
Adapting to Misspecification in Contextual Bandits

A. Outline
In Appendix A.1, we establish additional notation that will useful for our proofs. We detail the proofs for the upper and
lower bounds in Appendix B and Appendix C respectively. Finally in Appendix D we explain the introductory example in
more detail and provide some more intuition.

A.1. Preliminaries

Most of the notation and definitions described below will be the same as in (Simchi-Levi & Xu, 2020).

A “policy” is a deterministic mapping from contexts to actions. Let Ψ = AX be the universal policy space containing all
possible policies. The expected instantaneous reward of the policy π with respect to the model f is defined as

Rf (π) := E
x∼DX

[f(x, π(x))]. (25)

Recalling that f∗ is the true conditional means of rewards, we write R(π) to mean Rf∗(π), the true expected instantaneous
reward for policy π. The policy πf that is induced by model f is given by πf (x) := arg maxa f(x, a) for every x. This
policy has the highest instantaneous reward with respect to the model f , that is πf = arg maxπ∈ΨRf (π).

The expected instantaneous regret of a policy π with respect to the outcome model f is defined as

Regf (π) := E
x∼DX

[f(x, πf (x))− f(x, π(x))]. (26)

We write Reg(π) to mean Regf∗(π), the true expected instantaneous regret for policy π. We also let Γt denote the set of
observations up to and including time t. That is

Γt := {(xs, as, rs(as))}ts=1 (27)

Given any probability kernel p from A× X to [0, 1], from Lemma 3 in (Simchi-Levi & Xu, 2020), there exists a unique
product probability measure on Ψ, given by:

Qp(π) :=
∏
x∈X

p(π(x)|x). (28)

This measure satisfies the following property

p(a|x) =
∑
π∈Ψ

I{π(x) = a}Qp(π). (29)

Since any probability kernel p from A × X to [0, 1] induces the distribution Qp over the set of deterministic policies Ψ,
we can think of Qp as a randomized policy induced by p. Equations (29) and (28) establish a correspondence between the
probability kernel p and the induced randomized policy Qp. For any probability kernel p and any policy π, we let V (p, π)
denote the expected inverse probability. 13

V (p, π) := E
x∼DX

[
1

p(π(x)|x)

]
(30)

B. Proof for upper bound
In this section we prove Theorem 1, we start by establishing some more additional notation. We say an epoch m is safe
when the status at the end of the epoch is safe, that is the variable safe is still set to True at the end of this epoch. Let m̂ be
the last safe epoch, that is:

m̂ := max

{
m | the epoch m is safe

}
. (31)

13In (Simchi-Levi & Xu, 2020), this term is called the decisional divergence between the randomized policy Qp and deterministic
policy π.
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Note that, for all m ≤ m̂, the epoch m is safe. Now let m∗ be such that:

m∗ := max

{
m | B ≤ ξ

(
τm − τm−1,

δ′

m2

)}
. (32)

Where δ′ = δ/13. As discussed in Section 2.3, the epoch m∗ is critical to our theoretical analysis and we will show that
with high-probability m∗ + 1 is safe. We also let T be the set of time-steps where algorithm 2 checks the safety condition
(see Check-is-safe).

T :=

{
t ∈ [T ]| status is safe at the start of the time step, t = τm(t) or log2(t− τm(t)−1) is integral

}
. (33)

For short hand, we let Qm ≡ Qpm . With some abuse of notation, we let pt denote the action selection kernel used at
time-step t. Again with some abuse of notation, we let Qt ≡ Qpt .

B.1. High probability events

Theorem 1 provides certain high probability bounds on cumulative regret. As a preliminary step in these proofs, it will be
helpful to show that the eventsW1,W2,W3 defined below hold with high-probability. EventW1 ensures that our regression
estimates are ”good” models for the first few epochs. EventW2 ensures that the lower bounds constructed by Choose-safe
are valid, this event also includes symmetric upper bounds. EventW3 helps us show that the misspecification tests that we
use in Check-is-safe are valid.

We start with the eventW1. This describes the event where, for any epoch m ∈ [m∗] ∩ [m̂], the expected squared error
difference between the true model (f∗) and the estimated model (f̂m+1) can be bounded purely in terms of the known
estimation rate of the regression algorithm.

W1 :=

{
∀m ∈ [m∗] ∩ [m̂], E

x∼DX
E

a∼pm(·|x)
[(f̂m+1(x, a)− f∗(x, a))2] ≤ 2ξ

(
τm − τm−1,

δ′

m2

)}
. (34)

Lemma 1. Suppose the regression algorithm used in Safe-FALCON satisfies Assumption 1. Then the eventW1 holds with
probability at least 1− 2δ′.

Proof. Consider any epoch m such that epoch m− 1 was safe. Since epoch m− 1 was safe, for the first time-step in epoch
m the algorithm samples an action from the probability kernel pm. It may so happen that the status of the algorithm switches
at the end of some time-step in epoch m and the algorithm no longer samples actions according to the kernel pm. As long as
the status of the algorithm does not switch in epoch m, for the purposes of estimating f̂m+1, we want to argue that the data
collected in epoch m can be treated as iid samples from the distribution D(pm).

One way to see this is by considering the following thought experiment. At the start of epoch m, the environment generates
τm−τm−1 data points that are iid sampled from the distributionD(pm). The environment then runs the regression algorithm
on this data, and generates the model f̂m+1. The environment sequentially shows us these data points throughout epoch m,
as long as the status of the algorithm is safe. Additionally, we also observe f̂m+1 at the end of epoch m if the status of the
algorithm was safe throughout the epoch. Regardless of whether we observe the model f̂m+1, the environment constructs
f̂m+1 by running the regression algorithm on iid samples from D(pm).

