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Abstract
Distributional shift is one of the major obstacles
when transferring machine learning prediction
systems from the lab to the real world. To tackle
this problem, we assume that variation across
training domains is representative of the varia-
tion we might encounter at test time, but also
that shifts at test time may be more extreme in
magnitude. In particular, we show that reducing
differences in risk across training domains can
reduce a model’s sensitivity to a wide range of ex-
treme distributional shifts, including the challeng-
ing setting where the input contains both causal
and anti-causal elements. We motivate this ap-
proach, Risk Extrapolation (REx), as a form of
robust optimization over a perturbation set of ex-
trapolated domains (MM-REx), and propose a
penalty on the variance of training risks (V-REx)
as a simpler variant. We prove that variants of
REx can recover the causal mechanisms of the tar-
gets, while also providing robustness to changes
in the input distribution (“covariate shift”). By
trading-off robustness to causally induced distri-
butional shifts and covariate shift, REx is able to
outperform alternative methods such as Invariant
Risk Minimization in situations where these types
of shift co-occur.

1. Introduction
While neural networks often exhibit super-human general-
ization on the training distribution, they can be extremely
sensitive to distributional shift, presenting a major roadblock
for their practical application (Su et al., 2019; Engstrom
et al., 2017; Recht et al., 2019; Hendrycks & Dietterich,
2019). This sensitivity is often caused by relying on “spuri-
ous” features unrelated to the core concept we are trying to
learn (Geirhos et al., 2018). For instance, Beery et al. (2018)
give the example of an image recognition model failing to
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correctly classify cows on the beach, since it has learned to
make predictions based on the features of the background
(e.g. a grassy field) instead of just the animal.

In this work, we consider out-of-distribution (OOD) gen-
eralization,also known as domain generalization, where
a model must generalize appropriately to a new test domain
for which it has neither labeled nor unlabeled training data.
Following common practice (Ben-Tal et al., 2009), we for-
mulate this as optimizing the worst-case performance over
a perturbation set of possible test domains, F :

ROOD
F (θ) = max

e∈F
Re(θ) (1)

Since generalizing to arbitrary test domains is impossi-
ble, the choice of perturbation set encodes our assumptions
about which test domains might be encountered. Instead
of making such assumptions a priori, we assume access to
data from multiple training domains, which can inform our
choice of perturbation set. A classic approach for this set-
ting is group distributionally robust optimization (DRO)
(Sagawa et al., 2019), where F contains all mixtures of the
training distributions. This is mathematically equivalent to
considering convex combinations of the training risks.

However, we aim for a more ambitious form of OOD gener-
alization, over a larger perturbation set. Our method min-
imax Risk Extrapolation (MM-REx) is an extension of
DRO where F instead contains affine combinations of train-
ing risks, see Figure 1. Under specific circumstances, MM-
REx can be thought of as DRO over a set of extrapolated
domains.1 But MM-REx also unlocks fundamental new
generalization capabilities unavailable to DRO.

In particular, focusing on supervised learning, we show
that Risk Extrapolation can uncover invariant relationships
between inputs X and targets Y . Intuitively, an invariant
relationship is a statistical relationship which is maintained
across all domains in F . Returning to the cow-on-the-beach
example, the relationship between the animal and the label
is expected to be invariant, while the relationship between
the background and the label is not. A model which bases
its predictions on such an invariant relationship is said to
perform invariant prediction.2

1We define “extrapolation” to mean “outside the convex hull”,
see Appendix B for more.

2Note this is different from learning an invariant representation



Out-of-Distribution Generalization via Risk Extrapolation

#                   »

P 1(X,Y )

#                   »

P 2(X,Y )e1
e2

e3

R
RRI

convex hull
of training
distributions

#                   »

P 1(X,Y )

#                   »

P 2(X,Y )e1
e2

e3

RMM-REx
R

extrapolation
region

Figure 1. Left: Robust optimization optimizes worst-case performance over the convex hull of training distributions. Right: By
extrapolating risks, REx encourages robustness to larger shifts and flattens the “risk plane” – the plane containing the training domains
(e1, e2, and e3).
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P 2(X,Y ) represent particular directions in the affine space of quasiprobability distributions over (X,Y ).

Many domain generalization methods assume P (Y |X) is an
invariant relationship, limiting distributional shift to changes
in P (X), which are known as covariate shift (Ben-David
et al., 2010b). This assumption can easily be violated, how-
ever. For instance, when Y causes X , a more sensible
assumption is that P (X|Y ) is fixed, with P (Y ) varying
across domains (Schölkopf et al., 2012; Lipton et al., 2018).
In general, invariant prediction may involve an aspect of
causal discovery. Depending on the perturbation set, how-
ever, other, more predictive, invariant relationships may also
exist (Koyama & Yamaguchi, 2020).

The first method for invariant prediction to be compati-
ble with modern deep learning problems and techniques
is Invariant Risk Minimization (IRM) (Arjovsky et al.,
2019), making it a natural point of comparison. Our work
focuses on explaining how REx addresses OOD generaliza-
tion, and highlighting differences (especially advantages) of
REx compared with IRM and other domain generalization
methods, see Table 1. Broadly speaking, REx optimizes
for robustness to the forms of distributional shift that have
been observed to have the largest impact on performance in
training domains. This can be a significant advantage over
the more focused (but also limited) robustness that IRM
targets. For instance, unlike IRM, REx can better encourage
robustness to covariate shift (see Section 3 and Figure 5).

