
Boosting the Throughput and Accelerator Utilization of Specialized CNN 
Inference Beyond Increasing Batch Size 

Jack Kosaian 1 * Amar Phanishayee 2 Matthai Philipose 2 Debadeepta Dey 2 K. V. Rashmi 1 

Abstract 
Datacenter vision systems widely use small, spe-
cialized convolutional neural networks (CNNs) 
trained on specific tasks for high-throughput in-
ference. These settings employ accelerators with 
massive computational capacity, but which spe-
cialized CNNs underutilize due to having low 
arithmetic intensity. This results in suboptimal 
application-level throughput and poor returns on 
accelerator investment. Increasing batch size is 
the only known way to increase both application-
level throughput and accelerator utilization for 
inference, but yields diminishing returns; spe-
cialized CNNs poorly utilize accelerators even 
with large batch size. We propose FoldedCNNs, 
a new approach to CNN design that increases in-
ference throughput and utilization beyond large 
batch size. FoldedCNNs rethink the structure of 
inputs and layers of specialized CNNs to boost 
arithmetic intensity: in FoldedCNNs, f images 
with C channels each are concatenated into a sin-
gle input with fC channels and jointly classified 
by a wider CNN. Increased arithmetic intensity in 
FoldedCNNs increases the throughput and GPU 
utilization of specialized CNN inference by up to 
2.5× and 2.8×, with accuracy close to the original 
CNN in most cases. 

1. Introduction 
Convolutional neural networks (CNNs) are widely deployed 
for high-throughput vision tasks. Many such tasks target 
highly specific events for which general-purpose CNNs 
trained on diverse data (e.g., ResNet-50 on ImageNet) are 
overkill; an application detecting red trucks does not need 
a CNN capable of classifying animals. It has thus become 
popular to employ small specialized CNNs trained only for 
such focused tasks (Shen et al., 2017; Kang et al., 2017; 
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Hsieh et al., 2018; Kang et al., 2020). In being trained for 
highly specific tasks, specialized CNNs can typically be 
much smaller than general-purpose CNNs, and thus operate 
at higher application-level throughput (e.g., images/sec). 

Specialized CNNs are heavily used for inference in both 
datacenters and edge clusters (Kang et al., 2017; Hsieh et al., 
2018; Mullapudi et al., 2019; Bhardwaj et al., 2020), and 
occasionally on constrained devices (e.g., cameras) (Canel 
et al., 2019). We focus on specialized CNNs used for high-
throughput vision in datacenters/clusters. A popular usecase 
in this setting is offline video analytics, in which all video 
frames are processed by a specialized CNN, and only frames 
for which the specialized CNN is uncertain are processed 
by a slower, general-purpose CNN (Kang et al., 2017). The 
throughput of the specialized CNN is critical to that of the 
overall system, as all frames are processed by the specialized 
CNN and only a small fraction by the general-purpose CNN. 

Aiding the case for high-throughput CNNs, server-grade 
deep learning hardware accelerators offer unprecedented 
performance in FLOPs/sec, and thus are used for inference 
in datacenters (e.g., V100 and T4 GPUs, TPUs) and edge 
clusters (e.g., AWS Outposts and Azure Stack Edge with 
T4 GPUs). It is critical that these accelerators be highly 
utilized, with software running on an accelerator ideally 
achieving FLOPs/sec near the accelerator’s theoretical peak 
FLOPs/sec. Given the high cost of accelerators and the oper-
ational costs incurred in deploying them (e.g., power) (Bar-
roso et al., 2013), poorly utilizing an accelerator leads to a 
poor return on investment. Furthermore, underutilization 
results in suboptimal application-level throughput. 

However, current specialized CNNs significantly under-
utilize server-grade accelerators: we find that specialized 
CNNs used in production at Microsoft achieve less than 
20% of the peak FLOPs/sec of GPUs employed in datacen-
ters, even with large batch sizes (which are common for 
high-throughput inference), and when using techniques that 
improve throughput, such as reduced precision (see Fig. 1). 
While specialized CNNs might better utilize weaker devices, 
we find that server-grade GPUs, such as V100 and T4, of-
fer the highest cost-normalized throughput for the CNNs 
described above, motivating their deployment in production. 
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Figure 1. Utilization of production specialized CNNs (see §2.1) at 
various precisions and maximum batch size on a T4 GPU. Each 
bar is relative to the peak FLOPs/sec of the T4 in that precision. 

The main cause for the poor accelerator utilization of spe-
cialized CNNs is low arithmetic intensity: the ratio between 
the number of arithmetic operations performed by a compu-
tational kernel (i.e., FLOPs) and the number of bytes read 
from or written to memory by the kernel (Williams et al., 
2009). As the bandwidth of performing arithmetic on ac-
celerators is far higher than memory bandwidth (e.g., over 
200× on T4 (NVIDIA, 2018)), a CNN with low arithmetic 
intensity incurs frequent memory stalls, leaving arithmetic 
units idle and underutilized. High arithmetic intensity is, 
thus, a prerequisite to high utilization. However, we will 
show in §2 that specialized CNNs have arithmetic intensities 
far lower than needed for peak utilization on accelerators. 

The arithmetic intensities of specialized CNNs must be in-
creased to improve utilization of server-grade accelerators, 
but achieving this requires care: we show that common tech-
niques that increase application-level throughput can reduce 
arithmetic intensity, while naive approaches to increasing 
arithmetic intensity reduce application-level throughput. 