Further note that the kernel pm lies in K(F). Hence from Assumption 1, with probability 1− δ′/m2, we have:

E
x∼DX

E
a∼pm(·|x)

[(f̂m+1(x, a)− f∗(x, a))2] ≤ B + ξ
(
τm − τm−1,

δ′

m2

)
. (35)

Therefore, the probability that (35) does not hold for some epoch m ∈ [m̂] can be bounded by:

∞∑
m=1

δ′

m2
≤ 2δ′.

Hence from the definition of m∗, we get thatW1 holds with probability at least 1− 2δ′.
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Lemma 2. For any time-step t ≥ 1, we have:

E
xt,rt,at

[rt(at)|Γt−1] =
∑
π∈Ψ

Qt(π)R(π).

Proof. Consider any time-step t ≥ 1, then from eq. (29) relating p(·|·) and Qp we have the following equalities:

E
xt,rt,at

[rt(at)|Γt−1]

= E
x∼DX ,a∼pt(·|x)

[f∗(x, a)]

= E
x∼DX

[∑
a∈A

pt(a|x)f∗(x, a)

]

= E
x∼DX

[∑
a∈A

∑
π∈Ψ

I(π(x) = a)Qt(π)f∗(x, a)

]
=
∑
π∈Ψ

Qt(π) E
x∼DX

[f∗(x, π(x))]

=
∑
π∈Ψ

Qt(π)R(π).

The eventW2 provides upper and lower bounds on the expected reward of the randomized policy Qm, for all m ∈ [m̂].

W2 :=

{
∀m ∈ [m̂],

∑
π∈Ψ

Qm(π)R(π) ≥ 1

|Sm|
∑

(x,a,r)∈Sm

r −

√
1

2|Sm|
ln

(
m2

δ′

)
,

∑
π∈Ψ

Qm(π)R(π) ≤ 1

|Sm|
∑

(x,a,r)∈Sm

r +

√
1

2|Sm|
ln

(
m2

δ′

)}
.

(36)

Lemma 3. The eventW2 holds with probability at least 1− 4δ′.

Proof. Consider any safe epoch m. Similar to the argument in Lemma 1, for the purpose of estimating the expected reward
of the randomized policy Qm, we can treat the data generated in epoch m as iid samples from the distribution D(pm). Since
rewards lie in the range [0, 1], from Hoeffding’s inequality, with probability at least 1− 2δ′/m2, we get:∑

π∈Ψ

Qm(π)R(π) ≥ 1

|Sm|
∑

(x,a,r)∈Sm

r −

√
1

2|Sm|
ln

(
m2

δ′

)
,

∑
π∈Ψ

Qm(π)R(π) ≤ 1

|Sm|
∑

(x,a,r)∈Sm

r +

√
1

2|Sm|
ln

(
m2

δ′

)
.

Therefore, we get that these bounds hold for all m ∈ [m̂] with probability at least:

1−
∞∑
m=1

2δ′

m2
≥ 1− 4δ′.

For all time-steps t′ ∈ T , the eventW3 provides a lower bound on the cumulative reward up to time t′ in terms of the
expected cumulative reward.

W3 :=

{
∀t′ ∈ [T ],

t′∑
t=1

(∑
π∈Ψ

Qt(π)R(π)− rt(at)

)
≤

√√√√2t′ ln

(
dm(t′) + log2(τ1)e3

δ′

)}
. (37)
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Lemma 4. The eventW3 holds with probability at least 1− δ′.

Proof. For any time-step t ∈ [T ], define:

Mt :=
∑
π∈Ψ

Qt(π)R(π)− rt(at).

From Lemma 2, we have that E[Mt|Γt−1] = 0. Also note that for any time-step t, we have |Mt| ≤ 1. Now consider any
time-step t′ ∈ T . From Azuma’s inequality, with probability 1− δ′/dm(t′) + log2(τ1)e3, we get:

t′∑
t=1

Mt ≤

√√√√2t′ ln

(
(m(t′) + log2(τ1))3

δ′

)
.

Any epoch m has at most dm+ log2(τ1)e time-steps in T . ThereforeW3 holds with probability at least:

1−
∑
t′∈T

δ′

dm(t′) + log2(τ1)e3
≥ 1−

∞∑
m=1

δ′

(m+ log2(τ1))2
≥ 1− δ′.

B.2. Adapting FALCON+

As we have stated before, both our algorithm and analysis builds on the work of (Simchi-Levi & Xu, 2020). In this
section, without assuming realizability, we show that the analysis of FALCON+ continues to hold for the first few epochs
of Safe-FALCON. The simple observation that allows us to make this extension is that Lemma 6 can be proved without
assuming realizability.

Lemma 5 is more or less a restatement of Lemma 5 in (Simchi-Levi & Xu, 2020), and the proof stays the same. We only
include the proof for completeness, as it states a key bound on the estimated regret of the randomized policy Qm.

Lemma 5. For any safe epoch m, we have: ∑
π∈Ψ

Qm(π)Regf̂m(π) ≤ K

γm
.

