
Boosting the Throughput and Accelerator Utilization of Specialized CNN
Inference Beyond Increasing Batch Size

Jack Kosaian 1 * Amar Phanishayee 2 Matthai Philipose 2 Debadeepta Dey 2 K. V. Rashmi 1

Abstract
Datacenter vision systems widely use small, spe-
cialized convolutional neural networks (CNNs)
trained on specific tasks for high-throughput in-
ference. These settings employ accelerators with
massive computational capacity, but which spe-
cialized CNNs underutilize due to having low
arithmetic intensity. This results in suboptimal
application-level throughput and poor returns on
accelerator investment. Increasing batch size is
the only known way to increase both application-
level throughput and accelerator utilization for
inference, but yields diminishing returns; spe-
cialized CNNs poorly utilize accelerators even
with large batch size. We propose FoldedCNNs,
a new approach to CNN design that increases in-
ference throughput and utilization beyond large
batch size. FoldedCNNs rethink the structure of
inputs and layers of specialized CNNs to boost
arithmetic intensity: in FoldedCNNs, f images
with C channels each are concatenated into a sin-
gle input with fC channels and jointly classified
by a wider CNN. Increased arithmetic intensity in
FoldedCNNs increases the throughput and GPU
utilization of specialized CNN inference by up to
2.5× and 2.8×, with accuracy close to the original
CNN in most cases.

1. Introduction
Convolutional neural networks (CNNs) are widely deployed
for high-throughput vision tasks. Many such tasks target
highly specific events for which general-purpose CNNs
trained on diverse data (e.g., ResNet-50 on ImageNet) are
overkill; an application detecting red trucks does not need
a CNN capable of classifying animals. It has thus become
popular to employ small specialized CNNs trained only for
such focused tasks (Shen et al., 2017; Kang et al., 2017;

*Work done in part as an intern at Microsoft Research.
1Carnegie Mellon University 2Microsoft Research. Correspon-
dence to: Jack Kosaian <jkosaian@cs.cmu.edu>.

Proceedings of the 38 th International Conference on Machine
Learning, PMLR 139, 2021. Copyright 2021 by the author(s).

Hsieh et al., 2018; Kang et al., 2020). In being trained for
highly specific tasks, specialized CNNs can typically be
much smaller than general-purpose CNNs, and thus operate
at higher application-level throughput (e.g., images/sec).

Specialized CNNs are heavily used for inference in both
datacenters and edge clusters (Kang et al., 2017; Hsieh et al.,
2018; Mullapudi et al., 2019; Bhardwaj et al., 2020), and
occasionally on constrained devices (e.g., cameras) (Canel
et al., 2019). We focus on specialized CNNs used for high-
throughput vision in datacenters/clusters. A popular usecase
in this setting is offline video analytics, in which all video
frames are processed by a specialized CNN, and only frames
for which the specialized CNN is uncertain are processed
by a slower, general-purpose CNN (Kang et al., 2017). The
throughput of the specialized CNN is critical to that of the
overall system, as all frames are processed by the specialized
CNN and only a small fraction by the general-purpose CNN.

Aiding the case for high-throughput CNNs, server-grade
deep learning hardware accelerators offer unprecedented
performance in FLOPs/sec, and thus are used for inference
in datacenters (e.g., V100 and T4 GPUs, TPUs) and edge
clusters (e.g., AWS Outposts and Azure Stack Edge with
T4 GPUs). It is critical that these accelerators be highly
utilized, with software running on an accelerator ideally
achieving FLOPs/sec near the accelerator’s theoretical peak
FLOPs/sec. Given the high cost of accelerators and the oper-
ational costs incurred in deploying them (e.g., power) (Bar-
roso et al., 2013), poorly utilizing an accelerator leads to a
poor return on investment. Furthermore, underutilization
results in suboptimal application-level throughput.

However, current specialized CNNs significantly under-
utilize server-grade accelerators: we find that specialized
CNNs used in production at Microsoft achieve less than
20% of the peak FLOPs/sec of GPUs employed in datacen-
ters, even with large batch sizes (which are common for
high-throughput inference), and when using techniques that
improve throughput, such as reduced precision (see Fig. 1).
While specialized CNNs might better utilize weaker devices,
we find that server-grade GPUs, such as V100 and T4, of-
fer the highest cost-normalized throughput for the CNNs
described above, motivating their deployment in production.

mailto:jkosaian@cs.cmu.edu

Boosting the Throughput and Accelerator Utilization of Specialized CNN Inference Beyond Increasing Batch Size
%

 o
f P

ea
k

FL
O

Ps
/s

ec
FP-32 FP-16 INT-8

100
75
50
25
0

V1 V2 V3 V4
Model

Figure 1. Utilization of production specialized CNNs (see §2.1) at
various precisions and maximum batch size on a T4 GPU. Each
bar is relative to the peak FLOPs/sec of the T4 in that precision.

The main cause for the poor accelerator utilization of spe-
cialized CNNs is low arithmetic intensity: the ratio between
the number of arithmetic operations performed by a compu-
tational kernel (i.e., FLOPs) and the number of bytes read
from or written to memory by the kernel (Williams et al.,
2009). As the bandwidth of performing arithmetic on ac-
celerators is far higher than memory bandwidth (e.g., over
200× on T4 (NVIDIA, 2018)), a CNN with low arithmetic
intensity incurs frequent memory stalls, leaving arithmetic
units idle and underutilized. High arithmetic intensity is,
thus, a prerequisite to high utilization. However, we will
show in §2 that specialized CNNs have arithmetic intensities
far lower than needed for peak utilization on accelerators.

The arithmetic intensities of specialized CNNs must be in-
creased to improve utilization of server-grade accelerators,
but achieving this requires care: we show that common tech-
niques that increase application-level throughput can reduce
arithmetic intensity, while naive approaches to increasing
arithmetic intensity reduce application-level throughput.

Increasing the batch size over which inference is performed
can increase arithmetic intensity, utilization, and application-
level throughput by amortizing the cost of loading a CNN’s
weights from memory. However, doing so leads to dimin-
ishing returns in these quantities: for example, we show in
§2 that specialized CNNs achieve at most 17% of the peak
FLOPs/sec of a V100 at large batch sizes. An alternative is
needed to further improve the utilization and throughput of
specialized CNNs beyond the limits of increasing batch size.

We propose FoldedCNNs, a new approach to the design
of specialized CNNs that boosts inference utilization and
throughput beyond increasing batch size. We show that con-
volutional and fully-connected layers in specialized CNNs at
large batch size can be transformed to perform an equal num-
ber of FLOPs, but with higher arithmetic intensity. Our key
insight is that, once arithmetic intensity has plateaued due
to increased batch size, reading/writing activations accounts
for most of the memory traffic in specialized CNNs. We
show that this memory traffic can be significantly reduced,
while performing the same number of FLOPs, by jointly
decreasing the size of the batch of input/output activations
for a layer and increasing the layer’s width. By decreas-
ing memory traffic while performing the same number of
FLOPs, this transformation increases arithmetic intensity.