Increasing the batch size over which inference is performed 
can increase arithmetic intensity, utilization, and application-
level throughput by amortizing the cost of loading a CNN’s 
weights from memory. However, doing so leads to dimin-
ishing returns in these quantities: for example, we show in 
§2 that specialized CNNs achieve at most 17% of the peak 
FLOPs/sec of a V100 at large batch sizes. An alternative is 
needed to further improve the utilization and throughput of 
specialized CNNs beyond the limits of increasing batch size. 

We propose FoldedCNNs, a new approach to the design 
of specialized CNNs that boosts inference utilization and 
throughput beyond increasing batch size. We show that con-
volutional and fully-connected layers in specialized CNNs at 
large batch size can be transformed to perform an equal num-
ber of FLOPs, but with higher arithmetic intensity. Our key 
insight is that, once arithmetic intensity has plateaued due 
to increased batch size, reading/writing activations accounts 
for most of the memory traffic in specialized CNNs. We 
show that this memory traffic can be significantly reduced, 
while performing the same number of FLOPs, by jointly 
decreasing the size of the batch of input/output activations 
for a layer and increasing the layer’s width. By decreas-
ing memory traffic while performing the same number of 
FLOPs, this transformation increases arithmetic intensity. 

FoldedCNNs take a new approach to structuring the inputs 
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Figure 2. Abstract illustration of a FoldedCNN with f = 2. 

of a CNN to apply this transformation, inspired in part from 
the interplay of machine learning and coding theory in other 
applications (Kosaian et al., 2020). As shown in Fig. 2, 
rather than operating over a batch of N images each with 
C channels, a FoldedCNN instead operates over a batch of 
N “folded” inputs each with fC channels formed by con-f 
catenating f images along the channels dimension. These 
f images are jointly classified: if the original CNN had CL 

output classes, the FoldedCNN now has fCL output classes. 
FoldedCNNs increase the number of channels for all mid-√ 
dle layers by f×, while maintaining an f× reduction in 
batch size. This reduces memory traffic over N images by √ 
f× while performing a similar number of FLOPs, thus 

increasing arithmetic intensity, utilization, and throughput. 

We evaluate FoldedCNNs on four specialized CNNs used at 
Microsoft and four from the NoScope video-processing 
system (Kang et al., 2017). FoldedCNNs improve the 
GPU utilization of specialized CNNs by up to 2.8× and 
throughput by up to 2.5×, while maintaining accuracy 
close to the original CNN in most cases. Compared to 
the compound scaling used in EfficientNets (Tan & Le, 
2019), FoldedCNNs achieve higher accuracy, throughput, 
and utilization for specialized CNNs. These results show 
the promise of FoldedCNNs in increasing the utilization and 
throughput of specialized CNNs beyond increased batch 
size, and open doors for future high-performance specialized 
CNNs. The code used in this paper is available at https: 
//github.com/msr-fiddle/folded-cnns. 

2. Challenges in Achieving High Utilization 
We now describe challenges in achieving high accelerator 
utilization in specialized CNN inference. 

2.1. Specialized CNNs 

As described in §1, specialized CNNs are small CNNs de-
signed to target highly specific visual tasks and to achieve 
higher throughput than large, general-purpose CNNs. We 
focus on two motivating usecases of specialized CNNs: 

Usecase 1: filters. A popular use of specialized CNNs is as 
lightweight filters in front of slower, general-purpose CNNs. 
In such systems, all video frames/images pass through a 
specialized CNN, and are processed by the general-purpose 
CNN only if the specialized CNN is uncertain (Kang et al., 

https://github.com/msr-fiddle/folded-cnns
https://github.com/msr-fiddle/folded-cnns
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Table 1. Specialized CNNs used in this work. 
Group ID Name Resol. Convs. Classes 

N1 coral (50, 50) 2 2 
N2 night (50, 50) 2 2

NoScope 
N3 roundabout (50, 50) 4 2 
N4 taipei (50, 50) 2 2 
V1 lol-gold1 (22, 52) 5 11 
V2 apex-count (19, 25) 5 22

Microsoft 
V3 sot-coin (17, 40) 5 15 
V4 sot-time (22, 30) 8 27 

Table 2. Parameters of a 2D convolution with stride of 1. 
Parameter(s) Variable(s) 
batch size N 
output height, width H , W 
input, output channels Ci, Co 

conv. kernel height, width KH , KW 

2017). In other cases, the specialized CNN builds an ap-
proximate index to accelerate later ad-hoc queries by a gen-
eral CNN (Hsieh et al., 2018). These applications desire 
high throughput, so batching is heavily exploited. We use 
specialized CNNs from the NoScope video-processing sys-
tem (Kang et al., 2017) as examples of this usecase. 

Usecase 2: game scraping. We also consider specialized 
CNNs used in production at Microsoft to classify events 
in video game streams by scraping in-game text appearing 
in frames (e.g., score). Separate CNNs are specialized for 
each game and event type. The service handles thousands 
of streams at once, and thus heavily batches images. 

Comparison of general and specialized CNNs. General-
purpose CNNs, such as those used for ImageNet, have many 
convolutional layers, each with many channels. For ex-
ample, ResNet-50 has 49 convolutional layers, each with 
64–2048 channels. In contrast, specialized CNNs have far 
fewer layers and channels: the specialized CNNs used in 
NoScope (Usecase 1) have 2–4 convolutional layers, each 
with 16–64 channels; those used at Microsoft (Usecase 2) 
have 5–8 convolutional layers with at most 32 channels. 
Further details on these CNNs are given in Table 1 and §A. 