Proof. This follows essentially from unpacking the definitions of regret (26) and the representation of the action selection
kernel pm as in (9) and (29).∑

π∈Ψ

Qm(π)Regf̂m(π) =
∑
π∈Ψ

Qm(π) E
x∼DX

[
f̂m(x, πf̂m(x))− f̂m(x, π(x))

]
= E
x∼DX

[∑
π∈Ψ

Qm(π)
(
f̂m(x, πf̂m(x))− f̂m(x, π(x))

)]
= E
x∼DX

[∑
a∈A

∑
π∈Ψ

I(π(x) = a)Qm(π)
(
f̂m(x, πf̂m(x))− f̂m(x, a)

)]
= E
x∼DX

[∑
a∈A

pm(a|x)
(
f̂m(x, πf̂m(x))− f̂m(x, a)

)]

= E
x∼DX

[∑
a∈A

(
f̂m(x, πf̂m(x))− f̂m(x, a)

)
K + γm

(
f̂m(x, πf̂m(x))− f̂m(x, a)

)] ≤ K

γm
.

For any policy, Lemma 6 bounds the prediction error of the implicit reward estimate for the first few epochs. This Lemma
and its proof are similar to those of Lemma 12 in (Simchi-Levi & Xu, 2020). Our definition of m∗ and our choice of γm+1

allows us to prove this Lemma without assuming realizability.
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Lemma 6. Suppose the eventW1 defined in (34) holds. Then, for all policies π and epochs m ≤ min{m∗, m̂}, we have:

|Rf̂m+1
(π)−R(π)| ≤

√
V (pm, π)

√
K

2γm+1

Proof. For any policy π and epoch m ∈ [m∗], note that:

|Rf̂m+1
(π)−R(π)|

≤ E
x∼DX

[∣∣∣f̂m+1(x, π(x))− f∗(x, π(x))
∣∣∣]

= E
x∼DX

[√
1

pm(π(x)|x)
pm(π(x)|x)

(
f̂m+1(x, π(x))− f∗(x, π(x))

)2
]

≤ E
x∼DX

[√
1

pm(π(x)|x)
E

a∼pm(·|x)

[(
f̂m+1(x, a)− f∗(x, a)

)2]]

≤

√√√√ E
x∼DX

[
1

pm(π(x)|x)

]√
E

x∼DX
E

a∼pm(·|x)

[(
f̂m+1(x, a)− f∗(x, a)

)2]
≤
√
V (pm, π)

√
2ξ
(
τm − τm−1,

δ′

m2

)
=

√
V (pm, π)

√
K

2γm+1
.

The first inequality follows from Jensen’s inequality, the second inequality is straight forward, the third inequality follows
from Cauchy-Schwarz inequality, and the last inequality follows from assuming thatW1 from (34) holds.

The next Lemma implies that before misspecification becomes a problem we are able to bound regret in the same manner as
(Simchi-Levi & Xu, 2020). Note that for any epoch m ≤ m̂, the action selection kernel used in epoch m is given by (9).
Further note that since the regression rates are valid (Assumption 1), from (6) and (10), we have that γm is increasing in m.
Finally, since Lemma 6 holds for all m ≤ min{m∗, m̂}, following the proof of Lemma 13 in (Simchi-Levi & Xu, 2020),
we get:

Lemma 7. Suppose the eventW1 defined in (34) holds. LetC0 = 5.15. For all policies π and epochsm ≤ min{m∗, m̂}+1,
we have:

Reg(π) ≤ 2Regf̂m(π) +
C0K

γm

Regf̂m(π) ≤ 2Reg(π) +
C0K

γm

That is, for any policy, Lemma 7 bounds the prediction error of the implicit regret estimate for the first few epochs. Lemma 8
bounds the expected regret of the randomized policy Qm for the first few epochs. Lemma 8 and its proof is more or less the
same as the statement and the proof of Lemma 9 in (Simchi-Levi & Xu, 2020).

Lemma 8. Suppose the eventW1 defined in (34) holds. Then for all epochs m ≤ min{m∗, m̂}+ 1, we have:

∑
π∈Ψ

Qm(π)Reg(π) ≤ (2 + C0)K

γm
.

Proof. For any m ≤ min{m∗, m̂}:

∑
π∈Ψ

Qm(π)Reg(π) ≤
∑
π∈Ψ

Qm(π)

(
2Regf̂m(π) +

C0K

γm

)
≤ 2K

γm
+
C0K

γm
.

Where the first inequality follows from Lemma 7, and the second inequality follows from Lemma 5.
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B.3. Bounding m̂ and lm

Lemma 9 shows that when the events defined in Appendix B.1 hold, then m̂ is at least as large as m∗ + 1. In particular, this
means that m∗ + 1 is deemed a safe epoch with high probability.

Lemma 9. Suppose the eventsW1,W2, andW3 hold. When T ≤ τm∗+1, the status of the algorithm at the end of round T
is safe. When T > τm∗+1, we have that m∗ + 1 ≤ m̂.

Proof. We first prove that under the assumptions of the theorem, m∗ + 1 ≤ m̂ when T > τm∗+1. Suppose for contradiction
that T > τm∗+1 and m̂ ≤ m∗. Now consider the epoch m′ = m̂+ 1. By assumption and choice of m′, we have m̂ < m′

and m′ ≤ min{m∗, m̂}+ 1. Therefore m′ is not a safe epoch, hence there exists a time-step t′ in epoch m′ such that t′ ∈ T
and we have that:

t′∑
t=1

rt(at) < Lt′ . (38)

SinceW3 holds and t′ ∈ T , we have that:

t′∑
t=1

rt(at) ≥
t′∑
t=1

∑
π∈Ψ

Qt(π)R(π)−

√√√√2t′ ln

(
(m′ + log2(τ1))3

δ′

)
. (39)

For all t ≤ t′, note that m(t) ≤ m′. Therefore from Lemma 8, we have:

t′∑
t=1

∑
π∈Ψ

Qt(π)R(π)

= t′R(π∗)−
t′∑
t=1

∑
π∈Ψ

Qt(π)Reg(π)

≥ t′ · lm′−1 − τ1 −
t′∑

t=τ1+1

(2 + C0)K

γm(t)

≥ t′ · lm′−1 − τ1 − 20.3
√
K

t′∑
t=τ1+1

√
ξ
(
τm(t)−1 − τm(t)−2,

δ′

(m(t))2

)
.

