
Adapting to Misspecification in Contextual Bandits with Offline Regression
Oracles

Sanath Kumar Krishnamurthy 1 Vitor Hadad 2 Susan Athey 2

Abstract
Computationally efficient contextual bandits are
often based on estimating a predictive model of
rewards given contexts and arms using past data.
However, when the reward model is not well-
specified, the bandit algorithm may incur unex-
pected regret, so recent work has focused on al-
gorithms that are robust to misspecification. We
propose a simple family of contextual bandit al-
gorithms that adapt to misspecification error by
reverting to a good safe policy when there is ev-
idence that misspecification is causing a regret
increase. Our algorithm requires only an offline
regression oracle to ensure regret guarantees that
gracefully degrade in terms of a measure of the
average misspecification level. Compared to prior
work, we attain similar regret guarantees, but we
do no rely on a master algorithm, and do not
require more robust oracles like online or con-
strained regression oracles (e.g., (Foster et al.,
2020a); (Krishnamurthy et al., 2020)). This al-
lows us to design algorithms for more general
function approximation classes.

1. Introduction
Contextual bandit algorithms are a fundamental tool in se-
quential decision making and have been used in a variety
of applications (see e.g., Lattimore & Szepesvári, 2020,
Section 1.4 for a review).

The finite-armed (stochastic) contextual bandit setting that
this paper is concerned with can be described as follows.
Over a sequence of rounds, a bandit algorithm receives some
side information or “contexts”, which is drawn from a fixed
distribution. Upon receiving each context, the algorithm
selects an action, and then receives a probabilistic reward

1Management Science and Engineering, Stanford University,
Stanford, CA, USA 2Graduate School of Business, Stanford Uni-
versity, Stanford, CA, USA. Correspondence to: Sanath Kumar
Krishnamurthy <sanathsk@stanford.edu>.

Proceedings of the 38 th International Conference on Machine
Learning, PMLR 139, 2021. Copyright 2021 by the author(s).

whose distribution may depend on the context and action.
The objective of the algorithm is to interactively learn a map-
ping from contexts to actions so as to maximize the rewards
received during the experiment. In order to do so, it must
efficiently trade off the need for resolving uncertainty about
the value of each action (exploration), with the objective of
maximizing rewards (exploitation).

Many contextual bandit algorithms make use of an esti-
mate of the conditional mean function of rewards given
contexts and arms, along with some measure of the uncer-
tainty around this function. At a high level, if the model
predicts that an action has high expected reward with low
uncertainty, then the algorithm is more likely to select this
action. This intuition leads to heuristics that are statistically
optimal in some settings (e.g., Agrawal & Goyal, 2013; Li
et al., 2010). Such algorithms also tend to be computation-
ally tractable relative to alternatives (Agarwal et al., 2014),
since all that is required is a predictive model and the ability
to produce appropriate confidence intervals.

However, the success of such algorithms depends heavily on
tenuous assumptions about the underlying data-generating
process, as their performance guarantees often rely on the
conditional mean function belonging to a particular class;
e.g., that it be linear under some transformation of the con-
texts. This is often called “realizability” in the literature, and
when violated can cause the algorithm to behave erratically.

In this paper, we suggest an algorithm that adapts to model
misspecification. To illustrate the problem, we consider
an example described in (Krishnamurthy et al., 2020) and
use it to get insights into the behavior of a realizability-
based algorithm FALCON+ (Simchi-Levi & Xu, 2020) in a
setting where realizability does not hold. Consider a two-
arm contextual bandit setting:

E[rt
∣∣xt = x, at = a] =

{
I{xt > 0.5} if a = 1
0.5 if a = 2

(1)

where xt ∼ Uniform[0, 1] represents the contexts observed
at the beginning of the t-th round, at is the action taken, rt
is the reward, which is observed by the experimenter with
noise et ∼ N (0, 1). Although the conditional expectation
of rewards (1) is clearly non-linear, the model is simple

Adapting to Misspecification in Contextual Bandits

Figure 1. Illustration of the failure of a contextual bandit algorithm
(FALCON+) when the model is not well-specified. Each epoch
starts at round 2m. Vertical bars are 95% confidence intervals
around the average per-epoch average regret, aggregated over 50
simulations. Spaghetti plots are average per-epoch regret for 20
representative simulations.

enough that one could expect a bandit algorithm based on a
misspecified linear model to do well.

Figure 1 shows the behavior of average regret for a
realizability-based algorithm FALCON+ (Simchi-Levi & Xu,
2020), under the (incorrect) assumption that the underlying
model is linear. The details of this algorithm are not par-
ticularly important. It suffices to understand that at the end
of approximately every 2m rounds (we call these intervals
“epochs” and index them by m), the algorithm computed an
estimate f̂(x, a) of (1), assuming a linear model and based
on data from the previous epoch. Then, for every round in
this epoch, it selects arms based on a probabilistic model
where arms with high f̂(x, ·) have higher probability. A full
description of this example is given in the appendix.

We notice two phenomena. First, the spaghetti plot reveals
that average per-epoch reward has an oscillatory behavior,
switching between very low and very high levels. This can
be explained as follows. In some of the later epochs, the
algorithm estimates a model that is close to the best linear
approximation of (1), and thus it almost exclusively selects
actions optimally (i.e., a = 1 when xt > .5, a = 2 other-
wise). In such epochs average rewards are high. However,
in doing so, it collects data that is so skewed that it adversely
affects the model estimated in the next epoch, causing the
algorithm to make many mistakes and driving average re-
wards down again. However, these mistakes in turn allow
the algorithm to get less skewed data for the misspecified
arm, leading to estimate a good linear approximation to (1)
again, and the cycle repeats.