FoldedCNNs take a new approach to structuring the inputs
2

! ÷ # = 2

42& ' # = 6

Original CNN

! = 4
& = 3

FoldedCNN

P(cat)
P(dog)

P(img1 is cat)
P(img1 is dog)
P(img2 is cat)
P(img2 is dog)

Figure 2. Abstract illustration of a FoldedCNN with f = 2.

of a CNN to apply this transformation, inspired in part from
the interplay of machine learning and coding theory in other
applications (Kosaian et al., 2020). As shown in Fig. 2,
rather than operating over a batch of N images each with
C channels, a FoldedCNN instead operates over a batch of
N “folded” inputs each with fC channels formed by con-f
catenating f images along the channels dimension. These
f images are jointly classified: if the original CNN had CL

output classes, the FoldedCNN now has fCL output classes.
FoldedCNNs increase the number of channels for all mid-√
dle layers by f×, while maintaining an f× reduction in
batch size. This reduces memory traffic over N images by √
f× while performing a similar number of FLOPs, thus

increasing arithmetic intensity, utilization, and throughput.

We evaluate FoldedCNNs on four specialized CNNs used at
Microsoft and four from the NoScope video-processing
system (Kang et al., 2017). FoldedCNNs improve the
GPU utilization of specialized CNNs by up to 2.8× and
throughput by up to 2.5×, while maintaining accuracy
close to the original CNN in most cases. Compared to
the compound scaling used in EfficientNets (Tan & Le,
2019), FoldedCNNs achieve higher accuracy, throughput,
and utilization for specialized CNNs. These results show
the promise of FoldedCNNs in increasing the utilization and
throughput of specialized CNNs beyond increased batch
size, and open doors for future high-performance specialized
CNNs. The code used in this paper is available at https:
//github.com/msr-fiddle/folded-cnns.

2. Challenges in Achieving High Utilization
We now describe challenges in achieving high accelerator
utilization in specialized CNN inference.

2.1. Specialized CNNs

As described in §1, specialized CNNs are small CNNs de-
signed to target highly specific visual tasks and to achieve
higher throughput than large, general-purpose CNNs. We
focus on two motivating usecases of specialized CNNs:

Usecase 1: filters. A popular use of specialized CNNs is as
lightweight filters in front of slower, general-purpose CNNs.
In such systems, all video frames/images pass through a
specialized CNN, and are processed by the general-purpose
CNN only if the specialized CNN is uncertain (Kang et al.,

https://github.com/msr-fiddle/folded-cnns
https://github.com/msr-fiddle/folded-cnns

Boosting the Throughput and Accelerator Utilization of Specialized CNN Inference Beyond Increasing Batch Size

Table 1. Specialized CNNs used in this work.
Group ID Name Resol. Convs. Classes

N1 coral (50, 50) 2 2
N2 night (50, 50) 2 2

NoScope
N3 roundabout (50, 50) 4 2
N4 taipei (50, 50) 2 2
V1 lol-gold1 (22, 52) 5 11
V2 apex-count (19, 25) 5 22

Microsoft
V3 sot-coin (17, 40) 5 15
V4 sot-time (22, 30) 8 27

Table 2. Parameters of a 2D convolution with stride of 1.
Parameter(s) Variable(s)
batch size N
output height, width H , W
input, output channels Ci, Co

conv. kernel height, width KH , KW

2017). In other cases, the specialized CNN builds an ap-
proximate index to accelerate later ad-hoc queries by a gen-
eral CNN (Hsieh et al., 2018). These applications desire
high throughput, so batching is heavily exploited. We use
specialized CNNs from the NoScope video-processing sys-
tem (Kang et al., 2017) as examples of this usecase.

Usecase 2: game scraping. We also consider specialized
CNNs used in production at Microsoft to classify events
in video game streams by scraping in-game text appearing
in frames (e.g., score). Separate CNNs are specialized for
each game and event type. The service handles thousands
of streams at once, and thus heavily batches images.

Comparison of general and specialized CNNs. General-
purpose CNNs, such as those used for ImageNet, have many
convolutional layers, each with many channels. For ex-
ample, ResNet-50 has 49 convolutional layers, each with
64–2048 channels. In contrast, specialized CNNs have far
fewer layers and channels: the specialized CNNs used in
NoScope (Usecase 1) have 2–4 convolutional layers, each
with 16–64 channels; those used at Microsoft (Usecase 2)
have 5–8 convolutional layers with at most 32 channels.
Further details on these CNNs are given in Table 1 and §A.

2.2. High utilization requires high arithmetic intensity

As described in §1, achieving high utilization of accelerators
is critical for operational efficiency. Ideally, a CNN would
operate near the peak FLOPs/sec offered by an accelerator.
However, achieving this is confounded by the need to trans-
fer data to/from memory, as cycles stalled on memory are
wasted if they cannot be masked by computation.

A computational kernel must be compute bound to achieve
peak FLOPs/sec: a compute-bound kernel uses all arith-
metic units on an accelerator at all times. Under the popular
Roofline performance model (Williams et al., 2009), a ker-
nel can only be compute bound if it theoretically spends

3

more time computing than it does reading/writing memory:

FLOPs Bytes
>

Compute Bandwidth Memory Bandwidth

Here, “FLOPs” is the number of arithmetic operations per-
formed, “Bytes” is the amount of data transferred to/from
memory (memory traffic), “Compute Bandwidth” is the ac-
celerator’s peak FLOPs/sec, and “Memory Bandwidth” is
the accelerator’s memory bandwidth (bytes/sec). Rearrang-
ing this to pair properties of the kernel on the left-hand side
and properties of the accelerator on the right-hand gives:

FLOPs Compute Bandwidth
> (1)

Bytes Memory Bandwidth

The left-hand ratio of Eqn. 1 is termed “arithmetic intensity”:
the ratio between the FLOPs performed by the kernel and the
bytes it transfers to/from memory. The arithmetic intensity
of a given layer in a CNN is (abstractly) written as:

FLOPs
(2)

Input bytes + Weight bytes + Output bytes

where “Input bytes” is the size of the layer’s input activa-
tions, “Output bytes” is the size of output activations written
by the layer to memory for processing by the next layer,
and “Weight bytes” is the size of the layer’s weights. For
example, using the terminology in Table 2, the arithmetic
intensity of a 2D convolutional layer with a stride of 1 is:

2NHWCoCiKH KW (3)
B(NHWCi + CiKH KW Co + NHWCo)

where B is numerical precision in bytes (e.g., 2 for FP-
16).1 The aggregate arithmetic intensity of a CNN as a
whole is computed by summing the FLOPs performed by
each layer of the CNN, summing the bytes read/written by
each layer, and dividing these quantities. This accounts for
optimizations like layer fusion that reduce memory traffic.