(40)

Here, the first equality follows from the definition of Reg(·). The first inequality follows fromW2 and Lemma 8. The result
from Lemma 8 can be used here sinceW1 holds and since m(t) ≤ m′ ≤ min{m∗, m̂}+ 1 for all time-steps t ≤ t′. The
last inequality follows from substituting the value for C0 and γm(t). Combining (39) and (40) contradicts (38). Therefore
when T > τm∗+1, we have that m∗ + 1 ≤ m̂.

The proof of the fact that the status of the algorithm at the end of round T is safe when T ≤ τm∗+1 is similar. Suppose for
contradiction, T ≤ τm∗+1 and the status at the end of round T is not safe. We define t′ ∈ T to be the first round where
the status of the algorithm switches to “not safe” and we let m′ = m(t′). Since t′ is the first such time-step we have that
m′ = m̂+ 1. Further, since m′ ≤ m(T ) ≤ m∗ + 1, we again have m̂ ≤ m∗ and m′ ≤ min{m∗, m̂}+ 1. Hence (38), (39),
and (40) still hold. Giving us the same contradiction, because combining (39) and (40) contradicts (38). This completes the
proof of Lemma 9.

For all m ≥ m∗ + 1, Lemma 10 lower bounds lm in terms of the optimal expected reward and the average misspecification
error. Hence lower bounding the expected instantaneous reward of the algorithm when the status is “not safe”.

Lemma 10. Suppose the eventsW1 andW2 hold. For any epoch m ≥ m∗ + 1, we then have that:

lm ≥ R(π∗)− 20.3
√
KB −

√
2B.
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Proof. For compactness, let S denote the set Sm∗+1. From Lemma 9, we have that m∗ + 1 is a safe epoch. Hence at any
epoch m ≥ m∗ + 1, from the update rule in Choose-safe we have:

lm ≥ lm∗+1

≥ 1

|S|
∑

(x,a,r)∈S

r −

√
1

2|S|
ln

(
(m∗ + 1)2

δ′

)

≥
∑
π∈Ψ

Qm∗+1(π)R(π)−

√
2

|S|
ln

(
(m∗ + 1)2

δ′

)

≥ R(π∗)− (2 + C0)K

γm∗+1
−

√
2

τm∗+1 − τm∗
ln

(
(m∗ + 1)2

δ′

)
.

(41)

Where the second last inequality follows from the fact thatW2 holds and the last inequality follows from Lemma 8. Now
from the definition of m∗, we have:

ξ
(
τm∗+1 − τm∗ ,

δ′

(m∗ + 1)2

)
< B

=⇒ K

γm∗+1
≤

√
8Kξ

(
τm∗+1 − τm∗ ,

δ′

(m∗ + 1)2

)
<
√

8KB.

(42)

From Assumption 1, we have that ξ is a valid rate, hence (7) holds. Therefore, from (7) and the definition of m∗, we have:

√
2

τm∗+1 − τm∗
ln

(
(m∗ + 1)2

δ′

)
≤

√
2ξ
(
τm∗+1 − τm∗ ,

δ′

(m∗ + 1)2

)
<
√

2B. (43)

The result follows from combining (41), (42), and (43).

B.4. Additional high probability events

In this section, we show that eventsW4 andW5 hold with high-probability. The eventW4 provide upper and lower bound
the difference between the expected regret and average regret at epochs that begin with a “safe” status.

W4 :=

{
∀t′ ∈ [T ],

√
2

t′ − τm(t′)−1
ln

(
dm(t′) + log2(τ1)e3

δ′

)

≥
∑
π∈Ψ

Qt′(π)Reg(π)− 1

t′ − τm(t′)−1

t′∑
t=τm(t′)−1+1

(rt(π
∗(xt))− rt(at))

≥ −

√
2

t′ − τm(t′)−1
ln

(
dm(t′) + log2(τ1)e3

δ′

) }
.

(44)

Lemma 11. The eventW4 holds with probability at least 1− 2δ′.

Proof. Consider any time-step t′ ∈ T . Similar to the argument in Lemma 1, for the purpose of estimating the expected
reward of the randomized policy Qt′ , we can treat the data generated in the first t′ − τm(t′)−1 time-steps of epoch m(t′) as
iid samples from the distribution D(pm(t′)).

Since t′ ∈ T , for all time-steps t ≤ t′ from epoch m(t′), status is “safe” and actions are chosen according to the action
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selection kernel pm(t′). Hence from Hoeffding’s inequality, with probability at least 1− 2δ′/dm(t′) + log2(τ1)e3, we get:

√
2

t′ − τm(t′)−1
ln

(
dm(t′) + log2(τ1)e3

δ′

)

≥
∑
π∈Ψ

Qt′(π)Reg(π)− 1

t′ − τm(t′)−1

t′∑
t=τm(t′)−1+1

(rt(π
∗(xt))− rt(at))

≥ −

√
2

t′ − τm(t′)−1
ln

(
dm(t′) + log2(τ1)e3

δ′

)
.