2.2. High utilization requires high arithmetic intensity 

As described in §1, achieving high utilization of accelerators 
is critical for operational efficiency. Ideally, a CNN would 
operate near the peak FLOPs/sec offered by an accelerator. 
However, achieving this is confounded by the need to trans-
fer data to/from memory, as cycles stalled on memory are 
wasted if they cannot be masked by computation. 

A computational kernel must be compute bound to achieve 
peak FLOPs/sec: a compute-bound kernel uses all arith-
metic units on an accelerator at all times. Under the popular 
Roofline performance model (Williams et al., 2009), a ker-
nel can only be compute bound if it theoretically spends 

3 

more time computing than it does reading/writing memory: 

FLOPs Bytes
>

Compute Bandwidth Memory Bandwidth 

Here, “FLOPs” is the number of arithmetic operations per-
formed, “Bytes” is the amount of data transferred to/from 
memory (memory traffic), “Compute Bandwidth” is the ac-
celerator’s peak FLOPs/sec, and “Memory Bandwidth” is 
the accelerator’s memory bandwidth (bytes/sec). Rearrang-
ing this to pair properties of the kernel on the left-hand side 
and properties of the accelerator on the right-hand gives: 

FLOPs Compute Bandwidth 
> (1)

Bytes Memory Bandwidth 

The left-hand ratio of Eqn. 1 is termed “arithmetic intensity”: 
the ratio between the FLOPs performed by the kernel and the 
bytes it transfers to/from memory. The arithmetic intensity 
of a given layer in a CNN is (abstractly) written as: 

FLOPs 
(2)

Input bytes + Weight bytes + Output bytes 

where “Input bytes” is the size of the layer’s input activa-
tions, “Output bytes” is the size of output activations written 
by the layer to memory for processing by the next layer, 
and “Weight bytes” is the size of the layer’s weights. For 
example, using the terminology in Table 2, the arithmetic 
intensity of a 2D convolutional layer with a stride of 1 is: 

2NHWCoCiKH KW (3)
B(NHWCi + CiKH KW Co + NHWCo) 

where B is numerical precision in bytes (e.g., 2 for FP-
16).1 The aggregate arithmetic intensity of a CNN as a 
whole is computed by summing the FLOPs performed by 
each layer of the CNN, summing the bytes read/written by 
each layer, and dividing these quantities. This accounts for 
optimizations like layer fusion that reduce memory traffic. 

Eqn. 1 indicates that, for a kernel to achieve the peak 
FLOPs/sec of an accelerator, the kernel’s arithmetic inten-
sity must be higher than the ratio between the accelerator’s 
compute bandwidth and memory bandwidth (Williams et al., 
2009).2 For example, this ratio is 139 in half-precision on a 
V100 GPU (NVIDIA), 203 on a T4 GPU (NVIDIA, 2018), 
and 1350 on TPUv1 (Jouppi et al., 2017). It is often neces-
sary for arithmetic intensity to be far higher than this ratio, 
as arithmetic intensity calculations typically assume perfect 
memory reuse, which can be difficult to achieve in practice. 

Specialized CNNs have low arithmetic intensity. While 
high arithmetic intensity is needed for high utilization of 

1Here, we show arithmetic intensity for direct- and GEMM-
based convolutions, though the arguments we make also apply to 
other implementations (e.g., Winograd), as we show in §D. 

2This condition is necessary, but not sufficient, as inefficiencies 
in implementation can limit performance (Williams et al., 2009). 
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GPU, which is used for specialized CNN inference in data-
centers (Mullapudi et al., 2019). Thus, these CNNs achieve 
at most 17% of the V100’s peak FLOPs/sec, even at large 
batch sizes and when running on the TensorRT inference 

150 

100 

50 
128 256 512 1,024library that performs optimizations like layer fusion. To 

improve their utilization of accelerators, specialized CNNs 
must be modified to increase arithmetic intensity. 

Batch size (N ) 
Figure 3. FP-16 utilization and arithmetic intensity of game-
scraping CNNs on a V100 GPU. The dashed line is the minimum 
arithmetic intensity needed for peak utilization of a V100 GPU. 

limited regime.” Fig. 3 shows this on the game-scraping 

As described above, high arithmetic intensity alone is insuffi-
cient to achieve high utilization, as implementations must ef-
ficiently use accelerator resources (e.g., memory hierarchy). 
Nevertheless, high arithmetic intensity is a prerequisite for 
high utilization. For specialized CNNs, increasing arith-
metic intensity is thus necessary to increase utilization. We 
will show that simply increasing arithmetic intensity greatly 
increases the utilization and throughput of specialized CNN 
inference atop an optimized inference library. 

2.3. Improving arithmetic intensity is non-trivial 

To increase the arithmetic intensity of convolutional and 
fully-connected layers, one must increase the ratio in Eqn. 2. 
For concreteness, we focus on convolutional layers in this 
subsection, and thus on increasing Eqn. 3. 

