term vanishes, again owing to the Stein’s prop-
erty of kπ .

Corollary 4. Under Assumptions (A1), (A3) and (A4), the
Hessian of F at π is given, for any ψ ∈ C∞c (Rd), by

Hessπ F(ψ,ψ) = ‖Sπ,kπLπψ‖2Hkπ
where Sπ,kπ and Lπ are defined in Equations (6) and (13).

A proof of Corollary 4 is provided in Appendix B.4. We now
study the curvature properties near equilibrium, character-
ized by Hessπ F . In particular, inspired by the methodology
described in Villani (2003) and recently applied by Duncan
et al. (2019), we expect exponential convergence of solu-
tions initialized near π whenever the Hessian is bounded
from below by a quadratic form on the tangent space of
P2(Rd) at π, included in L2(π).

Definition 2. We say that exponential decay near equi-
librium holds if there exists λ > 0 such that for any
ψ ∈ C∞c (Rd),

Hessπ F(ψ,ψ) ≥ λ‖∇ψ‖2L2(π). (16)
3The W2 Hessian of F , denoted HF|µ is an operator over

TµP2(Rd) verifying 〈HF|µvt, vt〉L2(µ) =
d2

dt2

∣∣∣
t=0
F(ρt) if t 7→

ρt is a geodesic starting at µ with vector field t 7→ vt.

According to Corollary 4, (16) can be seen as a kernelized
version of the following form of the Poincaré inequality for
π (Bakry et al., 2013, Chapter 5)

‖Lπψ‖2L2(π)
≥ λπ‖∇ψ‖2L2(π)

. (17)

Condition (16) is similar to the Stein-Poincaré inequality
(Duncan et al., 2019, Lemma 32). We will now argue that
(16) is hardly ever satisfied, thus obtaining an impossibility
result reminiscent of the one for SVGD in (Duncan et al.,
2019, Lemma 36), which states that exponential conver-
gence (of the KL) for the SVGD gradient flow does not
hold whenever π has exponential tails and the derivatives of
∇ log π and k grow at most at a polynomial rate. We start
with the following characterization of exponential decay
near equilibrium:

Proposition 5. Let Tπ,kπ = S∗π,kπ ◦ Sπ,kπ and L2
0(π) =

{φ ∈ L2(π),
∫
φdπ = 0}. The exponential decay near

equilibrium (16) holds if and only if L−1π : L2
0(π)→ L2

0(π),
the inverse of Lπ|L2

0(π)
, is well-defined, bounded, and for

all φ ∈ L2
0(π) we have

〈φ, Tπ,kπφ〉L2(π) ≥ λ〈φ,L
−1
π φ〉L2(π). (18)

See Appendix B.5 for a proof. By the spectral theorem for
compact, self-adjoint operators (Kreyszig, 1978, Section
8.3), Tπ,kπ has a discrete spectrum (ln)n∈N∗ which satisfies
ln ≥ 0 and ln → 0. Under mild assumptions on π, the
operator Lπ also has a discrete, positive spectrum (Chewi
et al., 2020, Appendix A). Proposition 5 implies the follow-
ing necessary condition on the spectrum of L−1π and Tπ,kπ
for the exponential decay near equilibrium (16) to hold.

Corollary 6. If L−1π has a discrete spectrum (λn)n∈N∗ and
(16) holds, then λn = O(ln), i.e. the eigenvalue decay of
L−1π is at least as fast as the one of Tπ,kπ .

We also show that ifHkπ is infinite dimensional and expo-
nential convergence near equilibrium holds, then L−1π has a
discrete spectrum (Lemma 16). We now present our impos-
sibility result on the exponential decay near equilibrium.

Theorem 7. Let π ∝ e−V . Assume that V ∈ C2(Rd),
∇V is Lipschitz and Lπ has a discrete spectrum. Then
exponential decay near equilibium does not hold.

The main idea behind the proof of Theorem 7 (Ap-
pendix B.7) is that Tπ,kπ is nuclear (Steinwart & Christ-
mann, 2008, Theorem 4.27), which implies that its eigenval-
ues (ln)n∈N∗ are summable. On the other hand the eigen-
value decay of L−1π when π is a Gaussian can be seen to be
of order O(1/n1/d) (Lemma 17 in Appendix B.7), which is
not summable. The general case is obtained by comparison
with a Gaussian. Remark that by Lemma 16, the assumption
that Lπ has a discrete spectrum in Theorem 7 can be ex-
changed for an assumption thatHkπ is infinite dimensional,
which is discussed in the proof of Theorem 7. Despite the
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lack of (strong) geodesic convexity near equilibrium, we
still observe empirically good convergence properties of the
KSD flow for discrete measures to a stationary measure.
Hence, we now investigate these stationary measures.