Any epoch m has at most dm+ log2(τ1)e time-steps in T . ThereforeW4 holds with probability at least:

1−
∑
t′∈T

2δ′

dm(t′) + log2(τ1)e3
≥ 1−

∞∑
m=1

2δ′

(m+ log2(τ1))2
≥ 1− 2δ′.

The eventW5 provides lower and upper bounds on the cumulative reward of the algorithm and optimal policy for various
ranges of time-steps.

W5 :=

{
∀t′ ∈ [T ] ∪ {T},

t′∑
t=1

(rt(π
∗(xt))−R(π∗)) ≤

√
2t′ ln

(
dm(t′) + log2(τ1)e3

δ′

)
t′∑
t=1

(
∑
π∈Ψ

Qt(π)R(π)− rt(at)) ≤

√
2t′ ln

(
dm(t′) + log2(τ1)e3

δ′

)
T∑

t=t′+1

(rt(π
∗(xt))−R(π∗)) ≤

√
2(T − t′) ln

(
dm(t′) + log2(τ1)e3

δ′

)
T∑

t=t′+1

(
∑
π∈Ψ

Qt(π)R(π)− rt(at)) ≤

√
2(T − t′) ln

(
dm(t′) + log2(τ1)e3

δ′

)}
.

(45)

Lemma 12. The eventW5 holds with probability at least 1− 4δ′.

Proof. For each round t, we define:

Mt := rt(π
∗(xt))−R(π∗),

M ′t :=
∑
π∈Ψ

Qt(π)R(π)− rt(at).

It is straightforward to see that E[Mt|Γt−1] = 0. Further from Lemma 2, we have that E[M ′t |Γt−1] = 0. Now consider any
time-step t′ ∈ T ∪ {T}. Since |Mt|, |M ′t | ≤ 1 for all t, from Azuma’s inequality, with probability at least 1− 4δ′/dm(t′) +
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log2(τ1)e3, we have: 14

t′∑
t=1

Mt ≤

√
2t′ ln

(
dm(t′) + log2(τ1)e3

δ′

)
,

t′∑
t=1

M ′t ≤

√
2t′ ln

(
dm(t′) + log2(τ1)e3

δ′

)
,

T∑
t=t′+1

Mt ≤

√
2(T − t′) ln

(
dm(t′) + log2(τ1)e3

δ′

)
,

T∑
t=t′+1

M ′t ≤

√
2(T − t′) ln

(
dm(t′) + log2(τ1)e3

δ′

)
.

(46)

Any epoch m has at most dm+ log2(τ1)e time-steps in T ∪ {T}. ThereforeW5 holds with probability at least:

1−
∑
t′∈T

4δ′

dm(t′) + log2(τ1)e3
≥ 1−

∞∑
m=1

4δ′

(m(t′) + log2(τ1))2
≥ 1− 4δ′.

B.5. Proof of Theorem 1

Note thatW1,W2,W3,W4, andW5 all hold with probability at least 1− δ. We now split our analysis into two cases and
bound the cumulative regret for each case, while assuming all these high-probability events hold.

Case 1 (T ≤ τm∗+1):
FromW5, we have that:

T∑
t=1

(
rt(π

∗(xt))− rt(at)
)
≤

T∑
t=1

∑
π∈Ψ

Qt(π)Reg(π) +

√
8T ln

(
dm(T ) + log2(τ1)e3

δ′

)
. (47)

Since W1, W2, W3 hold, from Lemma 9 we have that the status at the end of round T is safe. Since W1 holds, from
Lemma 8, we have:

T∑
t=1

∑
π∈Ψ

Qt(π)Reg(π)

≤ τ1 +
T∑

t=τ1+1

(2 + C0)K

γm(t)

≤ τ1 + 20.3
√
K

T∑
t=τ1+1

√
ξ
(
τm(t)−1 − τm(t)−2,

δ′

(m(t))2

)
.

(48)

Combining eq. (47) and eq. (48) completes the analysis for the first case.

Case 2 (T > τm∗+1):
Let t′ be the last time-step where the conditions in Check-is-safe were checked and verified to be true. That is, 15

t′ = max{t ∈ T ∩ [T ]| algorithm status is safe at the end of round t}. (49)

SinceW1,W2,W3 hold, from Lemma 9, we have that epoch m∗ + 1 is safe. Therefore, the last round of this epoch is safe
and hence t′ ≥ τm∗+1. We now prove a bound on the cumulative regret up to time t′ (see (53)). We start by deriving a bound
for the cumulative regret up to time τm∗+1 and then derive a bound for the cumulative regret up to time t′ when t′ > τm∗+1.

14For t′ = T , the last two inequalities in (46) are trivial.
15In the definition of t′ (see (49)), it may seem redundant to consider the set T ∩ [T ] when T ⊆ [T ]. We do this because, later in the

proof, we use a thought experiment where we make the bandit run for more that T time-steps.



Adapting to Misspecification in Contextual Bandits

Since τm∗+1 lies in T , the eventW5 bounds the cumulative regret upto time τm∗+1 in terms of the expected cumulative
regret. Hence following the arguments in case 1, we get:

τm∗+1∑
t=1

(
rt(π

∗(xt))− rt(at)
)
≤ τ1 + 20.3

√
K

τm∗+1∑
t=τ1+1

√
ξ
(
τm(t)−1 − τm(t)−2,

δ′

(m(t))2

)
. (50)

Hence, we now only need to bound the cumulative regret up to time t′ when t′ > τm∗+1. For compactness, let m′ denote
the epoch m(t′). Since the status of the algorithm is safe at the end of round t′ and t′ ∈ T , we have that:

t′∑
t=1

rt(at) ≥ t′ · lm′−1 − τ1 −
√

2t′ ln
( (m′ + log2(τ1))3

δ′

)
− 20.3

√
K

t′∑
i=τ2

√
ξ
(
τm(i)−1 − τm(i)−2,

δ′

(m(i))2

)
.