Low precision? One way to increase Eqn. 3 is to decrease 
numerical precision B, which reduces memory traffic by 
representing operands/outputs using fewer bits. However, 
modern accelerators have compute units that offer increased 
FLOPs/sec in low precision (e.g., T4 GPUs). Reducing 
precision thus increases both the left-hand side of Eqn. 1 
(by reducing bytes) and the right-hand side (by increasing 
compute bandwidth). When these quantities change at equal 
rates, as is common in accelerators (NVIDIA, 2018), the 
inequality remains the same: kernels that did not satisfy 
this inequality at a high precision will not satisfy it at low 
precision. Fig. 1 illustrates this on a T4 GPU: specialized 
CNNs have low utilization at both full (FP-32) and low 
precisions (FP-16, INT-8). Thus, while reducing precision 
can accelerate inference, it does not increase utilization. 

Large batch size? Increasing batch size N can increase 
arithmetic intensity by amortizing the cost of loading layer 
weights. However, doing so leads to diminishing returns in 
arithmetic intensity (A), as (ignoring B in Eqn. 3): 

2NHWCoCiKH KW
A = 

NHWCi + CiKH KW Co + NHWCo 

2CoCiKH KW
lim A = (4)

N→∞ Ci + Co 

When batch size is large enough that arithmetic intensity is 
determined by Eqn. 4, we say that a layer is in the “batch-

4 

CNNs: arithmetic intensity and utilization plateau with large 
batch size at 17% of the peak FLOPs/sec of a V100. 

To further increase arithmetic intensity beyond the limits of 
increased batch size, Eqn. 4 indicates that one must increase 
Ci, Co, KH , or KW . However, doing so increases the 
number of FLOPs performed by the layer per image, which 
typically decreases application-level throughput. 

Takeaway. To increase utilization beyond increasing batch 
size, while maintaining high throughput, one must increase 
arithmetic intensity without greatly increasing FLOP count. 
We next propose techniques to achieve this goal. 

3. Boosting Intensity via Folding 
We now propose transformations to increase the arithmetic 
intensity of layers of specialized CNNs operating over large 
batches without increasing FLOPs. For clarity, we focus on 
convolutional layers, though the transformations also apply 
to fully-connected layers (as will be shown in §4). 

To increase arithmetic intensity while performing the same 
number of FLOPs, one must decrease memory traffic, the 
denominator in Eqn. 3. Our key insight is that the total 
memory traffic of specialized CNNs with large batch size is 
dominated by reading/writing the input/output activations 
of convolutional and fully-connected layers (NHWCi and 
NHWCo in the denominator of Eqn. 3),3 rather than by 
reading layer weights (CiKH KW Co). Figs. 4 and 5 (focus 
only on blue parts) depict this for one CNN: with batch size 
1024, activations make up over 99% of total memory traffic. 

Due to the dominance of input/output activations on a 
layer’s total memory traffic, we note that a joint de-
crease in NHW and increase in CiKH KW Co can re-
duce memory traffic while maintaining the same number 
of FLOPs. Suppose one decreased NHW by a factor of 
f (with f > 1) and increased Ci and Co by a factor of 

3The common practice of fusing activation functions to the pre-
ceding layer eliminates their contribution to total memory traffic. 
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folded (f = 4) CNN. Axes are in log scale. The y-axis is in 
elements, rather than bytes, as the trends hold for any bitwidth. 
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When does folding help? Folding will most heavily in-
crease the utilization and throughput of layers that have 
arithmetic intensity in the batch-limited regime that is below 
that needed for peak FLOPs/sec on an accelerator. Special-
ized CNNs are thus ideal targets for folding, as they have 

·108 low arithmetic intensity even at large batch size. Meanwhile, 
large CNNs or those with small batch size are less likely to 
benefit. Thus, we focus on folding specialized CNNs. 

4. FoldedCNNs 
210 21122 23 24 25 26 27 28 29 

We now propose FoldedCNNs, a new approach CNN design Batch Size 
based on the folding transformation proposed in §3. 
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Figure 5. Total memory traffic of the N1 and folded (f = 4) CNN. 
As shown in the inset, weights account for a minor fraction of 
memory traffic with large batch size. The y-axis is in elements, 
rather than bytes, as the trends hold for any bitwidth used. 

√ 
f . We call this transformation folding and layers trans-

formed by it folded. The folded layer has the following 
properties:√(1) It √performs the same number of FLOPs: 
NHW (Co f)(Ci f)(KH KW ) = NHWCoCiKH KW .f 
(2) It decreases the size of layer inputs/outputs by a factor of√√ ff from NHWCi to NHWCi (similarly for outputs f 
with Co). (3) It increases the number of layer weights by a√ √ 
factor of f from CiKH KW Co to (Ci f)KH KW (Co f). 

Properties 2 and 3 are shown in Fig. 4 when folding a repre-
sentative specialized CNN from the NoScope system with 
f = 4: the folded convolutions have 2× lower memory 
traffic for activations and 4× higher memory traffic for 
weights. At large batch sizes, the decrease in memory traffic 
for activations is larger than the increase for weights. For 
example, at batch size 1024, memory traffic for activations 
decreases by 66.7M, while that for weights increases by only 
3.9M. The increase in memory traffic from layer weights is 
dwarfed by the decrease for activations, resulting in a reduc-
tion in total memory traffic. Fig. 5 illustrates this reduction 
in memory traffic for the same CNN. We analytically show 
when this reduction in memory traffic will occur in §J. 

As the folded layer performs as many FLOPs as the original 
layer, but with reduced memory traffic, it has higher arith-
metic intensity. If a layer is in the batch-limited regime, in 
which arithmetic intensity is determined by Eqn. 4, folding √ 
increases arithmetic intensity by f×, as the numerator√ 
and denominator in Eqn. 4 increase by f× and f×, re-
spectively. An example of this is shown in §B. 