Eqn. 1 indicates that, for a kernel to achieve the peak
FLOPs/sec of an accelerator, the kernel’s arithmetic inten-
sity must be higher than the ratio between the accelerator’s
compute bandwidth and memory bandwidth (Williams et al.,
2009).2 For example, this ratio is 139 in half-precision on a
V100 GPU (NVIDIA), 203 on a T4 GPU (NVIDIA, 2018),
and 1350 on TPUv1 (Jouppi et al., 2017). It is often neces-
sary for arithmetic intensity to be far higher than this ratio,
as arithmetic intensity calculations typically assume perfect
memory reuse, which can be difficult to achieve in practice.

Specialized CNNs have low arithmetic intensity. While
high arithmetic intensity is needed for high utilization of

1Here, we show arithmetic intensity for direct- and GEMM-
based convolutions, though the arguments we make also apply to
other implementations (e.g., Winograd), as we show in §D.

2This condition is necessary, but not sufficient, as inefficiencies
in implementation can limit performance (Williams et al., 2009).

Boosting the Throughput and Accelerator Utilization of Specialized CNN Inference Beyond Increasing Batch Size

accelerators, specialized CNNs have low arithmetic inten- V1 V2 V3 V4
15sity due to their small sizes. For example, the half-precision

arithmetic intensities of the CNNs used in the game-scraping 10
5
0tasks are 88–102 at large batch sizes, much lower than the

A
ri

th
m

et
ic

%

 o
f P

ea
k

In
te

ns
ity

FL

O
Ps

/s
ec

minimum of 139 required for peak utilization of a V100 128 256 512 1,024

GPU, which is used for specialized CNN inference in data-
centers (Mullapudi et al., 2019). Thus, these CNNs achieve
at most 17% of the V100’s peak FLOPs/sec, even at large
batch sizes and when running on the TensorRT inference

150

100

50
128 256 512 1,024library that performs optimizations like layer fusion. To

improve their utilization of accelerators, specialized CNNs
must be modified to increase arithmetic intensity.

Batch size (N)
Figure 3. FP-16 utilization and arithmetic intensity of game-
scraping CNNs on a V100 GPU. The dashed line is the minimum
arithmetic intensity needed for peak utilization of a V100 GPU.

limited regime.” Fig. 3 shows this on the game-scraping

As described above, high arithmetic intensity alone is insuffi-
cient to achieve high utilization, as implementations must ef-
ficiently use accelerator resources (e.g., memory hierarchy).
Nevertheless, high arithmetic intensity is a prerequisite for
high utilization. For specialized CNNs, increasing arith-
metic intensity is thus necessary to increase utilization. We
will show that simply increasing arithmetic intensity greatly
increases the utilization and throughput of specialized CNN
inference atop an optimized inference library.

2.3. Improving arithmetic intensity is non-trivial

To increase the arithmetic intensity of convolutional and
fully-connected layers, one must increase the ratio in Eqn. 2.
For concreteness, we focus on convolutional layers in this
subsection, and thus on increasing Eqn. 3.

Low precision? One way to increase Eqn. 3 is to decrease
numerical precision B, which reduces memory traffic by
representing operands/outputs using fewer bits. However,
modern accelerators have compute units that offer increased
FLOPs/sec in low precision (e.g., T4 GPUs). Reducing
precision thus increases both the left-hand side of Eqn. 1
(by reducing bytes) and the right-hand side (by increasing
compute bandwidth). When these quantities change at equal
rates, as is common in accelerators (NVIDIA, 2018), the
inequality remains the same: kernels that did not satisfy
this inequality at a high precision will not satisfy it at low
precision. Fig. 1 illustrates this on a T4 GPU: specialized
CNNs have low utilization at both full (FP-32) and low
precisions (FP-16, INT-8). Thus, while reducing precision
can accelerate inference, it does not increase utilization.

Large batch size? Increasing batch size N can increase
arithmetic intensity by amortizing the cost of loading layer
weights. However, doing so leads to diminishing returns in
arithmetic intensity (A), as (ignoring B in Eqn. 3):

2NHWCoCiKH KW
A =

NHWCi + CiKH KW Co + NHWCo

2CoCiKH KW
lim A = (4)

N→∞ Ci + Co

When batch size is large enough that arithmetic intensity is
determined by Eqn. 4, we say that a layer is in the “batch-

4

CNNs: arithmetic intensity and utilization plateau with large
batch size at 17% of the peak FLOPs/sec of a V100.

To further increase arithmetic intensity beyond the limits of
increased batch size, Eqn. 4 indicates that one must increase
Ci, Co, KH , or KW . However, doing so increases the
number of FLOPs performed by the layer per image, which
typically decreases application-level throughput.

Takeaway. To increase utilization beyond increasing batch
size, while maintaining high throughput, one must increase
arithmetic intensity without greatly increasing FLOP count.
We next propose techniques to achieve this goal.

3. Boosting Intensity via Folding
We now propose transformations to increase the arithmetic
intensity of layers of specialized CNNs operating over large
batches without increasing FLOPs. For clarity, we focus on
convolutional layers, though the transformations also apply
to fully-connected layers (as will be shown in §4).

To increase arithmetic intensity while performing the same
number of FLOPs, one must decrease memory traffic, the
denominator in Eqn. 3. Our key insight is that the total
memory traffic of specialized CNNs with large batch size is
dominated by reading/writing the input/output activations
of convolutional and fully-connected layers (NHWCi and
NHWCo in the denominator of Eqn. 3),3 rather than by
reading layer weights (CiKH KW Co). Figs. 4 and 5 (focus
only on blue parts) depict this for one CNN: with batch size
1024, activations make up over 99% of total memory traffic.

Due to the dominance of input/output activations on a
layer’s total memory traffic, we note that a joint de-
crease in NHW and increase in CiKH KW Co can re-
duce memory traffic while maintaining the same number
of FLOPs. Suppose one decreased NHW by a factor of
f (with f > 1) and increased Ci and Co by a factor of

3The common practice of fusing activation functions to the pre-
ceding layer eliminates their contribution to total memory traffic.

Boosting the Throughput and Accelerator Utilization of Specialized CNN Inference Beyond Increasing Batch Size
M

em
or

y
tr

af
fic

(e

le
m

en
ts

)
Original activations Folded activations
Original weights Folded weights

228

223

218 ! ÷ # = 1! ÷ # = 1

! = 4
'(,* = 2

Input Conv. Params

',,* = 3

OutputOriginal

Folded
'(,. # = 4

',,* = 3
! = 4

',,* # = 6

',,* # = 6

22 23 24 25 26 27 28 29 210 211 Figure 6. Middle layer of a FoldedCNN with f = 4. Both the√
Batch Size number of input and output channels increase by a factor of f .