More importantly, as a consequence of the erratic behavior

just described we observe a second phenomenon: although
the average regret for decreases initially, it begins to increase
again after some time. The fundamental reason for this
failure is that, by ignoring misspecification, the algorithm
fails to accurately capture the how much uncertainty there
is about the true model, in particular in regions where there
is heavy extrapolation. The resulting performance is clearly
suboptimal, and in this case, the model estimates do not
even seem to converge. This problem is not idiosyncratic
to FALCON+. For example, (Krishnamurthy et al., 2020)
shows that LinUCB (Li et al., 2010) can converge to a
suboptimal solution under the same example.

In this work, we propose a method to prevent the undesir-
able behavior described above. Our starting point is the
FALCON+ algorithm. We modify it by introducing an ad-
ditional step in which we test for a dip in average rewards
(i.e., an increase in regret) caused by model misspecifica-
tion. Upon finding evidence of this issue, we revert to a
previously estimated “safe” policy and reduce further model
updates. When there is no model misspecification, we at-
tain the optimal regret guarantees inherited from FALCON+.
When there is model misspecification, our regret bounds
have an additional term that depends on a measure of mis-
specification.

Our results bound the regret overhead due to misspecifica-
tion by O(ε

√
KT), where ε is the average misspecification

error. Roughly speaking, we define the average misspecifi-
cation error as a tight upper bound on the root mean squared
difference between the true model and any function in the
class of posited model that minimizes this squared difference
(e.g., linear models). See Section 2 for a formal definition.

We now briefly describe how we get this result. Our starting
point is FALCON+, which runs in epochs denoted by m. At
each epoch m, the amount of exploitation is controlled by a
parameter γ−1

m . This parameter decreases with each epoch,
as the algorithm learns about the environment and exploita-
tion increases. We observe that while γ−1

m is larger than
the average misspecification ε – which is true for the initial
epochs – cumulative regret decreases at the same rate as
when realizability holds. When the average misspecification
is comparable to this measure of exploration, we get that the
expected instantaneous regret can be bounded by O(ε

√
K).

Once γ−1
m becomes less than the average misspecification,

the expected instantaneous regret may increase. In fact, this
behaviour is observed in Figure 1.

Our algorithm works by continuously testing for an un-
expected change in cumulative rewards, and when that is
detected the algorithm reverts to a good historically “safe”.
Our algorithm achieves the required regret bound because
the expected instantaneous regret of this “safe” policy is
bounded by O(ε

√
K) with high probability. Finally, to en-

sure that the regret guarantees in the initial epochs continue

Adapting to Misspecification in Contextual Bandits

to hold with the high-probability parameter of our choice,
our algorithm uses a γm parameter that is about

√
2 times

smaller compared to the one used in FALCON+.

Our algorithm is computationally efficient and flexible, as all
that is needed is an offline regression oracle (i.e., the ability
to fit a predictive model), thereby extending the reduction
from contextual bandits to offline regression oracles (Simchi-
Levi & Xu, 2020) to scenarios where realizability may not
hold. Further our algorithm does not require knowledge of
the average misspecification error, nor does it require the
use of master algorithms.

Not relying on master algorithms to adapt to unknown mis-
specification allows us enjoy additional computational and
statistical benefits. The computational benefit comes from
not requiring to maintain and update blog(T)c base bandit
algorithms1. We also inherit the optimal realizability-based
regret bound from FALCON+ when the assumption holds,
and save an additional O(

√
log(T)) factor that would have

been incurred had we relied on a master with blog(T)c base
algorithms.

Finally, our bounds on regret overhead due to misspecifica-
tion are in terms of the average misspecification error and
match the best known bounds from prior work (Foster et al.,
2020a).

Our upper bound results are summarized in Section 2.4. To
see that these upper bounds are optimal for contextual ban-
dit algorithms that are based on regression oracles, up to
constant factors, we also obtain matching lower bounds for
the regret overhead due to misspecification (see Section 2.5).
These results can also be interpreted as a quantification
of the bias-variance trade-off for contextual bandits with
regression oracles, see Section 2.4 for a more detailed dis-
cussion.

1.1. Related work

Over the last couple of decades, contextual bandit al-
gorithms have been extensively studied (Lattimore &
Szepesvári, 2020). However, the performance of many
algorithms rely on the “realizability” assumption, which
requires the analyst to know the form of the conditionally
expected reward model. Moreover, the theoretical analysis
of these algorithms that bounded cumulative regret often
break down even under mild violations of the assumption.
Since the realizability assumption may not be realistic, ban-
dit algorithms that are robust to model misspecification have
become a subject of intense recent interest.

In particular, recent works study algorithms that bound

1These base algorithms make different guesses for the mis-
specification measure, and the master algorithm chooses the best
performing base algorithm.

the regret overhead due to misspecification. When the
true reward function is linear up to an additive error uni-
formly bounded by ε and contexts are d-dimensional, (Neu
& Olkhovskaya, 2020) provide an algorithm that bound the
regret overhead due to misspecification by O(ε

√
dT). This

paper assumes perfect knowledge of the covariance matrix
for the distribution of contexts, but the algorithm does not
require knowledge of ε.

This result is improved2 and generalized by (Foster &
Rakhlin, 2020). Given an online regression oracle for a
class of value functions F and suppose the true reward
function can be approximated by a function in F up to an
additive error uniformly bounded by ε, (Foster & Rakhlin,
2020) provide an algorithm that achieves a regret overhead
bound of O(ε

√
KT), where K is the number of arms. The

algorithms proposed in this paper uses ε as an input parame-
ter.