(51)
Now note that when t′ > τm∗+1, we have:

t′∑
t=1

(rt(π
∗(xt))− rt(at))

≤
t′∑
t=1

(R(π∗)− rt(at)) +

√
2t′ ln

(
dm(t′) + log2(τ1)e3

δ′

)

≤ t′ · (20.3
√
KB +

√
2B) + τ1 +

√
8t′ ln

(
dm(t′) + log2(τ1)e3

δ′

)

+ 20.3
√
K

t′∑
i=τ2

√
ξ
(
τm(i)−1 − τm(i)−2,

δ′

(m(i))2

)
.

(52)

Where the first inequality follows from the fact thatW5 holds. When t′ > τm∗+1, note that m′ > m∗ + 1, hence Lemma 10
bounds lm′−1. The last inequality follows from (51), and Lemma 10.

To recap, we already argued that t′ ≥ τm∗+1. In (50), we also bounded cumulative regret up to time τm∗+1. Finally, (52)
bounds cumulative regret up to time t′ when t′ > τm∗+1. Combining everything together, we get an unconditional bound on
the cumulative regret up to time t′:

t′∑
t=1

(rt(π
∗(xt))− rt(at))

≤ t′ · (20.3
√
KB +

√
2B) + τ1 +

√
8t′ ln

(
dm(t′) + log2(τ1)e3

δ′

)

+ 20.3
√
K

t′∑
i=τ2

√
ξ
(
τm(i)−1 − τm(i)−2,

δ′

(m(i))2

)
.

(53)

Note that (53) bounds the cumulative regret up to the last time-step where the conditions in Check-is-safe were verified
to be true. Also if t′ = T , then (53) gives us the required bound on the cumulative regret up to time T . Hence, moving
forward, we only need to bound cumulative regret when T > t′.

Recall that we defined t′ to be the last time-step where the conditions in Check-is-safe were verified to be true. Let t′′ be the
next time-step where the Check-is-safe conditions would be checked. We now bound the cumulative regret up to time t′′ in
terms of the cumulative regret up to time t′.

Note that if T ≥ t′′, then t′′ ∈ T . On the other hand if T < t′′, it is easy to see that the cumulative regret up to time T
would be roughly smaller than the cumulative regret up to time t′′ had the bandit run up to round t′′. Since we are going to
bound the cumulative regret up to time t′′ in terms of the cumulative regret up to time t′ and T > t′, for the purposes of
bounding cumulative regret up to time T , we can assume that the bandit runs up to time t′′ and t′′ ∈ T .
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Note that if t′′ = t′ + 1, we have:

t′′∑
t=1

(rt(π
∗(xt))− rt(at)) ≤ 2 +

t′∑
t=1

(rt(π
∗(xt))− rt(at)) (54)

We now want to bound the cumulative regret up to time t′′ in terms of the cumulative regret up to time t′ when t′′ > t′ + 1.
Since both t′ and t′′ are consecutive rounds in T , when t′′ > t′ + 1, we have that both rounds lie in the same epoch. That is,
m(t′′) = m(t′) = m′. When both rounds lie in the same epoch, since the status of the algorithm is safe at the end of round
t′, we have that the action selection kernel pm′ is used to pick actions at every time-step t ∈ [τm′−1 + 1, t′′]. Therefore,
when t′′ > t′ + 1, we have:

t′′∑
t=τm′−1+1

(rt(π
∗(xt))− rt(at))

≤ (t′′ − τm′−1)
∑
π∈Ψ

Qm′(π)Reg(π) +

√
2(t′′ − τm′−1) ln

(
dm′ + log2(τ1)e3

δ′

)

≤ 2(t′ − τm′−1)
∑
π∈Ψ

Qm′(π)Reg(π) +

√
4(t′ − τm′−1) ln

(
dm′ + log2(τ1)e3

δ′

)

≤ 2

t′∑
t=τm′−1+1

(rt(π
∗(xt))− rt(at)) + 5

√
(t′ − τm′−1) ln

(
dm′ + log2(τ1)e3

δ′

)
.

(55)

The following arguments assume t′′ > t′ + 1. The first inequality follows from the fact that t′′ ∈ T , the fact thatW4 holds,
and the fact that the algorithm uses the action selection kernel pm′ to pick actions at every time-step t ∈ [τm′−1 + 1, t′′].
The second inequality follows from the fact that t′, t′′ are consecutive rounds in T , and are in the same epoch. The last
inequality follows from the fact that t′ ∈ T ,W4 holds, and the fact that the algorithm uses the action selection kernel pm′ to
pick actions at every time-step t ∈ [τm′−1 + 1, t′].