Figure 4. Memory traffic of activations and weights of the N1 and
folded (f = 4) CNN. Axes are in log scale. The y-axis is in
elements, rather than bytes, as the trends hold for any bitwidth.

Original activations Folded activations
Original weights Folded weights

When does folding help? Folding will most heavily in-
crease the utilization and throughput of layers that have
arithmetic intensity in the batch-limited regime that is below
that needed for peak FLOPs/sec on an accelerator. Special-
ized CNNs are thus ideal targets for folding, as they have

·108 low arithmetic intensity even at large batch size. Meanwhile,
large CNNs or those with small batch size are less likely to
benefit. Thus, we focus on folding specialized CNNs.

4. FoldedCNNs
210 21122 23 24 25 26 27 28 29

We now propose FoldedCNNs, a new approach CNN design Batch Size
based on the folding transformation proposed in §3.

0

1

2

M
em

or
y

tr
af

fic
(e

le
m

en
ts

)

Figure 5. Total memory traffic of the N1 and folded (f = 4) CNN.
As shown in the inset, weights account for a minor fraction of
memory traffic with large batch size. The y-axis is in elements,
rather than bytes, as the trends hold for any bitwidth used.

√
f . We call this transformation folding and layers trans-

formed by it folded. The folded layer has the following
properties:√(1) It √performs the same number of FLOPs:
NHW (Co f)(Ci f)(KH KW) = NHWCoCiKH KW .f
(2) It decreases the size of layer inputs/outputs by a factor of√√ ff from NHWCi to NHWCi (similarly for outputs f
with Co). (3) It increases the number of layer weights by a√ √
factor of f from CiKH KW Co to (Ci f)KH KW (Co f).

Properties 2 and 3 are shown in Fig. 4 when folding a repre-
sentative specialized CNN from the NoScope system with
f = 4: the folded convolutions have 2× lower memory
traffic for activations and 4× higher memory traffic for
weights. At large batch sizes, the decrease in memory traffic
for activations is larger than the increase for weights. For
example, at batch size 1024, memory traffic for activations
decreases by 66.7M, while that for weights increases by only
3.9M. The increase in memory traffic from layer weights is
dwarfed by the decrease for activations, resulting in a reduc-
tion in total memory traffic. Fig. 5 illustrates this reduction
in memory traffic for the same CNN. We analytically show
when this reduction in memory traffic will occur in §J.

As the folded layer performs as many FLOPs as the original
layer, but with reduced memory traffic, it has higher arith-
metic intensity. If a layer is in the batch-limited regime, in
which arithmetic intensity is determined by Eqn. 4, folding √
increases arithmetic intensity by f×, as the numerator√
and denominator in Eqn. 4 increase by f× and f×, re-
spectively. An example of this is shown in §B.

5

Folding involves (1) decreasing NHW by f× and (2) in-
creasing CiKH KW Co by f×. There are many ways to
achieve these effects. FoldedCNNs achieve them by (1)
decreasing batch size N by f×, (2) increasing the number√
of input and output channels Ci and Co each by f×. We
do not reduce resolution (H , W) or increase receptive field
(KH , KW), as specialized CNNs often operate over small
images to begin with (Kang et al., 2017); we find that such
changes can decrease accuracy compared to FoldedCNNs.

4.1. Applying folding to a full CNN

We now describe folding for a specialized CNN with L
convolutional/fully-connected layers and CL classes. Let
Ci,l denote the number of input channels to layer l of the
original CNN, and C 0 that in the FoldedCNN. Similar no-i,l
tation is used for all parameters in Table 2. While we focus
on plain convolutions in this section, FoldedCNNs also ap-
ply to other convolutional variants. We evaluate folding for
group convolutions in §C and Winograd convolutions in §D.

We first transform a layer l in the middle of the CNN, as
shown in Fig. 6. As described above, FoldedCNNs decrease

Nbatch size: N 0 = and increase the number of inputf √ √
and output channels: C 0 = f and C 0 = f .
Folded fully-connected layers in the middle of the CNN

i,l Ci,l o,l Co,l

√
also have f× the number of input and output features. As
folding is applied to all convolutional and fully-connected
layers, the increase in output channels in one layer naturally
fits the increase in input channels for the next layer.

Folding batches of images. As described in §3, each layer
in a FoldedCNN performs the same number of FLOPs as
the corresponding layer of the original CNN. However, a

Boosting the Throughput and Accelerator Utilization of Specialized CNN Inference Beyond Increasing Batch Size

! = 4
$%,' = 3

Input Conv. Params

$),' = 2

Output
Original

Folded
$%,'+ = 12

$),' = 2
! = 4

$),' + = 4

$),' + = 4

! ÷ + = 1! ÷ + = 1
Figure 7. First layer of a FoldedCNN with f = 4. Unlike other
layers, this layer increases input channels by a factor of f .

P(img1 is cat)

! ÷ # = 1

Input FC Params OutputOriginal

Folded
&',) # = 6

P(img1 is dog)
P(img2 is cat)
P(img2 is dog)
P(img3 is cat)
P(img3 is dog)
P(img4 is cat)
P(img4 is dog)

P(cat)
P(dog)

! = 4
&',) = 3

! = 4

! ÷ # = 1

&-,)# = 8

&-,) = 2

Figure 8. Output layer of a FoldedCNN with f = 4 and 2 classes.
Unlike other layers, this layer has f× the number of outputs.

FoldedCNN performs these FLOPs over N images, whereas f
the original CNN operates over N images. Left uncorrected,
FoldedCNNs would thus perform f× more FLOPs per im-
age, and thus would reduce application-level throughput.

To rectify this, FoldedCNNs “fold” a batch of images into
“stacks” of images, as shown in Figs. 2 and 7. Suppose the
original CNN takes in N images each with Ci,1 channels
(e.g., Ci,1 = 3 for RGB). A FoldedCNN instead takes in N

f
inputs each with Ci,1f channels, formed by concatenating
f images along the channels dimension. Each folded input
represents f images, so the number of images in a batch
of N such inputs is equal to that of the original CNN (N).f
As a FoldedCNN performs inference over f images in a
single input, it must return classification results for f images.
To accommodate this, the output layer of a FoldedCNN
produces outputs for fCL classes, CL for each of the f
images stacked in a single input. This is illustrated in Fig. 8.

These adjustments result in the first and last layers of Fold-
edCNNs performing slightly more FLOPs than those of
the original CNN. The first layer of a FoldedCNN sets√
C 0 = Ci,1f , whereas other layers have C 0 = Ci,l f .i,1 i,l
As the number of output channels in the first layer is also in-√ √
creased by f×, the first layer performs f× more FLOPs
than the original first layer (see Fig. 7). This is also the case
for the last layer of the FoldedCNN due to returning pre-
dictions for f images (see Fig. 8). All other layers in the
FoldedCNN perform the same number of FLOPs as those
in the original CNN, as described previously. Despite this
slight increase in FLOPs, §5 will show that FoldedCNNs, in
fact, achieve higher throughput than the original CNN due
to their increased arithmetic intensity.