5 

Folding involves (1) decreasing NHW by f× and (2) in-
creasing CiKH KW Co by f×. There are many ways to 
achieve these effects. FoldedCNNs achieve them by (1) 
decreasing batch size N by f×, (2) increasing the number√ 
of input and output channels Ci and Co each by f×. We 
do not reduce resolution (H , W ) or increase receptive field 
(KH , KW ), as specialized CNNs often operate over small 
images to begin with (Kang et al., 2017); we find that such 
changes can decrease accuracy compared to FoldedCNNs. 

4.1. Applying folding to a full CNN 

We now describe folding for a specialized CNN with L 
convolutional/fully-connected layers and CL classes. Let 
Ci,l denote the number of input channels to layer l of the 
original CNN, and C 0 that in the FoldedCNN. Similar no-i,l 
tation is used for all parameters in Table 2. While we focus 
on plain convolutions in this section, FoldedCNNs also ap-
ply to other convolutional variants. We evaluate folding for 
group convolutions in §C and Winograd convolutions in §D. 

We first transform a layer l in the middle of the CNN, as 
shown in Fig. 6. As described above, FoldedCNNs decrease 

Nbatch size: N 0 = and increase the number of inputf √ √ 
and output channels: C 0 = f and C 0 = f . 
Folded fully-connected layers in the middle of the CNN

i,l Ci,l o,l Co,l 

√ 
also have f× the number of input and output features. As 
folding is applied to all convolutional and fully-connected 
layers, the increase in output channels in one layer naturally 
fits the increase in input channels for the next layer. 

Folding batches of images. As described in §3, each layer 
in a FoldedCNN performs the same number of FLOPs as 
the corresponding layer of the original CNN. However, a 
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FoldedCNN performs these FLOPs over N images, whereas f 
the original CNN operates over N images. Left uncorrected, 
FoldedCNNs would thus perform f× more FLOPs per im-
age, and thus would reduce application-level throughput. 

To rectify this, FoldedCNNs “fold” a batch of images into 
“stacks” of images, as shown in Figs. 2 and 7. Suppose the 
original CNN takes in N images each with Ci,1 channels 
(e.g., Ci,1 = 3 for RGB). A FoldedCNN instead takes in N 

f 
inputs each with Ci,1f channels, formed by concatenating 
f images along the channels dimension. Each folded input 
represents f images, so the number of images in a batch 
of N such inputs is equal to that of the original CNN (N ).f 
As a FoldedCNN performs inference over f images in a 
single input, it must return classification results for f images. 
To accommodate this, the output layer of a FoldedCNN 
produces outputs for fCL classes, CL for each of the f 
images stacked in a single input. This is illustrated in Fig. 8. 

These adjustments result in the first and last layers of Fold-
edCNNs performing slightly more FLOPs than those of 
the original CNN. The first layer of a FoldedCNN sets√ 
C 0 = Ci,1f , whereas other layers have C 0 = Ci,l f .i,1 i,l 
As the number of output channels in the first layer is also in-√ √ 
creased by f×, the first layer performs f× more FLOPs 
than the original first layer (see Fig. 7). This is also the case 
for the last layer of the FoldedCNN due to returning pre-
dictions for f images (see Fig. 8). All other layers in the 
FoldedCNN perform the same number of FLOPs as those 
in the original CNN, as described previously. Despite this 
slight increase in FLOPs, §5 will show that FoldedCNNs, in 
fact, achieve higher throughput than the original CNN due 
to their increased arithmetic intensity. 

4.2. Training a FoldedCNN 

Training a FoldedCNN is similar to training the original 
CNN. Let NT denote the training batch size. Each training 
iteration, NT images are sampled and transformed into NT 

f 
folded inputs as described above. A forward pass through 
the FoldedCNN results in an output of size NT × fCL,f 
as shown in Fig. 8. This output is reshaped to be of size 
NT × CL, and loss is computed on each of the NT rows. 

As each folded input consists of f images, and each image 
belongs to one of CL classes, the effective number of classes 

ffor a FoldedCNN is CL. This large increase in the number 
of classes can make it difficult to train a FoldedCNN for 
tasks with many classes to begin with. To combat this 
issue, we use a form of curriculum learning (Bengio et al., 
2009) specialized for FoldedCNNs. Training begins by 
sampling from only I < CL classes of the original CNN’s 
dataset, and introducing Δ more classes every E epochs. 
We hypothesize that starting with a small number of classes 
I avoids overloading the FoldedCNN with a difficult task 

fearly on in training, as If � CL. We find this form of 
training beneficial when CL and f are large, and it yielded 
only marginal improvements in other settings. 

5. Evaluation 
5.1. Evaluation setup 

We consider CNNs and tasks from the usecases described 
in §2.1: specialized CNNs from NoScope4 as lightweight 
filters, and specialized CNNs from Microsoft. Each task 
and CNN is described in detail in §A. While the focus of 
this work is on specialized CNNs, we also evaluate on the 
more general ResNet-18 on CIFAR-10 and CIFAR-100. 

We evaluate FoldedCNNs with f of 2, 3, and 4, which in-
crease the channels per layer by factors of roughly 1.41, 
1.73, and 2, respectively ( 

√ 
f×).5 We compare FoldedC-

NNs to the compound scaling used in EfficientNets in §5.3. 