4.2. Stationary measures of the KSD flow

The KSD gradient flow leads to a deterministic algorithm,
as for SVGD and LAWGD. To study the convergence of
these algorithms in continuous time, it is relevant to char-
acterize the stationary measures, i.e. the ones which cancel
the dissipation Ḟ (5) of the objective functional F along the
relative gradient flow dynamics. Unfortunately, unlike for
the SVGD and LAWGD algorithms, the dissipation related
to the KSD flow (9) does not yield a dissimilarity between
measures. Consequently, the study of the stationary mea-
sures of the KSD is more involved. We discuss below when
failure cases may happen.

Lemma 8. Assume Assumption (A4) holds. Then Hkπ
does not contain non-zero constant functions.

A proof of Lemma 8 is provided in Appendix B.8. This
result has the immediate consequence of considerably re-
stricting the number of candidate fully-supported measures
that are stationary for the KSD gradient flow. Consider one
such measure µ∞. At equilibrium, Ḟ(µ∞) = 0; which im-
plies that

∫
kπ(x, .)dµ∞(x) is µ∞-a.e. equal to a constant

function c. Since x 7→ c is then also an element ofHkπ , the
previous lemma implies that c = 0. Hence, if µ∞ and π
are full-support, F(µ∞) = 0. Provided kπ is characteristic
(Sriperumbudur et al., 2011), then µ∞ = π.

However, as Algorithms 1 and 2 rely on discrete measures,
the dissipation Ḟ (9) can vanish even for µ 6= π because µ
is not full-support. Depending on the properties of π and k,
this may happen even for trivial measures such as a single
Dirac mass, as stated in the following Lemma.

Lemma 9. Let x0 such that s(x0) = 0 and Js(x0) is invert-
ible, and consider a translation-invariant kernel k(x, y) =
φ(x− y), for φ ∈ C3(Rd). Then δx0

is a stable fixed mea-
sure of (7), i.e. it is stationary and any small push-forward
of δx0 is attracted back by the flow.

Proof: For ε > 0 and ψ ∈ C∞c (Rd), set µε = (I+εψ)#δx0
.

We then have F(µε) = 1
2kπ(x0 + εψ(x0), x0 + εψ(x0)).

Expanding kπ(x, x) at the first order around x = x0 gives
2F(µε) = ε2‖[Js(x0)]ψ(x0)‖2φ(0)−∆φ(0)+o(ε2). This
quantity is minimized for ψ(x0) = 0, which shows that δx0

is indeed a local minimum for F .

Importantly, this result applies whenever the score s van-
ishes at x0, not only when x0 is a local stable minimum of
the potential log(π). This means that for a single particle,
KSD descent is attracted to any stationary point of log(π),
whereas SVGD converges only to local maxima of log(π)

(Liu & Wang, 2016). Nonetheless, if π is log-concave, there
is no spurious stationary point.

For cases more general than Lemma 9, we are interested in
the sets that are kept invariant by the gradient flow. For these
sets, an erroneous initialization may prevent the particles
from reaching the support of π. We provide below a general
result holding for any deterministic flow, beyond our specific
choice (7) of vµt , and thus holding also for SVGD.
Definition 3. Let M ⊂ Rd be a closed nonempty set.
We say thatM is a flow-invariant support set for the flow
(µt)t≥0 of (4) if for any µ0 s.t. supp(µ0) ⊂ M, we have
that the flow verifies supp(µt) ⊂M for all t ≥ 0.
Proposition 10. (Informal) Let M ⊂ Rd be a smooth
nonempty submanifold and µ0 ∈ Pc(Rd) with supp(µ0) ⊂
M. Assume that, for a deterministic (vµt)t≥0 satis-
fying classical Caratheodory-Lipschitz assumptions (Ap-
pendix A.3), we have vµt(x) ∈ TM(x) where TM(x) is the
tangent space toM at x. ThenM is flow-invariant for (4).

The formal statement, Proposition 20, stated and proved in
Appendix B.9, can be in particular applied to the ubiquitous
radial kernels and to planes of symmetry of π, i.e. affine
subspacesM⊂ Rd such that the density of π is symmetric
w.r.t.M. Lemma 11 is illustrated in Section 5 for a mixture
of two Gaussians with the same variance (Figure 3).
Lemma 11. LetM be a plane of symmetry of π and con-
sider a radial kernel k(x, y) = φ(‖x − y‖2/2) with φ ∈
C3(R). Then, for all (x, y) ∈ M2, ∇2kπ(x, y) ∈ TM(x)
andM is flow-invariant for (7).

Proof idea: We show that all the terms in ∇2kπ(x, y) be-
long to TM(x). This implies that the convex combination
∇W2

F(µ)(y) = Ex∼µ[∇2kπ(x, y)] ∈ TM(x). We then
apply Proposition 10 to conclude.