In many scenarios, one would expect a uniform bound on
the additive error to be rather stringent. Concurrent work
bound the regret overhead in terms of the “average misspec-
ification error” (Foster et al., 2020a; Krishnamurthy et al.,
2020), the notions of misspecification used in these papers
are not the same but are similar. Roughly speaking, the
average misspecification error is averaged over contexts but
are uniformly bounded over policies. If ε is the average mis-
specification error, (Foster et al., 2020a) and (Krishnamurthy
et al., 2020) achieve regret overhead bounds of O(ε

√
KT)

and O(K2/5ε4/5T). 3 The algorithms used in these papers
assume access to robust regression oracles, like online re-
gression oracles (Foster et al., 2020a) and offline constrained
regression oracles (Krishnamurthy et al., 2020). Further-
more, (Krishnamurthy et al., 2020) assume that the set F is
convex and require knowledge of ε (up to a constant factor)
as an input parameter. In contrast, (Foster et al., 2020a) can
adapt to the unknown misspecification without requiring
any information about the misspecification parameter (ε).

To start with, (Foster et al., 2020a) provide a base algorithm
that requires knowledge of ε (up to a constant factor) to
achieve the regret overhead bound ofO(ε

√
KT). They then

consider blog(T)c base algorithms with different guesses
for the average misspecification error (ε). Finally, they
show that a master algorithm can be used to select the best
performing base algorithm while continuing to achieve an
overall regret overhead bound of O(ε

√
KT).

The idea of using master algorithms to adapt to unknown
misspecification has also been used earlier in the context
of misspecified linear bandits (Pacchiano et al., 2020). The

2Assuming K < d, which is often true.
3These bounds are non-trivial only if ε

√
K < 1, clearly under

this setting the bounds guaranteed by (Krishnamurthy et al., 2020)
are weaker. This is because, their algorithm performs uniform
sampling for a fraction of the time-steps.

Adapting to Misspecification in Contextual Bandits

misspecified linear bandit setup has also been studied in
(Ghosh et al., 2017) and (Lattimore et al., 2020). These
papers bound regret overhead in terms of the uniform mis-
specification error.

Oracle-based agnostic contextual bandit algorithms do not
assume realizability and hence directly adapt to unknown
misspecification4 (Dudik et al., 2011; Agarwal et al., 2014).
Unfortunately, these approaches suffer from computational
issues that limit their implementability.

Within the broader literature of contextual bandits, we build
on the recent line of work that provide reductions to of-
fline/online squared loss regression (Foster et al., 2018; Fos-
ter & Rakhlin, 2020; Xu & Zeevi, 2020; Foster et al., 2020b).
In particular, our work can be viewed as an extension of the
analysis of (Simchi-Levi & Xu, 2020) to general scenarios
that do not assume realizability.

2. Theory
To formalize the problem and discuss the properties of our
algorithm, let’s first establish some basic notation. Other
symbols will be introduced later as appropriate.

Basic notation We let A denote the finite set of actions,
K denote the number of arms (i.e. K := |A|), andX denote
the set of contexts. We let the notation [n] denote the set
{1, ..., n}. The (possibly unknown) number of rounds is
denoted by T . Our algorithm will work in epochs indexed
bym; the final round of each epoch is denoted by τm. We let
m(t) denote the epoch containing round t – that is, m(t) :=
min{m|t ≤ τm}.

At every time-step t ∈ [T], the environment draws a con-
text xt ∈ X and reward vector rt ∈ [0, 1]K from a fixed
but unknown distribution D. Unless stated otherwise, all
expectations are with respect to this distribution. Using
potential outcome notation, we let rt(a) denote the reward
that associated with arm a at time t.

We use p to denote probability kernels fromA×X to [0, 1],
and let D(p) be the induced distribution over X × A ×
[0, 1], where sampling (x, a, r(a)) ∼ D(p) is equivalent to
sampling (x, r) ∼ D and then sampling a ∼ p(·|x).

The true conditional expectation function of rewards is
denoted by f∗ : X × A → [0, 1]; i.e. f∗(x, a) :=

E[rt(a)|xt = x]. We also let DX denote the marginal
distribution of D on the set of contexts X . A model f ∈ F
is any map from X × A to [0, 1]. With a slight abuse of
notation, for any model f ∈ F and context x ∈ X , we let
f(x) denote the vector (f(x, a))a∈A that lies in [0, 1]K .

4Here misspecification would correspond to the optimal policy
not lying in the set of policies being explored.

By a policy we mean is a deterministic function from
π : X → A. The policy that maximizes the con-
ditional mean of rewards is denoted by π∗(x); i.e.,
π∗(x) = arg maxa f

∗(x, a). We also let πf denote the
policy induced by model f , which is given by πf (x) :=
arg maxa f(x, a) for every x. The goal of a contextual
bandit algorithm is to bound cumulative regret:

RT :=

T∑
t=1

[rt(π
∗(xt))− rt(at)]. (2)

Misspecification Since our algorithm does not require
that the model be well-specified, the class F may not con-
tain the true model f∗. We denote by

√
B the average

misspecification error relative to F ,5 where

B := max
p∈K(F)

min
f∈F

E
x∼DX

E
a∼p(·|x)

[(f(x, a)− f∗(x, a))2].