4.2. Training a FoldedCNN

Training a FoldedCNN is similar to training the original
CNN. Let NT denote the training batch size. Each training
iteration, NT images are sampled and transformed into NT

f
folded inputs as described above. A forward pass through
the FoldedCNN results in an output of size NT × fCL,f
as shown in Fig. 8. This output is reshaped to be of size
NT × CL, and loss is computed on each of the NT rows.

As each folded input consists of f images, and each image
belongs to one of CL classes, the effective number of classes

ffor a FoldedCNN is CL. This large increase in the number
of classes can make it difficult to train a FoldedCNN for
tasks with many classes to begin with. To combat this
issue, we use a form of curriculum learning (Bengio et al.,
2009) specialized for FoldedCNNs. Training begins by
sampling from only I < CL classes of the original CNN’s
dataset, and introducing Δ more classes every E epochs.
We hypothesize that starting with a small number of classes
I avoids overloading the FoldedCNN with a difficult task

fearly on in training, as If � CL. We find this form of
training beneficial when CL and f are large, and it yielded
only marginal improvements in other settings.

5. Evaluation
5.1. Evaluation setup

We consider CNNs and tasks from the usecases described
in §2.1: specialized CNNs from NoScope4 as lightweight
filters, and specialized CNNs from Microsoft. Each task
and CNN is described in detail in §A. While the focus of
this work is on specialized CNNs, we also evaluate on the
more general ResNet-18 on CIFAR-10 and CIFAR-100.

We evaluate FoldedCNNs with f of 2, 3, and 4, which in-
crease the channels per layer by factors of roughly 1.41,
1.73, and 2, respectively (

√
f×).5 We compare FoldedC-

NNs to the compound scaling used in EfficientNets in §5.3.

Training setup. When training FoldedCNNs, we randomly
assign images from the training set into groups of size f
each epoch. Test sets are formed by randomly placing im-
ages from the test data into groups of f . Such randomization
at test time avoids simpler settings, such folding f sequen-
tial frames in a video, thus providing a challenging scenario
for FoldedCNNs. We also evaluate the sensitivity of Fold-
edCNNs to the order in which images are folded in §5.3.

We train all CNNs using cross entropy loss. Training takes
place for for 50 epochs with batch size of 128 for the No-
Scope tasks and for 1500 epochs with batch size of 32 for

4Our evaluation focuses only on specialized CNNs, and thus
does not reflect the performance of the full NoScope system.

5The number of channels resulting from folding are rounded� √ �
down to avoid a non-integer number of channels (e.g., Ci f).

6

Boosting the Throughput and Accelerator Utilization of Specialized CNN Inference Beyond Increasing Batch Size

OriginalOriginal Folded (f = 2) Folded (f = 2)
Folded (f = 3) Folded (f = 4)Folded (f = 3) Folded (f = 4)

3
2 2

11

A
ri

th
m

et
ic

R

el
at

iv
e

Sp
ee

du
p

In
te

ns
ity

FL

O
Ps

/s
ec

A
ri

th
m

et
ic

R

el
at

iv
e

Sp
ee

du
p

In
te

ns
ity

FL

O
Ps

/s
ec

0 0
N1 N2 N3 N4 V1 V2 V3 V4

3
2
1
0

2

1

0
N1 N2 N3 N4 V1 V2 V3 V4

400

200

0

200

100

0
N1 N2 N3 N4 V1 V2 V3 V4

(a) Specialized CNNs use in NoScope (b) Specialized CNNs used at Microsoft
Figure 9. Inference performance of FoldedCNNs relative to the original CNN. Arithmetic intensity is plotted in absolute numbers, and the
dashed line shows the minimum arithmetic intensity required to reach peak FLOPs/sec on a V100 GPU.

the game-scraping tasks. We use the curriculum learning
in §4.2 for FoldedCNNs only on the game-scraping tasks.
For these scenarios that use curriculum learning, we use
I = max(f, bCL/10c), Δ = bCL/10c, and E = 60. Such
curriculum learning did not improve the accuracy of the orig-
inal CNN. We use hyperparameters from NoScope (Kang
et al., 2017) to train NoScope CNNs: RMSprop with learn-
ing rate 6.6 × 10−4 and Dropout of 0.25 after the second
layer and before the last layer. All other models use Adam
with learning rate 10−4 and weight decay of 10−5 .

Inference setup. We evaluate inference on a V100 GPU
(p3.2xlarge AWS instance), which is typical of hardware
used for specialized CNN inference in datacenters (Mulla-
pudi et al., 2019). We also evaluate on T4 GPUs, which are
common both in datacenters and edge clusters. As results on
V100 and T4 are similar, we relegate results on T4 to §E. In-
ference is performed in PyTorch with TensorRT (NVIDIA,
2021) on CUDA 10.2. While FoldedCNNs can improve
utilization for any numerical precision, we use half pre-
cision (FP-16) to use Tensor Cores, which offer the peak
FLOPs/sec on the V100 (NVIDIA, 2017). We report uti-
lization (FLOPs/sec) and application-level throughput (im-
ages/sec) relative to the original CNN via the mean of 10
trials of 10000 inferences of batch size 1024. We use other
batch sizes in §F. We call relative throughput “speedup.”

5.2. Evaluation on specialized CNNs used in NoScope

Utilization and throughput. Fig. 9a shows the speedup
and FLOPs/sec of FoldedCNNs relative to the original CNN,
and the arithmetic intensity of each CNN. FoldedCNNs in-
crease FLOPs/sec by up to 2.8× and throughput by up to
2.5×. Increased throughput speeds up tasks like offline ana-
lytics, while increased utilization enables higher throughput

on a single accelerator and a better return on investment√
for deploying accelerators. FoldedCNNs match the f×
theoretical increase in arithmetic intensity described in §3,
thus increasing utilization and throughput with higher f .

FoldedCNNs result in larger improvements in utilization and
throughput for the N1 and N2 CNNs (up to 2.8×) than for
the N3 and N4 CNNs (up to 1.76×). This can be explained
by arithmetic intensity: the N1 and N2 CNNs originally
have very low arithmetic intensity. FoldedCNNs bring this
arithmetic intensity much closer to that needed for peak per-
formance on the V100 GPU, resulting in significantly higher
utilization and throughput. In contrast, both N3 and N4 al-
ready have arithmetic intensity above the minimum needed
for peak utilization, leaving less room for improvement. De-
spite this lower potential, FoldedCNNs still deliver up to
1.76× higher utilization and throughput for these CNNs.

There is only one case in which FoldedCNNs decrease
throughput/utilization (N4, f = 2). This is due to tile
quantization on NVIDIA GPUs, which we describe in §H.