5. Experiments
In this section, we discuss the performance of KSD Descent
to sample from π in practice, on toy examples and real-
world problems. The code to reproduce the experiments and
a package to use KSD Descent are available at https:
//github.com/pierreablin/ksddescent. For
all our experiments, we use a Gaussian kernel, as we did
not notice any difference in practice w.r.t. the IMQ kernel.
Its bandwith is selected by cross-validation. Implemen-
tation details and additional experiments can be found in
Appendix D.

5.1. Toy examples

In the first example, we choose π to be a standard 2D Gaus-
sian, and a Gaussian k with unit bandwidth. We initialize
with 50 particles drawn from a Gaussian with mean (1, 1).
Figure 1 displays the trajectories of several different meth-

https://github.com/pierreablin/ksddescent
https://github.com/pierreablin/ksddescent
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KSD Grad KSD L-BFGS

Figure 1. Toy example with 2D standard Gaussian. The green
points represent the initial positions of the particles. The light grey
curves correspond to their trajectories under the different vµt .
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Figure 2. Convergence speed of KSD and SVGD on a Gaussian
problem in 1D, with 30 particles.

ods: SVGD, KSD Descent implemented using gradient
descent (Algorithm 1) and L-BFGS (Algorithm 2), and the
MMD flow (Arbel et al., 2019). To assess the convergence
of the algorithms, for SVGD we monitored the norm of the
displacement, while for the KSD and MMD gradient flows
we used the tolerance parameter of L-BFGS. KSD Descent
successfully pushes the particles towards the target distribu-
tion, with a final result that is well-distributed around the
mode. While KSD performs similarly to SVGD, we can
notice that the trajectories of the particles behave very differ-
ently. Indeed, SVGD trajectories appear to be at first driven
by the score term in the update, while the repulsive term
acts later to spread the particles around the mode. In con-
trast, trajectories of the particles updated by KSD Descent
are first influenced by the last repulsive term of the update,
which seems to determine their global layout, and are then
translated and contracted towards the mode under the action
of the driving terms. Finally, for the MMD descent, some
particles collapse around the mode, while others stay far
from the target. This behavior was documented in Arbel
et al. (2019), and can be partly circumvented by injecting
some noise in the updates.

We then compare the convergence speed of KSD Descent
and SVGD in terms of the KL or KSD objective (see Fig-
ure 2). With a fine-tuned step-size, SVGD is the fastest
method. However, taking a step-size too large leads to non-
convergence, while one too small leads to slow convergence.
It should be stressed that it is hard to select a good step-size,
or to implement a line-search strategy, since SVGD does
not minimize a simple function. In contrast, the empirical
KSD (11) can be minimized using L-BFGS, which does not
have any critical hyper-parameter.

Figure 3. KSD Descent applied on a balanced mixture of Gaussian
with small variance (0.1) in 2D. The centroids are at (−1, 0) and
(1, 0). The green crosses indicate the initial particle positions,
while the blue ones are the final positions. The light red arrows
correspond to the score directions. Left: the initial positions are
all chosen close to the line x = 0, which corresponds to an axis of
symmetry of π. Right: even when the initialization is more spread,
some particles are still caught in this spurious local minimum.

In our second example, we apply KSD Descent for π taken
as a symmetric mixture of two Gaussians with the same
variance. This highlights the results of Section 4.2. If
initialized on the axis of symmetry, the particles are indeed
stuck on it, as stated in Lemma 11. We noticed that, for
a large variance of π (e.g. in [0.2, 1]), this axis is unstable.
However, when the variance is too small (e.g. set to 0.1
as in Figure 3), the axis can even become a locally stable
set. We also observed that, for a distribution initialized
exclusively on one side of the axis, a single component of
the mixture can be favored. This is a classical behavior of
score-based methods, depending typically on the variance
of π (Wenliang, 2020).

To fix this issue, we consider an annealing strategy as sug-
gested by Wenliang (2020). It consists in adding an inverse
temperature variable β to the log density of the model, i.e.
πβ(x) ∝ exp(−βV (x)) for π(x) ∝ exp(−V (x)), with
β ∈ (0, 1]. This is easily implemented with score-based
methods, since it simply corresponds to multiplying s(x) by
β. When β is small, annealing smoothes the target distribu-
tion and the last term of the Stein kernel, repulsive at short
distance, becomes dominant; on the other hand, for β close
to 1, we recover the true log density. To implement this
method, we start with β = 0.1, and run the KSD Descent to
obtain particles at ‘high temperature‘. KSD Descent is then
re-run starting from these particles, setting now β = 1. One
can see that this strategy successfully solves the issues en-
countered when the KSD flow was failing to converge to the
target π (Figure 4). This correction differs from the noise-
injection strategy proposed in Arbel et al. (2019) for the
MMD flow, which is rather related to randomized smooth-
ing (Duchi et al., 2012). Noise-injection would prevent the
use of L-BFGS in our case, as it requires exact values of
the gradients of previous iterations. Annealing on the other
hand is compatible with Algorithm 2.
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β = 1 β = 0.1 β = 0.1→ 1