(3)
Where K(F) is the set of probability kernels induced by F ,

K(F) :=

{
p : A×X → [0, 1] is a probability kernel|

∃fp ∈ F , probability kernel gp : A× [0, 1]K → [0, 1],

such that ∀ (x, a) ∈ X ×A, p(a|x) = gp(a|fp(x))

}
.

(4)
The setK(F) contains all probability kernels p fromA×X
to [0, 1] that can be represented by some pair (fp, gp), where
fp is a function in F and gp is a probability kernel from
A× [0, 1]K to [0, 1] such that p(a|x) = gp(a|fp(x)) for all
actions a and contexts x. That is,K(F) considers only those
probability kernels that depend on the context x through
some some model in F . We discuss this in more detail in
Section 2.5.

The average misspecification need not be known, though
our regret bounds stated in Section 2.4 will depend on it.

2.1. Regression Oracle

We use a regression algorithm as a subroutine on the class
of outcome models F , and our exploration depends on the
estimation rates of this subroutine. Suppose f̂ is the output
of the regression algorithm fitted on n independently and
identically drawn samples from D(p), it is then reasonable
to expect that for any ζ ∈ (0, 1), the following holds with
probability 1− ζ:

E
x∼DX

E
a∼p(·|x)

[(f̂(x, a)− f∗(x, a))2]

≤ min
f∈F

E
x∼DX

E
a∼p(·|x)

[(f(x, a)− f∗(x, a))2] + ξ(n, ζ).

(5)
5Similar measures of misspecification are denoted by ε in other

papers.

Adapting to Misspecification in Contextual Bandits

We call ξ(·, ·) the estimation rate of the regression algorithm
and assume that it is known. We also require it to satisfy
two benign conditions, and say it is a “valid” estimation rate
if it satisfies these conditions. First, we require ξ to be a
decreasing function of n. In particular, we require:6

For all δ ∈ (0, 1),
ξ(n, δ/ ln(n)) is non-increasing in n.

(6)

The second condition is that this estimation rate is lower
bounded by the rate for estimating the mean of a one-
dimensional bounded random variable:7

For all ζ ∈ (0, 1) and n ∈ N,
ξ(n, ζ) ≥ ln(1/ζ)/n.

(7)

We restate these general requirements of the regression algo-
rithm as Assumption 1 in Section 2.4. Finally, for concrete-
ness, note that any estimation rate of the following form is
valid:

ξ(n, ζ) =

{
C lnρ

′
(n) ln(1/ζ)comp(F)

nρ , for n ≥ n0.
1. otherwise.

(8)

where C > 0, ρ ∈ (0, 1], ρ′ ∈ [0,∞), comp(F) is an ap-
propriate measure of the complexity of the outcome model
class F , and n0 ∈ N is an appropriately chosen constant
that ensures (6) holds. Many statistical rates have this form
(see e.g., Koltchinskii, 2011), indicating that our conditions
on the regression algorithm are relatively benign.

2.2. Algorithm

In this section we outline the Safe-FALCON algorithm. A
formal description is deferred to Algorithm 1 below.

As the name suggests, our method is based on the FALCON+
algorithm in (Simchi-Levi & Xu, 2020, Algorithm 2).
FALCON+ is computationally tractable and, when the model
is well-specified (i.e., when f∗ ∈ F), attains optimal regret
bounds on cumulative regret (2). However, as we saw in
the introduction, under misspecification its behavior can be
erratic.

Safe-FALCON is implemented in epochs indexed by m.
Where epoch m starts at round τm−1 + 1 and ends at round
τm, τm+1 = 2τm for all m ≥ 1, τ0 = 0, and τ1 ≥ 2 is
an input to the algorithm. Each round t starts with a status
that is called “safe” or “not safe”, depending on whether the
algorithm has detected evidence of model misspecification

6We require the first condition to ensure that γm is a increasing
function of m, see Section 2.2.

7The second condition is more for notational convenience as
(5) will always hold with a larger ξ. Further, in most scenarios,
one would not expect a rate smaller than the one for estimating the
mean of a one-dimensional bounded random variable.

using a test that will be described shortly. The algorithm’s
behavior depends on this status, and once it switches to “not
safe” status, it never returns to “safe”. Let’s describe each
of these behaviors.

Status-dependent behavior At the beginning of any
epoch m that starts on a “safe” round, the algorithm uses an
estimate of the reward model f̂m, obtained using data from
epoch m− 1 from an offline regression oracle. As long as
the “safe” status is maintained, at each round in this epoch it
assigns actions by drawing from the following distribution,
named the action selection kernel:

pm(a|x) :=

{
1

K+γm(f̂m(x,â)−f̂m(x,a))
for a 6= â,

1−
∑
a′ 6=â p(a

′|x) for a = â.
(9)

where â = maxa f̂m(a, x) is the predicted best action. The
parameter γm > 0 governs how much the algorithm ex-
ploits and explores: assignment probabilities concentrate
on the predicted best policy â when γm is large, and are
more spread out when γm is small. During “safe” epochs,
the speed at which γm increases is inversely proportional
to the square-root of the estimation rate of the regression
algorithm:

γm :=
√

1/8
√
K/ξ(τm−1 − τm−2, δ′/m2) (10)

where ξ is the estimation rate of the regression oracle defined
in (5), δ > 0 is a confidence parameter, δ′ = Cδ for a
universal constant C > 0, the quantity τm−1 − τm−2 is
the size of the previous batch, which was used to estimate
the model f̂m. Definition (10) implies that small classes
such as linear models allow for a quickly increasing γm
and therefore more exploitation, while large classes require
more exploration and therefore γm increases more slowly.
Finally, we let Sm denote the data collected in epochm, and
note that f̂m+1 is the output of the regression oracle with
Sm as input.