Accuracy. Table 3 shows the accuracy of FoldedCNNs on
the NoScope tasks. FoldedCNNs maintain high accuracy:
the accuracy of FoldedCNNs with f = 2 is, in fact, higher
than that of the original CNN for three of CNNs, and only
0.18% lower on the fourth. For these cases, FoldedCNNs
provide up to a 1.39× speedup with the same accuracy.

As f increases, a FoldedCNN classifies more images per
input, making the task of the FoldedCNN more challenging.
As shown in Table 3 and Fig. 9a, increasing f reduces accu-
racy but increases utilization and throughput, introducing a
tradeoff that can be spanned based on the requirements of
applications. We analyze an example of this tradeoff in §G.

7

Boosting the Throughput and Accelerator Utilization of Specialized CNN Inference Beyond Increasing Batch Size

Table 3. Accuracy and speedup of FoldedCNNs for NoScope CNNs. Differences in accuracy are listed in parentheses.
Original FoldedCNN (f = 2) FoldedCNN (f = 3) FoldedCNN (f = 4)

Model Accuracy Accuracy Speedup Accuracy Speedup Accuracy Speedup
N1 98.82 98.64 (-0.18) 1.39 98.35 (-0.47) 1.85 97.93 (-0.89) 2.51
N2 96.96 96.99 (0.03) 1.38 96.93 (-0.03) 1.85 96.75 (-0.21) 2.50
N3 94.84 94.95 (0.11) 1.07 94.82 (-0.02) 1.37 94.72 (-0.12) 1.76
N4 91.66 91.91 (0.25) 0.90 91.39 (-0.27) 1.07 91.21 (-0.45) 1.41

Table 4. Performance of FoldedCNNs on production game-scraping tasks. Differences in accuracy are listed in parentheses.
Original FoldedCNN (f = 2) FoldedCNN (f = 3) FoldedCNN (f = 4)

Model Resolution Classes Accuracy Accuracy Speedup Accuracy Speedup Accuracy Speedup
V1 (22, 52) 11 97.64 97.64 (0.00) 1.13 97.18 (-0.46) 1.38 95.27 (-2.37) 1.75
V2 (19, 25) 22 93.45 92.09 (-1.36) 1.15 90.00 (-3.45) 1.44 89.91 (-3.54) 1.74
V3 (17, 40) 15 98.50 97.43 (-1.07) 1.15 97.20 (-1.30) 1.43 96.87 (-1.63) 1.71
V4 (22, 30) 27 96.52 96.52 (0.00) 1.22 96.00 (-0.52) 1.40 94.41 (-2.11) 1.67

Table 5. FoldedCNNs and EfficientNet compound scaling on game-
scraping tasks. Speedup, utilization (“Util.”), and arithmetic inten-
sity (“A.I.”) are relative to the original CNN.

Model Mode
High

Accuracy
er values are better

Speedup Util. A.I.

V1
EfficientNet
Fold (f = 4)

93.27%
95.27%

1.32
1.75

0.83
1.95

0.91
2.16

V2
EfficientNet
Fold (f = 4)

84.91%
89.91%

1.51
1.74

0.80
1.93

0.88
2.15

V3
EfficientNet
Fold (f = 4)

96.40%
96.87%

1.46
1.71

0.75
1.91

0.87
2.16

V4
EfficientNet
Fold (f = 3)
Fold (f = 4)

95.19%
96.00%
94.41%

1.34
1.40
1.67

0.83
1.46
1.80

0.91
1.78
2.10

5.3. Evaluation on production game-scraping CNNs

Fig. 9b shows the utilization, throughput, and arithmetic
intensity of FoldedCNNs on the production game-scraping
tasks. FoldedCNNs increase FLOPs/sec by up to 1.95× and
throughput by up to 1.75× compared to the original CNN.
Table 4 shows that FoldedCNNs have accuracy drops of
0–1.36%, 0.46–3.45%, and 1.63–3.54% with f of 2, 3, and
4 on these tasks. These drops are larger than those on the
NoScope tasks due to the higher number of classes in the
game-scraping tasks. While the NoScope tasks have only
two classes, the game-scraping tasks have 11–27 classes.
Thus, lower accuracy on the game-scraping tasks is ex-
pected from FoldedCNNs. That said, FoldedCNNs still
enable large improvements, such as a 1.22× speedup with
no accuracy loss for V4 with f = 2.

Effect of image order. As FoldedCNNs jointly classify f
distinct images concatenated over the channels dimension,
a natural question is how sensitive FoldedCNNs are to the
order in which images are folded. To investigate this, we
measure how often the predictions made by FoldedCNNs
for each image match for all f ! permutations of f images
folded together (e.g., how often do predictions for image X1

match in folded inputs (X1, X2) and (X2, X1) for f = 2).

With f of 2, 3, and 4, the average percentage of matching
predictions for all f ! permutations on the V1 task is 98.8%,
98.4%, and 98.0%, showing high invariance to image order.

Comparison to EfficientNet scaling. We next compare
FoldedCNNs to the techniques used in EfficientNets (Tan
& Le, 2019). EfficientNets trade FLOPs and accuracy by
jointly scaling the number of layers, the width, and the in-
put resolution of a CNN. While such scaling can increase
throughput by reducing FLOP count, reducing FLOP count
in this manner can also decrease arithmetic intensity and uti-
lization. To illustrate this, we transform the game-scraping
CNNs with EfficientNet compound scaling6 with the recom-
mended parameters from the EfficientNet paper (Tan & Le,
2019): using terminology from the paper, φ = −1, α = 1.1,
β = 1.2, and γ = 1.15. This transforms a CNN to perform
roughly 2× fewer FLOPs, which increases throughput.

Table 5 compares FoldedCNNs and EfficientNets on the
game-scraping CNNs. For each task, a FoldedCNN achieves
both higher accuracy and throughput than the EfficientNet
variant. For example, for V1, a FoldedCNN has 2% higher
accuracy and 33% higher throughput than the EfficientNet
variant. Furthermore, whereas EfficientNets reduce arith-
metic intensity and utilization for all CNNs due to decreased
FLOP count, FoldedCNNs uniformly increase arithmetic
intensity and utilization. These results shows the promise
of the new approaches proposed in FoldedCNNs targetted
specifically for large-batch, specialized CNN inference.

5.4. FoldedCNNs in non-target settings

As described in §3, our focus in FoldedCNNs is on small
CNNs with low arithmetic intensity even at large batch size,
and specialized tasks with few classes. For completeness,
we now evaluate FoldedCNNs on general-purpose CNNs
and tasks, which are not in this target regime. We also
evaluate small CNNs for tasks with many classes in §I.

6We do not use the EfficientNet-B0 architecture because it is
significantly larger than typical specialized CNNs.