Therefore, when t′′ > t′ + 1, from (55) we have:

t′′∑
t=1

(rt(π
∗(xt))− rt(at)) ≤ 3

t′∑
t=1

(rt(π
∗(xt))− rt(at)) + 5

√
T ln

(
(m′ + log2(τ1))3

δ′

)
(56)

To recap, we know that t′′ > t′. When t′′ = t′+1, (54) bounds the cumulative regret up to time t′′ in terms of the cumulative
regret up to time t′. When t′′ > t′ + 1, (56) bounds the cumulative regret up to time t′′ in terms of the cumulative regret up
to time t′. Combining everything together, we get the following unconditional bound on the cumulative regret up to time t′′

in terms of the cumulative regret up to time t′:

t′′∑
t=1

(rt(π
∗(xt))− rt(at)) ≤ 2 + 3

t′∑
t=1

(rt(π
∗(xt))− rt(at)) + 5

√
T ln

(
(m′ + log2(τ1))3

δ′

)
(57)

Case 2.1 (T > τm∗+1 and T < t′′):
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Note that:
T∑
t=1

(
rt(π

∗(xt))− rt(at)
)

≤
T∑
t=1

∑
π∈Ψ

Qt(π)Reg(π) +

√
8T ln

(
dm(T ) + log2(τ1)e3

δ′

)

≤
t′′∑
t=1

∑
π∈Ψ

Qt(π)Reg(π) +

√
8T ln

(
dm(T ) + log2(τ1)e3

δ′

)

≤
t′′∑
t=1

(
rt(π

∗(xt))− rt(at)
)

+ 7

√
T ln

(
d1 +m(T ) + log2(τ1)e3

δ′

)
.

(58)

Where the first inequality follows from the fact thatW5 holds. The second inequality follows from the fact that t′′ > T and
the fact that Reg(π) ≥ 0. The last inequality follows fromW5 and the fact that t′′ ≤ 2t′ ≤ 2T .

Combining (53), (57), and (58) gives us the required bound on the cumulative regret for this case.

Case 2.2 (T > τm∗+1 and T ≥ t′′):
From the definition of t′ and t′′, the status of the algorithm switches to “not safe” at the end of round t′′. Thereafter, all
actions will be selected according to the action selection kernel pm̂. Now note that:

T∑
t=t′′+1

(
rt(π

∗(xt))− rt(at)
)

≤
T∑

t=t′′+1

∑
π∈Ψ

Qm̂(π)Reg(π) +

√
8(T − t′′) ln

(
dm(t′′) + log2(τ1)e3

δ′

)

≤ (R(π∗)− lm̂)(T − t′′) +

√
8(T − t′′) ln

(
dm(t′′) + log2(τ1)e3

δ′

)

≤ (20.3
√
KB +

√
2B)(T − t′′) +

√
8(T − t′′) ln

(
dm(t′′) + log2(τ1)e3

δ′

)
.

(59)

Where the first inequality follows fromW5 and the fact that the kernel pm̂ is used for all rounds t ∈ [t′′ + 1, T ]. The second
inequality follows fromW2, which gives us that the expected reward of the randomized policy Qm̂ is lower bounded by lm̂.
From Lemma 9 we have that m̂ ≥ m∗ + 1. Therefore the final inequality follows from Lemma 10, which gives us a lower
bound on lm̂ since m̂ ≥ m∗ + 1.

Combining (53), (57), and (59) gives us the required bound on the cumulative regret for this case.

C. Proof for lower bound
In this section, we prove Theorem 2, which we restate bellow for convenience.

Theorem 2 (Lower bound). Consider anyK ≥ 2 andB ∈ [0, 1/(2K)]. One can construct a model classF and a stochastic
contextual bandit instance with K arms. Such that the average misspecification error is

√
B. And for any probability kernel

p in the convex hull of the kernel set K(F), the expected instantaneous regret of the induced randomized policy can be lower
bounded by:

E
(x,r)∼D

E
a∼p(·|x)

[
r(π∗(x))− r(a)

]
≥ Ω(

√
KB) (23)

Proof. Consider any K ≥ 2 and B ∈ [0, 1/(2K)]. We start by constructing a K arm stochastic contextual bandit instance.
Let A = [K] be the set of arms, X = (0,K) be the set of contexts, and D denote the joint distribution of rewards and
contexts. Such that DX , the marginal distribution of D on the set of contexts, is uniformly distributed over over the context
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set X . That is, DX ≡ Unif(0,K). For all x ∈ X and a ∈ A, we let the conditional expected reward be given by,

f∗(x, a) :=

{
α for x ∈ (a− 1, a],

0 otherwise.
(60)

Where α is given by,

α :=

√
K2

K − 1
B. (61)

Since K ≥ 2 and B ∈ [0, 1/(2K)], we have that α ∈ [0, 1]. Hence the conditional expected reward for every context and
action lies in [0, 1]K . We also let the rewards be noiseless. That is,

Pr
(x,r)∼D

(
r(a) = f∗(x, a)

)
= 1. (62)

This completes our description of the stochastic contextual bandit setup that we consider. We now let the model class F be
given by,

F = {f : X ×A → [0, 1] | ∀a ∈ A, ∃fa ∈ [0, 1] such that, ∀x ∈ X , we have f(x, a) = fa}. (63)

That is, F is the class of all models that do not depend on contexts. Therefore, the set K(F) contains all probability kernels
that do not depend on contexts.

K(F) =

{
p is a probability kernel| ∃fp ∈ F , gp : A× RA → [0, 1], ∀ (x, a) ∈ X ×A, p(a|x) = gp(a|fp(x))

}
=

{
p is a probability kernel| ∃ gp : A → [0, 1], ∀ (x, a) ∈ X ×A, p(a|x) = gp(a)

}
.