Now suppose misspecification is detected at round t and the
algorithm enters “not safe” status. For all epochsm < m(t),
we compute a high-probability lower bound l′m around the
expected reward of the policy that selects actions according
to the kernel pm, and select the action selection kernel as-
sociated with the epoch corresponding to the highest lower
bound m̂ = arg maxm≤m(t) l

′
m, where

l′m :=
1

|Sm|
∑

(x,a,r)∈Sm

r −

√
1

2|Sm|
ln

(
m2

δ′

)
. (11)

Thereafter, all actions will be selected according the the
action selection kernel pm̂(x|a).

Testing for misspecification Denoting the beginning of
them-th epoch by τm−1+1, the algorithm tests for misspec-
ification at the end of round τm−1 + 1, τm−1 + 2, τm−1 + 4,

Adapting to Misspecification in Contextual Bandits

and so on, up to and including τm. Suppose round t is one
of these time-steps in epoch m where the algorithm tests
for misspecification. The test starts by constructing a loose
high-probability lower bound on the expected reward of the
optimal policy, lm−1 = maxm′≤m−1 l

′
m′ .

8 The test con-
sists of checking whether cumulative rewards

∑t
i=1 ri(ai)

remain above some lower bound Lt, defined as

Lt :=t · lm−1 − τ1 −
√

2t ln
(dm+ log2(τ1)e3

δ′

)
− 20.3

√
K

t∑
i=τ2

√
ξ
(
τm(i)−1 − τm(i)−2,

δ′

(m(i))2

)
.

(12)
Once we detect that cumulative reward dip below this bound,
the algorithm switches to “not safe” status forever.

Algorithm 1 Safe-FALCON
input: Initial epoch length τ1 ≥ 2, confidence parameter
δ ∈ (0, 1).

1: Set τ0 = 0, and τm+1 = 2τm for all m ≥ 1.
2: Let f̂1 ≡ 0, l0 = 0, Crwd0 = 0 , safe = True, and
m̂ = 0.

3: for epoch m = 1, 2, . . . do
4: Let γm be given by (10). (for epoch 1, γ1 = 1.)
5: for round t = τm−1 + 1, . . . , τm do
6: Observe context xt.
7: if safe then
8: Let pm be given by (9).
9: Sample at ∼ pm(·|xt), and observe rt(at).

10: Let Crwdt ← Crwdt−1 + rt(at).
11: if m ≥ 2 then
12: safe← Check-is-safe(m, t, lm−1,Crwdt).
13: end if
14: else
15: Sample at ∼ pm̂(·|xt).
16: end if
17: end for
18: if safe then
19: Let Sm := {(xt, at, rt(at))}τmt=τm−1+1, be the

data collected in epoch m.
20: Let (lm, m̂)← Choose-safe(m,Sm, lm−1).
21: Let f̂m+1 be the output of the regression algorithm

with Sm as input.
22: end if
23: end for

8By construction, l′m is a high probability lower bound on the
expected reward of the randomized policy used in epochm. Hence,
lm = maxm′≤m l′m′ is a high probability lower bound on the
expected reward of some (possibly randomized) policy. Therefore,
lm is also a high probability lower bound on the expected reward
of the optimal policy.

Algorithm 2 Check-is-safe
input: Epoch m, time-step t, lower bound lm−1, and
Crwdt.

1: Let Lt be given by (12).
2: if log2(t− τm−1) ∈ {0, 1, 2, · · · } or t = τm then
3: if Crwdt ≥ Lt then
4: safe← True.
5: else
6: safe← False.
7: end if
8: end if
9: Return safe.

Algorithm 3 Choose-safe
input: Epoch m, lower bound lm−1, and data collected in
the m-th epoch Sm.

1: Let

l′m =
1

|Sm|
∑

(x,a,r)∈Sm

r −

√
1

2|Sm|
ln

(
m2

δ

)
.

2: Let lm = max(lm−1, l
′
m).

3: if lm 6= lm−1 then
4: Update m̂← m.
5: end if
6: Return (lm, m̂).

2.3. Understanding Safe-FALCON

In this section we try to understand Safe-FALCON and si-
multaneously sketch a proof for our main cumulative regret
bound (Theorem 1). Theorem 1 provides the following
bound on cumulative regret:

RT ≤ O

(
√
KB T

+
√
K

T∑
t=τ1+1

√
ξ
(
τm(t)−1 − τm(t)−2,

δ

(m(t))2

))
.

(13)

The first term in (13) is the regret overhead due to mis-
specification, and the second term is the regret bound for
FALCON+ assuming realizability holds. We also briefly
note that all expectations in this section are taken over the
randomness in the environment and algorithm being used.