Training setup. When training FoldedCNNs, we randomly 
assign images from the training set into groups of size f 
each epoch. Test sets are formed by randomly placing im-
ages from the test data into groups of f . Such randomization 
at test time avoids simpler settings, such folding f sequen-
tial frames in a video, thus providing a challenging scenario 
for FoldedCNNs. We also evaluate the sensitivity of Fold-
edCNNs to the order in which images are folded in §5.3. 

We train all CNNs using cross entropy loss. Training takes 
place for for 50 epochs with batch size of 128 for the No-
Scope tasks and for 1500 epochs with batch size of 32 for 

4Our evaluation focuses only on specialized CNNs, and thus 
does not reflect the performance of the full NoScope system. 

5The number of channels resulting from folding are rounded� √ � 
down to avoid a non-integer number of channels (e.g., Ci f ). 
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(a) Specialized CNNs use in NoScope (b) Specialized CNNs used at Microsoft 
Figure 9. Inference performance of FoldedCNNs relative to the original CNN. Arithmetic intensity is plotted in absolute numbers, and the 
dashed line shows the minimum arithmetic intensity required to reach peak FLOPs/sec on a V100 GPU. 

the game-scraping tasks. We use the curriculum learning 
in §4.2 for FoldedCNNs only on the game-scraping tasks. 
For these scenarios that use curriculum learning, we use 
I = max(f, bCL/10c), Δ = bCL/10c, and E = 60. Such 
curriculum learning did not improve the accuracy of the orig-
inal CNN. We use hyperparameters from NoScope (Kang 
et al., 2017) to train NoScope CNNs: RMSprop with learn-
ing rate 6.6 × 10−4 and Dropout of 0.25 after the second 
layer and before the last layer. All other models use Adam 
with learning rate 10−4 and weight decay of 10−5 . 

Inference setup. We evaluate inference on a V100 GPU 
(p3.2xlarge AWS instance), which is typical of hardware 
used for specialized CNN inference in datacenters (Mulla-
pudi et al., 2019). We also evaluate on T4 GPUs, which are 
common both in datacenters and edge clusters. As results on 
V100 and T4 are similar, we relegate results on T4 to §E. In-
ference is performed in PyTorch with TensorRT (NVIDIA, 
2021) on CUDA 10.2. While FoldedCNNs can improve 
utilization for any numerical precision, we use half pre-
cision (FP-16) to use Tensor Cores, which offer the peak 
FLOPs/sec on the V100 (NVIDIA, 2017). We report uti-
lization (FLOPs/sec) and application-level throughput (im-
ages/sec) relative to the original CNN via the mean of 10 
trials of 10000 inferences of batch size 1024. We use other 
batch sizes in §F. We call relative throughput “speedup.” 

5.2. Evaluation on specialized CNNs used in NoScope 

Utilization and throughput. Fig. 9a shows the speedup 
and FLOPs/sec of FoldedCNNs relative to the original CNN, 
and the arithmetic intensity of each CNN. FoldedCNNs in-
crease FLOPs/sec by up to 2.8× and throughput by up to 
2.5×. Increased throughput speeds up tasks like offline ana-
lytics, while increased utilization enables higher throughput 

on a single accelerator and a better return on investment√ 
for deploying accelerators. FoldedCNNs match the f× 
theoretical increase in arithmetic intensity described in §3, 
thus increasing utilization and throughput with higher f . 

FoldedCNNs result in larger improvements in utilization and 
throughput for the N1 and N2 CNNs (up to 2.8×) than for 
the N3 and N4 CNNs (up to 1.76×). This can be explained 
by arithmetic intensity: the N1 and N2 CNNs originally 
have very low arithmetic intensity. FoldedCNNs bring this 
arithmetic intensity much closer to that needed for peak per-
formance on the V100 GPU, resulting in significantly higher 
utilization and throughput. In contrast, both N3 and N4 al-
ready have arithmetic intensity above the minimum needed 
for peak utilization, leaving less room for improvement. De-
spite this lower potential, FoldedCNNs still deliver up to 
1.76× higher utilization and throughput for these CNNs. 

There is only one case in which FoldedCNNs decrease 
throughput/utilization (N4, f = 2). This is due to tile 
quantization on NVIDIA GPUs, which we describe in §H. 

Accuracy. Table 3 shows the accuracy of FoldedCNNs on 
the NoScope tasks. FoldedCNNs maintain high accuracy: 
the accuracy of FoldedCNNs with f = 2 is, in fact, higher 
than that of the original CNN for three of CNNs, and only 
0.18% lower on the fourth. For these cases, FoldedCNNs 
provide up to a 1.39× speedup with the same accuracy. 

As f increases, a FoldedCNN classifies more images per 
input, making the task of the FoldedCNN more challenging. 
As shown in Table 3 and Fig. 9a, increasing f reduces accu-
racy but increases utilization and throughput, introducing a 
tradeoff that can be spanned based on the requirements of 
applications. We analyze an example of this tradeoff in §G. 
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Table 3. Accuracy and speedup of FoldedCNNs for NoScope CNNs. Differences in accuracy are listed in parentheses. 
Original FoldedCNN (f = 2) FoldedCNN (f = 3) FoldedCNN (f = 4) 