8

https://1.63�3.54
https://0.46�3.45

Boosting the Throughput and Accelerator Utilization of Specialized CNN Inference Beyond Increasing Batch Size

Accuracy on general tasks. To evaluate the accuracy of
FoldedCNNs on general-purpose tasks, we consider ResNet-
18 FoldedCNNs on CIFAR-10 and CIFAR-100.

For CIFAR-10, we train a FoldedCNN with f = 4 via
distillation with the original CNN as the “teacher” (Ba &
Caruana, 2014). The original ResNet-18 has an accuracy of
92.98%, while the FoldedCNN has an accuracy of 92.10%.
This small accuracy drop even with high f shows the poten-
tial applicability of FoldedCNNs to general-purpose tasks.

For CIFAR-100, we do not observe benefit from the same
distillation used for CIFAR-10. The original ResNet-18 on
CIFAR-100 achieves 70.3% accuracy, while FoldedCNNs
have accuracies of 68.11% (2.19% drop), 67.44% (2.86%
drop), and 65.76% (4.54% drop) with f of 2, 3, and 4. These
larger drops compared to CIFAR-10 can be attributed to the
higher number of classes in CIFAR-100, which makes the
task of a FoldedCNN more challenging (see §4.2).

Speedup on general CNNs. We now evaluate the speedup
of FoldedCNNs when the original CNN is the general-
purpose ResNet-18 operating on CIFAR-10. A FoldedCNN
with f = 4 in this setup improves throughput by 8.1%. This
speedup is smaller than those observed in Fig. 9 because
ResNet-18 has arithmetic intensity of 430, much higher than
the minimum needed for peak FLOPs/sec on a V100 (139).
This places ResNet-18 outside the target regime of Folded-
CNNs. FoldedCNNs still do provide 8.1% speedup, as 24%
of the layers in ResNet-18 have low arithmetic intensity.

Takeaway. Coupling these moderate benefits in non-target
settings with large benefits in target settings, FoldedCNNs
show promise for increasing the utilization and throughput
of specialized CNN inference beyond increased batch size.

6. Related Work
Efficient neural architectures. There is a large body of
work on designing CNNs for efficient inference (e.g., (Ma
et al., 2018; Cai et al., 2018; Zhou et al., 2018; Wu et al.,
2019; Tan & Le, 2019; Cai et al., 2020)). Many of these
works aim to reduce latency, but often do not consider accel-
erator utilization, which is a primary objective of FoldedC-
NNs. Some of these approaches, such as EfficientNets (Tan
& Le, 2019), reduce the number of FLOPs performed by a
CNN to achieve lower latency. However, we show in §5 that
doing so can, in fact, reduce accelerator utilization. Further-
more, compared to these approaches, FoldedCNNs employ
a fundamentally new structure to CNN inputs and classifi-
cation, which could be integrated into existing architecture
search techniques. Finally, FoldedCNNs are designed pri-
marily for large-batch, specialized CNN inference, whereas
existing works typically target general-purpose CNNs.

Improving throughput. Many other techniques have been
proposed to accelerate inference, but which do not target

utilization. Network pruning (Blalock et al., 2020) can im-
prove throughput by reducing the FLOP count of a CNN,
but, similar to the approaches described above, can reduce
utilization. Reducing the numerical precision used during
inference can increase throughput (Wang, 2019), but is in-
sufficient for increasing utilization on modern accelerators
(as we show in §2.3). Folding can be applied on top of these
techniques to further improve the utilization and throughout
of specialized CNN inference. In fact, our evaluation in §5
applies FoldedCNNs atop low-precision specialized CNNs.

Multitenancy. There is a growing body of work on in-
creasing accelerator utilization by performing inference for
multiple models on the same device (Narayanan et al., 2018;
Jain et al., 2018; Shen et al., 2019; Yu & Chowdhury, 2020;
Dhakal et al., 2020). These works do not improve the utiliza-
tion of individual models, which is the goal of FoldedCNNs.
Thus, these works are complementary to FoldedCNNs.

7. Conclusion
Specialized CNNs are widely used for high-throughput in-
ference, but greatly underutilize accelerators, even when
using large batch sizes. FoldedCNNs are a new approach
to CNN design that increase the utilization and throughput
of specialized CNN inference beyond increased batch size.
FoldedCNNs increase arithmetic intensity by operating over
distinct images concatenated along the channels dimension
and increasing CNN width. Increased arithmetic intensity
in FoldedCNNs boosts the utilization and throughput of
specialized CNNs by up to 2.8× and 2.5×.

FoldedCNNs are not a panacea: their design is driven by the
specific setting of specialized CNNs that operate over large
batches, and that run on accelerators that require high arith-
metic intensity to reach peak utilization. As our evaluation
showed, FoldedCNNs provide only modest benefits outside
this setting. Nevertheless, this work shows the increase in
utilization and throughput made possible by substantially
rethinking specialized CNN design. As the arithmetic in-
tensity required to reach peak utilization on accelerators
increases, FoldedCNNs may show promise in running to-
day’s general-purpose CNNs on tomorrow’s accelerators.

Acknowledgements
We thank the anonymous reviewers and the area chair from
ICML 2021, our colleagues at MSR, and CMU’s Parallel
Data Lab members for feedback that improved this work.
We thank MSR for generously supporting Jack’s internship
work. Jack was also funded in part by an NSF Graduate
Research Fellowship (DGE-1745016 and DGE-1252522).
Jack and Rashmi were also funded in part by Amazon Web
Services and in part by the AIDA project (POCI-01-0247-
FEDER-045907) co-financed by the European Regional
Development Fund through the Operational Program for
Competitiveness and Internationalisation 2020.

9

Boosting the Throughput and Accelerator Utilization of Specialized CNN Inference Beyond Increasing Batch Size

References
AWS Outposts. https://aws.amazon.com/
outposts/. Last accessed 08 June 2021.

Azure Stack Edge. https://azure.microsoft.
com/en-us/products/azure-stack/edge/.
Last accessed 08 June 2021.

Ba, J. and Caruana, R. Do Deep Nets Really Need to be
Deep? In Advances in Neural Information Processing
Systems (NIPS 14), 2014.

Barroso, L. A., Clidaras, J., and Hölzle, U. The Datacen-
ter as a Computer: An Introduction to the Design of
Warehouse-scale Machines. Synthesis Lectures on Com-
puter Architecture, 8(3):1–154, 2013.

Bengio, Y., Louradour, J., Collobert, R., and Weston, J.
Curriculum Learning. In Proceedings of the 26th Annual
International Conference on Machine Learning (ICML
09), 2009.

Bhardwaj, R., Xia, Z., Ananthanarayanan, G., Jiang, J.,
Karianakis, N., Shu, Y., Hsieh, K., Bahl, V., and Sto-
ica, I. Ekya: Continuous Learning of Video Analyt-
ics Models on Edge Compute Servers. arXiv preprint
arXiv:2012.10557, 2020.