To understand the intuition behind the algorithm, consider
the following epoch,

m∗ := max

{
m | B ≤ ξ

(
τm − τm−1,

δ′

m2

)}
. (14)

We show that, with high probability, the status at the end of

Adapting to Misspecification in Contextual Bandits

epoch m∗ + 1 is “safe”. Moreover, up to the end of epoch
m∗ + 1, our upper bound on the expected instantaneous
regret decreases at the same rate as when realizability holds.
The proof of this fact follows by making a “simple” observa-
tion that allows us to extend the analysis of (Simchi-Levi &
Xu, 2020) to bound cumulative regret in these early epochs.
In particular, if m(t) ≤ m∗ + 1, we get that with high prob-
ability the expected cumulative regret up to time t is upper
bounded by:

E
[t∑
i=1

(ri(π
∗(xi))− ri(ai))

]

≤ τ1 + 20.3
√
K

t∑
i=τ2

√
ξ
(
τm(i)−1 − τm(i)−2,

δ′

(m(i))2

)
,

(15)
which are the bounded attained by FALCON+ under real-
izability. After epoch m∗ + 1, the expected instantaneous
regret may increase. However, we show that the lower
bound we construct for the expected reward of the policy
that selects according to the action selection kernel pm∗+1

is sufficiently close to the expected reward of the optimal
policy:

E[rt(π
∗(xt))]− l′m∗+1 ≤ O(

√
KB). (16)

Hence, if we knew m∗, by switching the algorithm’s status
to “not safe” at the end of epoch m∗ + 1 would give us the
required bounds on cumulative regret (Theorem 1). Unfortu-
nately, we do not know the value of m∗. So, we try to detect
if our current epoch m is larger than m∗ + 1 by looking for
unexpected jumps in cumulative regret.9 Recall that from
the construction of lm−1 described in Section 2.2, we have
have that, lm−1 is a weak high-probability lower bound on
the expected reward of the optimal policy (E[rt(π

∗(xt))]).
Therefore, from (15) we get that when m(t) ≤ m∗ + 1, the
expected cumulative reward up to time t should be lower
bounded by:

E
[t∑
i=1

ri(ai)

]
≥ t · lm−1 − τ1

− 20.3
√
K

t∑
i=τ2

√
ξ
(
τm(i)−1 − τm(i)−2,

δ′

(m(i))2

)
.

(17)
Now, from standard concentration arguments and (17), we
get that with high probability, the cumulative reward up to
time tmust be lower bounded by Lt ifm(t) ≤ m∗+1. That
is, with high-probability, our test claims thatm(t) > m∗+1
only if it is true. This completes the proof sketch for the
validity of the misspecification test. Hence, by design, we

9Note that in the realizable case, m∗ is ∞, therefore trying
to detect if m > m∗ + 1 can also be considered as a test for
misspecification as it is also testing the finiteness of m∗.

get that the status at the end of epoch m∗ + 1 is safe with
high probability.

Finally consider the case when m(t) > m∗ + 1, but the
misspecification test was not violated. That is m(t) > m∗+
1, but the cumulative reward up to time t is lower bounded
by Lt. By our algorithm design, since m(t) > m∗ + 1, we
get that:

lm(t)−1 ≥ lm∗+1 ≥ l′m∗+1. (18)

Combining (16) and (18), gives us that with high-probability,
the lower bound lm(t)−1 is close to the expected reward of
the optimal policy:

E[rt(π
∗(xt))]− lm(t)−1 ≤ O(

√
KB). (19)

Combining (19) and the fact that cumulative reward up to
time t is lower bounded by Lt, we get the required bound
on cumulative regret (13).10

As we argued earlier, with high-probability, the algorithm’s
status switch only happens after epoch m∗ + 1. From (16),
we get that the instantaneous regret after the status switch
is sufficiently small to give us the required bound on the
cumulative regret (13). This completes the proof sketch
for Theorem 1 and also explains our algorithmic choices in
Safe-FALCON.

2.4. Main result

The performance of our algorithm will depend on known
estimation rates of the regression algorithm. As discussed
in Section 2.1, we require the regression algorithm used in
Safe-FALCON to satisfy Assumption 1 described below.

Assumption 1. Suppose that the regression algorithm used
on the class of outcome model F satisfies the following
property. For any probability kernel p ∈ K(F), any natural
number n, and any ζ ∈ (0, 1), the following holds with
probability at least 1− ζ:

E
x∼DX

E
a∼p(·|x)

[(f̂(x, a)−f∗(x, a))2] ≤ B+ξ(n, ζ). (20)

and where f̂ is the output of the regression algorithm fit-
ted on n independently and identically drawn samples from
D(p) as input. Here B > 0 is a (possibly unknown) con-
stant. The function ξ : N × [0, 1] → [0,∞) is a known,

“valid” rate; i.e., it satisfies (6) and (7).11

10We use (19) to lower bound Lt in terms of the expected op-
timal reward. We then use standard concentration inequalities to
further lower bound this in terms of the cumulative reward of the
optimal policy. Since Lt itself is a lower bound on the cumulative
reward up to time t, we get the required bound on cumulative
regret (13).

11For regression algorithms that satisfy (5), we get that the
constant B used in assumption 1 is given by (3).

Adapting to Misspecification in Contextual Bandits

Theorem 1 (Main result). Suppose the regression algo-
rithm used in Safe-FALCON satisfies Assumption 1. Then
with probability at least 1 − δ, Safe-FALCON attains the
following regret guarantee:

RT ≤ O

(
√
KB T

+
√
K

T∑
t=τ1+1

√
ξ
(
τm(t)−1 − τm(t)−2,

δ

(m(t))2

))
.

(21)

The above regret typically has the same rate as
O(
√
Kξ(T, δ/ log(T))T +

√
KBT). In particular, when

the estimation rates in assumption 1 are of the form (8), we
get the regret bound given by Corollary 1.

Corollary 1. Suppose the regression algorithm used in
Safe-FALCON satisfies Assumption 1 with estimation rate
of the form given by (8). Then with probability at least 1−δ,
Safe-FALCON attains the following regret guarantee:

RT ≤ O

(
√
KB T

+

√
KT 2−ρ lnρ

′
(T) ln

(ln(T)

δ

)
comp(F)

)
.