Model Accuracy Accuracy Speedup Accuracy Speedup Accuracy Speedup 
N1 98.82 98.64 (-0.18) 1.39 98.35 (-0.47) 1.85 97.93 (-0.89) 2.51 
N2 96.96 96.99 (0.03) 1.38 96.93 (-0.03) 1.85 96.75 (-0.21) 2.50 
N3 94.84 94.95 (0.11) 1.07 94.82 (-0.02) 1.37 94.72 (-0.12) 1.76 
N4 91.66 91.91 (0.25) 0.90 91.39 (-0.27) 1.07 91.21 (-0.45) 1.41 

Table 4. Performance of FoldedCNNs on production game-scraping tasks. Differences in accuracy are listed in parentheses. 
Original FoldedCNN (f = 2) FoldedCNN (f = 3) FoldedCNN (f = 4) 

Model Resolution Classes Accuracy Accuracy Speedup Accuracy Speedup Accuracy Speedup 
V1 (22, 52) 11 97.64 97.64 (0.00) 1.13 97.18 (-0.46) 1.38 95.27 (-2.37) 1.75 
V2 (19, 25) 22 93.45 92.09 (-1.36) 1.15 90.00 (-3.45) 1.44 89.91 (-3.54) 1.74 
V3 (17, 40) 15 98.50 97.43 (-1.07) 1.15 97.20 (-1.30) 1.43 96.87 (-1.63) 1.71 
V4 (22, 30) 27 96.52 96.52 (0.00) 1.22 96.00 (-0.52) 1.40 94.41 (-2.11) 1.67 

Table 5. FoldedCNNs and EfficientNet compound scaling on game-
scraping tasks. Speedup, utilization (“Util.”), and arithmetic inten-
sity (“A.I.”) are relative to the original CNN. 

Model Mode 
High

Accuracy 
er values are better 

Speedup Util. A.I. 

V1 
EfficientNet 
Fold (f = 4) 

93.27% 
95.27% 

1.32 
1.75 

0.83 
1.95 

0.91 
2.16 

V2 
EfficientNet 
Fold (f = 4) 

84.91% 
89.91% 

1.51 
1.74 

0.80 
1.93 

0.88 
2.15 

V3 
EfficientNet 
Fold (f = 4) 

96.40% 
96.87% 

1.46 
1.71 

0.75 
1.91 

0.87 
2.16 

V4 
EfficientNet 
Fold (f = 3) 
Fold (f = 4) 

95.19% 
96.00% 
94.41% 

1.34 
1.40 
1.67 

0.83 
1.46 
1.80 

0.91 
1.78 
2.10 

5.3. Evaluation on production game-scraping CNNs 

Fig. 9b shows the utilization, throughput, and arithmetic 
intensity of FoldedCNNs on the production game-scraping 
tasks. FoldedCNNs increase FLOPs/sec by up to 1.95× and 
throughput by up to 1.75× compared to the original CNN. 
Table 4 shows that FoldedCNNs have accuracy drops of 
0–1.36%, 0.46–3.45%, and 1.63–3.54% with f of 2, 3, and 
4 on these tasks. These drops are larger than those on the 
NoScope tasks due to the higher number of classes in the 
game-scraping tasks. While the NoScope tasks have only 
two classes, the game-scraping tasks have 11–27 classes. 
Thus, lower accuracy on the game-scraping tasks is ex-
pected from FoldedCNNs. That said, FoldedCNNs still 
enable large improvements, such as a 1.22× speedup with 
no accuracy loss for V4 with f = 2. 

Effect of image order. As FoldedCNNs jointly classify f 
distinct images concatenated over the channels dimension, 
a natural question is how sensitive FoldedCNNs are to the 
order in which images are folded. To investigate this, we 
measure how often the predictions made by FoldedCNNs 
for each image match for all f ! permutations of f images 
folded together (e.g., how often do predictions for image X1 

match in folded inputs (X1, X2) and (X2, X1) for f = 2). 

With f of 2, 3, and 4, the average percentage of matching 
predictions for all f ! permutations on the V1 task is 98.8%, 
98.4%, and 98.0%, showing high invariance to image order. 

Comparison to EfficientNet scaling. We next compare 
FoldedCNNs to the techniques used in EfficientNets (Tan 
& Le, 2019). EfficientNets trade FLOPs and accuracy by 
jointly scaling the number of layers, the width, and the in-
put resolution of a CNN. While such scaling can increase 
throughput by reducing FLOP count, reducing FLOP count 
in this manner can also decrease arithmetic intensity and uti-
lization. To illustrate this, we transform the game-scraping 
CNNs with EfficientNet compound scaling6 with the recom-
mended parameters from the EfficientNet paper (Tan & Le, 
2019): using terminology from the paper, φ = −1, α = 1.1, 
β = 1.2, and γ = 1.15. This transforms a CNN to perform 
roughly 2× fewer FLOPs, which increases throughput. 

Table 5 compares FoldedCNNs and EfficientNets on the 
game-scraping CNNs. For each task, a FoldedCNN achieves 
both higher accuracy and throughput than the EfficientNet 
variant. For example, for V1, a FoldedCNN has 2% higher 
accuracy and 33% higher throughput than the EfficientNet 
variant. Furthermore, whereas EfficientNets reduce arith-
metic intensity and utilization for all CNNs due to decreased 
FLOP count, FoldedCNNs uniformly increase arithmetic 
intensity and utilization. These results shows the promise 
of the new approaches proposed in FoldedCNNs targetted 
specifically for large-batch, specialized CNN inference. 