Blalock, D., Ortiz, J. J. G., Frankle, J., and Guttag, J. What
is the State of Neural Network Pruning? In The Third
Conference on Systems and Machine Learning (MLSys
20), 2020.

Cai, H., Zhu, L., and Han, S. ProxylessNAS: Direct Neural
Architecture Search on Target Task and Hardware. In Pro-
ceedings of the 6th International Conference on Learning
Representations (ICLR 18), 2018.

Cai, H., Gan, C., Wang, T., Zhang, Z., and Han, S. Once
for All: Train One Network and Specialize it for Efficient
Deployment. In International Conference on Learning
Representations (ICLR 20), 2020.

Canel, C., Kim, T., Zhou, G., Li, C., Lim, H., Andersen,
D. G., Kaminsky, M., and Dulloor, S. R. Scaling Video
Analytics on Constrained Edge Nodes. In Proceedings
of the 2nd Conference on Systems and Machine Learning
(SysML 19), 2019.

Dhakal, A., Kulkarni, S. G., and Ramakrishnan, K. GSLICE:
Controlled Spatial Sharing of GPUs for a Scalable Infer-
ence Platform. In Proceedings of the 11th ACM Sympo-
sium on Cloud Computing (SOCC 20), 2020.

Hsieh, K., Ananthanarayanan, G., Bodik, P., Venkataraman,
S., Bahl, P., Philipose, M., Gibbons, P. B., and Mutlu,
O. Focus: Querying Large Video Datasets with Low La-
tency and Low Cost. In Proceedings of the 13th USENIX

10

Symposium on Operating Systems Design and Implemen-
tation (OSDI 18), 2018.

Jain, P., Mo, X., Jain, A., Subbaraj, H., Durrani, R. S., Tu-
manov, A., Gonzalez, J., and Stoica, I. Dynamic Space-
Time Scheduling for GPU Inference. In NeurIPS Work-
shop on Systems for Machine Learning, 2018.

Jouppi, N. P., Young, C., Patil, N., Patterson, D., Agrawal,
G., Bajwa, R., Bates, S., Bhatia, S., Boden, N., Borchers,
A., et al. In-datacenter Performance Snalysis of a Tensor
Processing Unit. In 2017 ACM/IEEE 44th Annual In-
ternational Symposium on Computer Architecture (ISCA
17), 2017.

Kang, D., Emmons, J., Abuzaid, F., Bailis, P., and Zaharia,
M. NoScope: Optimizing Neural Network Queries over
Video at Scale. Proceedings of the VLDB Endowment, 10
(11):1586–1597, 2017.

Kang, D., Bailis, P., and Zaharia, M. BlazeIt: Optimizing
Declarative Aggregation and Limit Queries for Neural
Network-Based Video Analytics. Proceedings of the
VLDB Endowment, 13(4), 2020.

Kosaian, J., Rashmi, K. V., and Venkataraman, S. Learning-
Based Coded Computation. IEEE Journal on Selected
Areas in Information Theory, 2020.

Ma, N., Zhang, X., Zheng, H.-T., and Sun, J. ShuffleNet
V2: Practical Guidelines for Efficient CNN Architecture
Design. In Proceedings of the 15th European Conference
on Computer Vision (ECCV 18), 2018.

Mullapudi, R. T., Chen, S., Zhang, K., Ramanan, D., and
Fatahalian, K. Online Model Distillation for Efficient
Video Inference. In Proceedings of the IEEE/CVF Inter-
national Conference on Computer Vision (ICCV 19), pp.
3573–3582, 2019.

Narayanan, D., Santhanam, K., Phanishayee, A., and
Zaharia, M. Accelerating Deep Learning Workloads
Through Efficient Multi-Model Execution. In NeurIPS
Workshop on Systems for Machine Learning, 2018.

NVIDIA. NVIDIA Deep Learning Performance Guide.
https://docs.nvidia.com/deeplearning/
sdk/dl-performance-guide/index.html.
Last accessed 08 June 2021.

NVIDIA. NVIDIA Tesla V100 GPU Architecture. Techni-
cal Report WP-08608-001 v1.1, 2017.

NVIDIA. NVIDIA Turing GPU Architecture. Technical
Report WP-09183-001 v01, 2018.

NVIDIA. NVIDIA TensorRT. https://developer.
nvidia.com/tensorrt, 2021. Last accessed 08
June 2021.

https://aws.amazon.com/outposts/
https://aws.amazon.com/outposts/
https://azure.microsoft.com/en-us/products/azure-stack/edge/
https://azure.microsoft.com/en-us/products/azure-stack/edge/
https://docs.nvidia.com/deeplearning/sdk/dl-performance-guide/index.html
https://docs.nvidia.com/deeplearning/sdk/dl-performance-guide/index.html
https://developer.nvidia.com/tensorrt
https://developer.nvidia.com/tensorrt

Boosting the Throughput and Accelerator Utilization of Specialized CNN Inference Beyond Increasing Batch Size

Shen, H., Han, S., Philipose, M., and Krishnamurthy, A.
Fast Video Classification via Adaptive Cascading of Deep
Models. In Proceedings of the IEEE Conference on Com-
puter Vision and Pattern Recognition (CVPR 17), 2017.

Shen, H., Chen, L., Jin, Y., Zhao, L., Kong, B., Philipose,
M., Krishnamurthy, A., and Sundaram, R. Nexus: A
GPU Cluster Engine for Accelerating DNN-based Video
Analysis. In Proceedings of the 27th ACM Symposium on
Operating Systems Principles (SOSP 19), 2019.

Tan, M. and Le, Q. EfficientNet: Rethinking Model Scaling
for Convolutional Neural Networks. In Proceedings of
the 36th International Conference on Machine Learning
(ICML 19), 2019.

Wang, H. Low Precision Inference on GPU. https://
tinyurl.com/1g9e5dpw, 2019. Last accessed 08
June 2021.

Williams, S., Waterman, A., and Patterson, D. Roofline:
an Insightful Visual Performance Model for Multicore
Architectures. Communications of the ACM, 52(4):65–76,
2009.

Wu, B., Dai, X., Zhang, P., Wang, Y., Sun, F., Wu, Y., Tian,
Y., Vajda, P., Jia, Y., and Keutzer, K. FBNet: Hardware-
Aware Efficient ConvNet Design via Differentiable Neu-
ral Architecture Search. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition
(CVPR 19), 2019.

Yu, P. and Chowdhury, M. Salus: Fine-Grained GPU Shar-
ing Primitives for Deep Learning Applications. In The
Third Conference on Systems and Machine Learning (ML-
Sys 20), 2020.

¨ Zhou, Y., Ebrahimi, S., Arık, S. O., Yu, H., Liu, H., and
Diamos, G. Resource-Efficient Neural Architect. arXiv
preprint arXiv:1806.07912, 2018.

11

https://tinyurl.com/1g9e5dpw
https://tinyurl.com/1g9e5dpw