(22)

Note that Theorem 1 provides a bias-variance trade-off for
contextual bandits. The first term in (21) (regret overhead
due to misspecification) depends on B, which is a tight up-
per bound on the average squared bias for the best estimator
in the model class F under the distribution induced by any
probability kernel in K(F). The second term in (21) (regret
bound under realizability) depends on the estimation rate
ξ(·, ·), which captures the variance of the regression ora-
cle estimate over the class F . For more expressive model
classes, the bias termB is small, but the variance term ξ(·, ·)
is large, showing that there is a bias-variance trade-off for
contextual bandits that rely on some model class F . A bet-
ter dependency on the variance term cannot be expected
even when realizability holds (see e.g. Foster & Rakhlin,
2020). In Theorem 2, we show that one cannot get a better
dependency on the bias term either by providing a Ω(

√
KB)

lower bound on the regret overhead due to misspecification
for contextual bandits that use regression oracles or rely on
a model class F .

2.5. Lower bound

We prove a new lower bound on the regret overhead due to
misspecification for the stochastic contextual bandit setting
in terms of the average misspecification error

√
B, where

B is defined in (3).

The issue of model misspecification is specific to contex-
tual bandit algorithms that use regression oracles or rely on
some model class F . To state a lower bound on the regret
overhead due to misspecification, it is helpful to understand
the common characteristics of such algorithms. We argue
that the set K(F) is central to many contextual bandit algo-
rithms based on regression oracles. In particular, we will
argue that at every time-step t such algorithms choose some
probability kernel p̃t in the convex hull of K(F), receive a
context xt, and sample an action ãt from p̃t(·|xt).

For example, at every time-step, the algorithms used in
(Foster & Rakhlin, 2020), (Simchi-Levi & Xu, 2020), and
this work use probability kernels of the form defined in (9),
which are in K(F). Similarly, parametric Thompson Sam-
pling algorithms (e.g., Agrawal & Goyal, 2013) select ac-
tions by following probability kernels that lie in the convex
hull of K(F). This is because, in our notation, Thompson
Sampling algorithms at every time-step sample a function f̃
from the class F and then follow the policy πf̃ , which corre-
sponds to some kernel in K(F). The same is true for greedy
and epsilon-greedy algorithms that select actions based on a
regression oracle since uniform sampling does not depend
on contexts and since the greedy policy πf corresponds to
some probability kernel in K(F).

While algorithms based on upper confidence bounds may
not use policies that correspond to kernels in the convex
hull of K(F), we informally note that these algorithms are
asymptotically greedy and hence converge to policies that
correspond to kernels in K(F).12

Theorem 2 shows that there is a family of stochastic contex-
tual bandit instances such that, for any probability kernel in
the convex hull of K(F), the expected instantaneous regret
of the induced randomized policy can be lower bounded by
Ω(
√
KB). Hence on these instances, any algorithm that

plays randomized policies induced by probability kernels in
the convex hull of K(F) for at least a constant fraction of
time-steps has expected cumulative regret lower bounded
by Ω(

√
KB · T).

Theorem 2 (Lower bound). Consider any K ≥ 2 and
B ∈ [0, 1/(2K)]. One can construct a model class F and
a stochastic contextual bandit instance with K arms. Such
that the average misspecification error is

√
B. And for

any probability kernel p in the convex hull of the kernel
set K(F), the expected instantaneous regret of the induced
randomized policy can be lower bounded by:

E
(x,r)∼D

E
a∼p(·|x)

[
r(π∗(x))− r(a)

]
≥ Ω(

√
KB) (23)

An immediate implication of Theorem 2 is that the regret

12UCB algorithms rely on confidence estimates. It wasn’t clear
to us what the general form of these confidence estimates should
be and how they would relate to F .

Adapting to Misspecification in Contextual Bandits

overhead due to misspecification for most contextual bandit
algorithms that use regression oracles can be lower bounded
by Ω(

√
KB ·T). Hence showing that the regret upper bound

(Theorem 1) ensured by Safe-FALCON is optimal.

2.6. Improving Safe-FALCON and a Simulation

In Section 2.2, we discussed a misspecification test
(Check-is-safe) that checks if the cumulative reward re-
mains above a lower bound Lt. At every round where we
verify this condition, we can similarly check if the average
per-epoch reward remains above a lower bound (see (24)).
Similar to the argument used in Section 2.3, one can show
that (24) holds with high-probability if m(t) ≤ m∗ + 1.
Hence adding this test to Check-is-safe can only make
Safe-FALCON more robust, ensuring Theorem 1 contin-
ues to hold.

1

t− τm(t)−1

t∑
i=τm(t)−1

ri(ai) ≥ lm(t)−1

− 20.3
√
K

√
ξ
(
τm(t)−1 − τm(t)−2,

δ′

(m(t))2

)
−

√
2

t− τm(t)−1
ln

(
dm(t) + log2(τ1)e3

δ′

)
(24)

Further improvements to Check-is-safe can be made by con-
structing better high-probability lower bounds (lm−1) on
the expected reward of the optimal policy. One approach
to constructing such bounds would be to use offline policy
evaluation methods to construct a lower bound on the ex-
pected reward of a policy that is estimated to be optimal.
We do not pursue this here.

Figure 2. Illustrating that linear Safe-FALCON does not fail on
Example (1). Each epoch starts at round 2m. Vertical bars are 95%
confidence intervals around the average per-epoch average regret,
aggregated over 50 simulations.