Figure 4. Effect of the annealing strategy on a mixture of Gaus-
sians. Left: without annealing, some particles fall into a spurious
minimum. Middle: with a higher temperature (β = 0.1), the
particles are more spread out. Right: starting from the particles in
the middle figure and setting β = 1 we converge to a distribution
which minimizes the KSD, and has no spurious particles.
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Figure 5. Bayesian ICA results. Left: p = 2. Middle: p = 4.
Right: p = 8. Each dot corresponds to the Amari distance between
an estimated matrix and the true unmixing matrix.

5.2. Bayesian Independent Component Analysis

Independent Component Analysis (ICA, Comon, 1994) is
the generative model x = W−1s, where x is an observed
sample in Rp, W ∈ Rp×p is the unknown square un-
mixing matrix, and s ∈ Rp are the independent sources.
We assume that each component has the same density
si ∼ ps. The likelihood of the model is p(x|W ) =
log |W | +

∑p
i=1 ps([Wx]i). For our prior, we assume

that W has i.i.d. entries, of law N (0, 1). The posterior
is p(W |x) ∝ p(x|W )p(W ), and the score is given by
s(W ) = W−>−ψ(Wx)x>−W , where ψ = −p

′
s

ps
. In prac-

tice, we choose ps such that ψ(·) = tanh(·). We then use
the presented algorithms to draw particles W ∼ p(W |x).
We use N = 10 particles, and take 1000 samples x from the
ICA model for p ∈ {2, 4, 8}. Each method outputs N esti-
mated unmixing matrices, [W̃i]

N
i=1. We compute the Amari

distance (Amari et al., 1996) between each W̃i and W : the
Amari distance vanishes if and only if the two matrices are
the same up to scale and permutation, which are the natural
indeterminacies of ICA. We repeat the experiment 50 times,
resulting in 500 values for each algorithm (Figure 5). We
also add the results of a random output, where the estimated
matrices are obtained with i.i.d. N (0, 1) entries. We see
that for this experiment, KSD performs barely better than
random, while SVGD finds matrices with lower Amari dis-
tance. One explanation is that the ICA likelihood is highly
non-convex (Cardoso, 1998). This is easily seen with the
invariances of the problem: permuting the rows of W does
not change p(x|W ). As a consequence, the posterior has

many saddle points, in which particles might get trapped.
Unfortunately, the annealing strategy proposed above did
not improve the achieved performance for this problem.

5.3. Real-world data

We compare KSD Descent and SVGD in the Bayesian logis-
tic regression setting described in Gershman et al. (2012);
Liu & Wang (2016). Given datapoints d1, . . . , dq ∈ Rp,
and labels y1, . . . , yq ∈ {±1}, the labels yi are modelled
as p(yi = 1|di, w) = (1 + exp

(
−w>di

)
)−1 for some

w ∈ Rp. The parameters w follow the law p(w|α) =
N (0, α−1Ip), and α > 0 is drawn from an exponential
law p(α) = Exp(0.01). The parameter vector is then
x = [w, log(α)] ∈ Rp+1, and we use Algorithm 2 to obtain
samples from p(x| (di, yi)qi=1) for 13 datasets, withN = 10
particles for each.

The learning rate for SVGD and the bandwidth of the kernel
for both methods are chosen through grid-search, and for
each problem we select the hyper-parameters yielding the
best test accuracy. For all problems, the running times of
SVGD with the best step-size and of KSD Descent were
similar, while KSD Descent has the advantage of having
one less hyper-parameter. We present on Figure 6 the accu-
racy of each method on each dataset, where KSD Descent
was applied without annealing since it did not change the
numerical results. Our results show we match the SVGD
performance without having to fine-tune the step-size, ow-
ing to Algorithm 2. We posit that KSD succeeds on this task
because the posterior p(x| (di, yi)qi=1) is log-concave, and
does not have saddle points.
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Figure 6. Accuracy of the
KSD Descent and SVGD
on bayesian logistic regres-
sion for 13 datasets. Both
methods yield similar re-
sults. KSD is better by 2%
on one dataset.

Discussion. KSD Descent benefits from a tractable loss and
can be straightforwardly implemented with L-BFGS, achiev-
ing performance on par with SVGD on convex problems.
However its dissipation has non-trivial stationary points,
which prevents its use for non-convex problems with saddle-
points such as ICA. Convergence of kernel-based sampling
schemes is known to be difficult, and we provided some
intuitions on the reasons for it. This leaves the door open
to a more in-depth analysis of kernel-based gradient flows,
especially for unbounded kernels.
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