5.4. FoldedCNNs in non-target settings 

As described in §3, our focus in FoldedCNNs is on small 
CNNs with low arithmetic intensity even at large batch size, 
and specialized tasks with few classes. For completeness, 
we now evaluate FoldedCNNs on general-purpose CNNs 
and tasks, which are not in this target regime. We also 
evaluate small CNNs for tasks with many classes in §I. 

6We do not use the EfficientNet-B0 architecture because it is 
significantly larger than typical specialized CNNs. 
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Accuracy on general tasks. To evaluate the accuracy of 
FoldedCNNs on general-purpose tasks, we consider ResNet-
18 FoldedCNNs on CIFAR-10 and CIFAR-100. 

For CIFAR-10, we train a FoldedCNN with f = 4 via 
distillation with the original CNN as the “teacher” (Ba & 
Caruana, 2014). The original ResNet-18 has an accuracy of 
92.98%, while the FoldedCNN has an accuracy of 92.10%. 
This small accuracy drop even with high f shows the poten-
tial applicability of FoldedCNNs to general-purpose tasks. 

For CIFAR-100, we do not observe benefit from the same 
distillation used for CIFAR-10. The original ResNet-18 on 
CIFAR-100 achieves 70.3% accuracy, while FoldedCNNs 
have accuracies of 68.11% (2.19% drop), 67.44% (2.86% 
drop), and 65.76% (4.54% drop) with f of 2, 3, and 4. These 
larger drops compared to CIFAR-10 can be attributed to the 
higher number of classes in CIFAR-100, which makes the 
task of a FoldedCNN more challenging (see §4.2). 

Speedup on general CNNs. We now evaluate the speedup 
of FoldedCNNs when the original CNN is the general-
purpose ResNet-18 operating on CIFAR-10. A FoldedCNN 
with f = 4 in this setup improves throughput by 8.1%. This 
speedup is smaller than those observed in Fig. 9 because 
ResNet-18 has arithmetic intensity of 430, much higher than 
the minimum needed for peak FLOPs/sec on a V100 (139). 
This places ResNet-18 outside the target regime of Folded-
CNNs. FoldedCNNs still do provide 8.1% speedup, as 24% 
of the layers in ResNet-18 have low arithmetic intensity. 

Takeaway. Coupling these moderate benefits in non-target 
settings with large benefits in target settings, FoldedCNNs 
show promise for increasing the utilization and throughput 
of specialized CNN inference beyond increased batch size. 

6. Related Work 
Efficient neural architectures. There is a large body of 
work on designing CNNs for efficient inference (e.g., (Ma 
et al., 2018; Cai et al., 2018; Zhou et al., 2018; Wu et al., 
2019; Tan & Le, 2019; Cai et al., 2020)). Many of these 
works aim to reduce latency, but often do not consider accel-
erator utilization, which is a primary objective of FoldedC-
NNs. Some of these approaches, such as EfficientNets (Tan 
& Le, 2019), reduce the number of FLOPs performed by a 
CNN to achieve lower latency. However, we show in §5 that 
doing so can, in fact, reduce accelerator utilization. Further-
more, compared to these approaches, FoldedCNNs employ 
a fundamentally new structure to CNN inputs and classifi-
cation, which could be integrated into existing architecture 
search techniques. Finally, FoldedCNNs are designed pri-
marily for large-batch, specialized CNN inference, whereas 
existing works typically target general-purpose CNNs. 

Improving throughput. Many other techniques have been 
proposed to accelerate inference, but which do not target 

utilization. Network pruning (Blalock et al., 2020) can im-
prove throughput by reducing the FLOP count of a CNN, 
but, similar to the approaches described above, can reduce 
utilization. Reducing the numerical precision used during 
inference can increase throughput (Wang, 2019), but is in-
sufficient for increasing utilization on modern accelerators 
(as we show in §2.3). Folding can be applied on top of these 
techniques to further improve the utilization and throughout 
of specialized CNN inference. In fact, our evaluation in §5 
applies FoldedCNNs atop low-precision specialized CNNs. 

Multitenancy. There is a growing body of work on in-
creasing accelerator utilization by performing inference for 
multiple models on the same device (Narayanan et al., 2018; 
Jain et al., 2018; Shen et al., 2019; Yu & Chowdhury, 2020; 
Dhakal et al., 2020). These works do not improve the utiliza-
tion of individual models, which is the goal of FoldedCNNs. 
Thus, these works are complementary to FoldedCNNs. 

7. Conclusion 
Specialized CNNs are widely used for high-throughput in-
ference, but greatly underutilize accelerators, even when 
using large batch sizes. FoldedCNNs are a new approach 
to CNN design that increase the utilization and throughput 
of specialized CNN inference beyond increased batch size. 
FoldedCNNs increase arithmetic intensity by operating over 
distinct images concatenated along the channels dimension 
and increasing CNN width. Increased arithmetic intensity 
in FoldedCNNs boosts the utilization and throughput of 
specialized CNNs by up to 2.8× and 2.5×. 

FoldedCNNs are not a panacea: their design is driven by the 
specific setting of specialized CNNs that operate over large 
batches, and that run on accelerators that require high arith-
metic intensity to reach peak utilization. As our evaluation 
showed, FoldedCNNs provide only modest benefits outside 
this setting. Nevertheless, this work shows the increase in 
utilization and throughput made possible by substantially 
rethinking specialized CNN design. As the arithmetic in-
tensity required to reach peak utilization on accelerators 
increases, FoldedCNNs may show promise in running to-
day’s general-purpose CNNs on tomorrow’s accelerators. 
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