(64)

That is, the set K(F) simply reduces to the set of distributions over A Which also implies that K(F) is convex. For
notational convenience, we let G denote the set of all distributions over the action set A. That is,

G =

{
g : A → [0, 1]|

∑
a∈A

g(a) = 1

}
. (65)

Now note that for any arm a ∈ A, from (60), we have that:

E
x∼DX

[f∗(x, a)] =
α

K
∈ [0, 1]. (66)

Now note that, the average misspecification is given by:√
max
p∈K(F)

min
f∈F

E
x∼DX

E
a∼p(·|x)

[(f(x, a)− f∗(x, a))2]

=

√
max
g∈G

∑
a∈A

g(a) min
fa∈[0,1]

E
x∼DX

[(fa − f∗(x, a))2]

=

√
max
g∈G

∑
a∈A

g(a) E
x∼DX

[(f∗(x, a)− α/K)2]

=

√
max
g∈G

∑
a∈A

g(a)
K − 1

K2
α =
√
B.

(67)

Here the first equality follows from (64) and (65). The second equality follows from (66) and the fact that the mean
minimizes the mean squared error. The third equality follows from substituting the value for f∗(x, a) from (60). Finally, the
last equality follows from (61) and the fact that g ∈ G.

It is easy to see that the optimal policy is given by π∗ (defined in (68)). Further, the expected reward of π∗ is α. That is,
R(π∗) = α.

For all a ∈ A and x ∈ (a− 1, a], π∗(x) := a. (68)
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Now consider any arm a ∈ A. With some abuse of notation, let a also denote the policy that selects arm a for all contexts.
Note that the expected reward for this policy is α/K, that is R(a) = α/K. For any probability kernel p in K(F), since it
does not depend on contexts, the randomized policy Qp is only supported by policies in A. Therefore, we have that the
expected regret of any randomized policy Qp that is induced by some probability kernel in K(F) is given by:∑

π∈Ψ

Qp(π)Reg(π) =
∑
a∈A

Qp(a)Reg(a) =
∑
a∈A

Qp(a)
(
R(π∗)−R(a)

)
=
∑
a∈A

Qp(a)
(

1− 1

K

)
α

=
(

1− 1

K

)
α =

√
(K − 1)B ≥

√
KB/2.

(69)

This completes the proof of Theorem 2.

D. Detailed introduction example
To generate both Figure 1 and Figure 2, we implement FALCON+ and Safe-FALCON respectively. Both implementations
require knowledge of the estimation rate function (ξ). In this section, we detail our choice of estimation rates and give some
more intuition for the oscillatory regret behavior we see in that Figure 1.

FALCON+ Setup As explained in the introduction, we use the FALCON+ algorithm in (Simchi-Levi & Xu, 2020). This
algorithm requires knowledge of a function ξF,δ(n) representing the estimation rate. This is defined in the following
assumption.

Assumption 2 in (Simchi-Levi & Xu, 2020) Given n data samples {(x1, a1, r1(a1)), · · · , (xn, an, rn(an))} generated iid
from an arbitrary distribution Ddata, the offline regression oracle return a function f̂ . For all δ > 0, with probability at least
1− δ, we have

E[(f̂(x, a)− f∗(x, a))2] ≤ ξF,δ(n) (70)

We set the class of functions F to be the set of linear functions (i.e., linear regressions of outcomes on contexts and an
intercept). For this model, it is straightforward to show analytically that the random variable on the left-hand side of (70) is
distributed as a random variable 1

nχ
2
2, where χ2

2 is a random variable distributed as chi-squared with two degrees of freedom.
Therefore, we set ξF,δ(n) to be the 1− δ-quantile of the distribution of 1

nχ
2
2. Note that this quantity is decreasing with n.

Explaining results In Figure 1, we saw that average per-epoch regret oscillates between very low and very high levels.
Let’s explain this phenomenon.

First, note that the optimal treatment assignment policy for this setting is

π∗(x) =

{
1 if x ≤ .5,
2 otherwise.

(71)

Moreover, if arms were assigned uniformly at random, the the best linear approximation to f∗(x, a) would be given by

f̂∗(x, a) :=

{
−.25 + 1.5x if a = 1,

.5 if a = 2.
(72)

Finally, note that the data-generating process was selected so that the policy πf̂∗ induced by the best linear approximation
coincides with π∗(x).

With this in mind, we are ready to understand the oscillatory behavior in Figure 3. During the first seven or so epochs, arms
are assigned roughly at random, and the linear outcome models fit on this data are not too different from f̂∗(x, a), but the
exploitation parameter γm ∝ ξF,δ(n)−1 is small, so the induced action selection kernel pm(a|x) does not concentrate very
much.

However, since epochs have increasing size, for later epochs γm ∝ ξF,δ(n)−1 can be large, and pm(a|x) concentrates and
becomes approximately πf̂∗ . This is what happens in Epoch 8 in Figure 1, for example. However, this skews the data
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distribution, so that in Epoch 9 when we fit an outcome model using data from Epoch 8 we get something that is very
different from f̂∗(x, a). In turn, this accidentally increases the amount of exploration happening in this epoch. So in Epoch
10 we are able to return to an outcome model that is similar to f̂∗(x, a). But by then the exploitation parameter γm is even
larger, so pm(a|x) concentrates again, causing the cycle to repeat.

Figure 3. Linear models at the end of each epoch m and action a = 1 (blue) and a = 2 (orange). Solid lines are fitted models f̂(·, a).
Dashed lines are oracle best linear approximation under uniform action sampling.

The takeaway from this example is that in the presence of misspecification we must curb the amount of exploitation. This
insight underpinned the construction of the algorithm presented here.