To complete our discussion from Section 1, we simulate a

version of linear Safe-FALCON on Example (1). In particu-
lar, we implement a version of Safe-FALCON that uses two
misspecification tests, a test that checks if the cumulative re-
ward remains above a lower bound (line 3 of Check-is-safe)
and a test that checks if the average per-epoch reward re-
mains above a lower bound (24). Other parameters are
chosen as in the introduction example (see Appendix D for
details). The results are shown in Figure 2.

Despite this example not being linearly realizable, in con-
trast to FALCON+ (see Figure 1), average per-epoch regret
under Safe-FALCON does not increase in later periods (see
Figure 2). Safe-FALCON detects misspecification some-
time after epoch 12 and defaults to the action selection
kernel used in epoch m̂ thereafter. For each simulation,
the selected safe policy is fixed and attains constant regret,
which explains the horizontal lines seen on the right side
of the graph in Figure 2. An interesting direction for future
improvement is to develop algorithms that continue adaptive
experimentation after epoch m̂.

3. Discussion
In this work, we presented a contextual bandit algorithm that
is computationally tractable, flexible, and supports general-
purpose function approximation. The ideas used here are
relatively simple and allow us to provide a reduction from
contextual bandits to offline regression without assuming
realizability. We do this by modifying the FALCON+ al-
gorithm, allowing us to inherit the optimal guarantees of
(Simchi-Levi & Xu, 2020) when realizability holds. When
realizability doesn’t hold, we get an optimal bound on the re-
gret overhead due to misspecification in terms of the average
misspecification error. We provide both upper (Theorem 1)
and lower (Theorem 2) bounds on regret, allowing us to
quantify the bias-variance trade-off for contextual bandit
algorithms based on regression oracles.

4. Acknowledgments
We are grateful for the generous financial support provided
by the Sloan Foundation, Schmidt Futures and the Office of
Naval Research grant N00014-19-1-2468. SKK acknowl-
edges generous support from the Dantzig-Lieberman Opera-
tions Research Fellowship.

References
Agarwal, A., Hsu, D., Kale, S., Langford, J., Li, L., and

Schapire, R. Taming the monster: A fast and simple algo-
rithm for contextual bandits. In International Conference
on Machine Learning, pp. 1638–1646, 2014.

Agrawal, S. and Goyal, N. Thompson sampling for contex-
tual bandits with linear payoffs. In International Confer-

Adapting to Misspecification in Contextual Bandits

ence on Machine Learning, pp. 127–135. PMLR, 2013.

Dudik, M., Hsu, D., Kale, S., Karampatziakis, N., Langford,
J., Reyzin, L., and Zhang, T. Efficient optimal learning
for contextual bandits. arXiv preprint arXiv:1106.2369,
2011.

Foster, D. J. and Rakhlin, A. Beyond ucb: Optimal and
efficient contextual bandits with regression oracles. arXiv
preprint arXiv:2002.04926, 2020.

Foster, D. J., Agarwal, A., Dudı́k, M., Luo, H., and Schapire,
R. E. Practical contextual bandits with regression oracles.
arXiv preprint arXiv:1803.01088, 2018.

Foster, D. J., Gentile, C., Mohri, M., and Zimmert, J. Adapt-
ing to misspecification in contextual bandits. Advances
in Neural Information Processing Systems, 33, 2020a.

Foster, D. J., Rakhlin, A., Simchi-Levi, D., and Xu, Y.
Instance-dependent complexity of contextual bandits and
reinforcement learning: A disagreement-based perspec-
tive. arXiv preprint arXiv:2010.03104, 2020b.

Ghosh, A., Chowdhury, S. R., and Gopalan, A. Misspecified
linear bandits. In Proceedings of the AAAI Conference
on Artificial Intelligence, 2017.

Koltchinskii, V. Oracle Inequalities in Empirical Risk Mini-
mization and Sparse Recovery Problems: Ecole d’Eté de
Probabilités de Saint-Flour XXXVIII-2008, volume 2033.
Springer Science & Business Media, 2011.

Krishnamurthy, S. K., Hadad, V., and Athey, S. Tractable
contextual bandits beyond realizability. arXiv preprint
arXiv:2010.13013, 2020.

Lattimore, T. and Szepesvári, C. Bandit algorithms. Cam-
bridge University Press, 2020.

Lattimore, T., Szepesvari, C., and Weisz, G. Learning with
good feature representations in bandits and in rl with a
generative model. In International Conference on Ma-
chine Learning, pp. 5662–5670. PMLR, 2020.

Li, L., Chu, W., Langford, J., and Schapire, R. E. A
contextual-bandit approach to personalized news article
recommendation. In Proceedings of the 19th interna-
tional conference on World wide web, pp. 661–670. ACM,
2010.

Neu, G. and Olkhovskaya, J. Efficient and robust algorithms
for adversarial linear contextual bandits. In Conference
on Learning Theory, pp. 3049–3068. PMLR, 2020.

Pacchiano, A., Phan, M., Abbasi-Yadkori, Y., Rao, A., Zim-
mert, J., Lattimore, T., and Szepesvari, C. Model selection
in contextual stochastic bandit problems. arXiv preprint
arXiv:2003.01704, 2020.

Simchi-Levi, D. and Xu, Y. Bypassing the monster: A faster
and simpler optimal algorithm for contextual bandits un-
der realizability. Available at SSRN, 2020.

Xu, Y. and Zeevi, A. Upper counterfactual confidence
bounds: a new optimism principle for contextual bandits.
arXiv preprint arXiv:2007.07876, 2020.