Our experiments show that REx significantly outperforms
IRM in settings that involve covariate shift and require in-
variant prediction, including modified versions of CMNIST
and simulated robotics tasks from the Deepmind control
suite. On the other hand, because REx does not distinguish
between underfitting and inherent noise, IRM has an advan-
tage in settings where some domains are intrinsically harder
than others. Our contributions include:

1. MM-REx, a novel domain generalization problem for-

(Ganin et al., 2016); see Section 2.2.

mulation suitable for invariant prediction.

2. Demonstrating that REx solves invariant prediction
tasks where IRM fails due to covariate shift.

3. Proving that equality of risk across domains can be a
sufficient criteria for discovering causal structure.

Figure 1 illustrates how MM-REx encourages equality of
risks: extrapolation magnifies any difference in risks that ex-
ists between training domains e1, e2, e3. At the same time,
encouraging equality of risks enables good OOD general-
ization to domains that vary in the same directions as the
training domains. Extrapolated domains might correspond
to more radical interventions than those observed during
training. And they can help reveal which features are un-
reliable; see Figure 2 for a real example. While MM-REx
provides a clear link between equalizing risks and OOD
generalization, our experiments focus on a simpler method
called V-REx, which simply penalizes the risks’ variance.

2. Background & Related work
We consider multi-source domain generalization, where our
goal is to find parameters θ that perform well on unseen do-
mains, given a set of m training domains, E = {e1, .., em},
sometimes also called environments. We assume the loss
function, ` is fixed, and domains only differ in terms of
their data distribution Pe(X,Y ) and dataset De. The risk
function for a given domain/distribution e is:

Re(θ)
.
= E(x,y)∼Pe(X,Y )`(fθ(x), y) (2)

We refer to members of the set {Re|e ∈ E} as the training
risks or simply risks. Changes in Pe(X,Y ) can be catego-
rized as either changes in P (X) (covariate shift), changes
in P (Y |X) (concept shift), or a combination. The standard
approach to learning problems is Empirical Risk Mini-
mization (ERM), which minimizes the average loss across
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Method Invariant Prediction Covariate Shift Robustness Suitable for Deep Learning

DRO 7 3 3

(C-)ADA 7 (3) 3

ICP 3 7 7

IRM 3 7 3

REx 3 3 3

Table 1. A comparison of approaches for OOD generalization. (C-)ADA works for covariate shifts that do not also induce label shift.

all the training examples from all the domains:

RERM(θ)
.
= E(x,y)∼D `(fθ(x), y) (3)

=
1

D

∑
e

|De|E(x,y)∼De
`(fθ(x), y) (4)

where D .
= ∪e∈EDe.

2.1. Robust Optimization

An approach more taylored to OOD generalization is ro-
bust optimization (Ben-Tal et al., 2009), which aims to
optimize a model’s worst-case performance over some per-
turbation set of possible data distributions, F (see Eqn. 1).
When only a single training domain is available (single-
source domain generalization), it is common to assume
that P (Y |X) is fixed, and let F be all distributions within
some f -divergence ball of the training P (X) (Hu et al.,
2016; Bagnell, 2005). As another example, adversarial ro-
bustness can be seen as instead using a Wasserstein ball as
a perturbation set (Sinha et al., 2017). The assumption that
P (Y |X) is fixed is commonly called the “covariate shift
assumption” (Ben-David et al., 2010b); however, we assume
that covariate shift and concept shift can co-occur, and re-
fer to this assumption by the novel term fixed relationship
assumption (FRA).

In multi-source domain generalization, test distributions
are often assumed to be mixtures (i.e. convex combinations)
of the training distributions (Sagawa et al., 2019; Qian et al.,
2018; Hu et al., 2016); this is equivalent to setting F .

= E :

RRI(θ)
.
= max

Σeλe=1
λe≥0

m∑
e=1

λeRe(θ) = max
e∈E
Re(θ). (5)

We call this objective Risk Interpolation (RI), or, follow-
ing Sagawa et al. (2019), (group) Distributionally Robust
Optimization (DRO). While single-source methods classi-
cally assume that the probability of each data-point can vary
independently (Hu et al., 2016), DRO yields a much lower
dimensional perturbation set, with at most one direction of
variation per domain, regardless of the dimensionality of
X and Y . It also does not rely on FRA, and can provide
robustness to any form of shift in P (X,Y ) which occurs

across training domains. Minimax-REx is an extension of
this approach to affine combinations of training risks.

2.2. Invariant representations vs. invariant predictors

One approach to domain generalization, popular in deep
learning, is to view it as a representation learning problem
(Bengio et al., 2014).3 We define an equipredictive rep-
resentation, Φ, as a function of X with the property that
Pe(Y |Φ) is equal, ∀e ∈ F . In other words, the relationship
between such a Φ and Y is fixed across domains. Invari-
ant relationships between X and Y are then exactly those
that can be written as P (Y |Φ(x)) with Φ an equipredictive
representation. A model P̂ (Y |X = x) that learns such an
invariant relationship is called an invariant predictor. In-
tuitively, an invariant predictor works equally well across
all domains in F . The principle of risk extrapolation aims
to achieve invariant prediction by enforcing such equality
across training domains E , and does not rely on explicitly
learning an equipredictive representation.

Koyama & Yamaguchi (2020) prove that a maximal
equipredictive representation – that is, one that max-
imizes mutual information with the targets, Φ∗

.
=

argmaxΦI(Φ, Y ) – solves the robust optimization prob-
lem (Eqn. 1) under fairly general assumptions.4 When Φ∗

is unique, we call the features it ignores spurious. The re-
sult of Koyama & Yamaguchi (2020) provides a theoretical
reason for favoring invariant prediction over the common
approach of learning invariant representations (Pan et al.,
2010), which make Pe(Φ) or Pe(Φ|Ŷ ) equal ∀e ∈ E . Popu-
lar methods here include adversarial domain adaptation
(ADA) (Ganin et al., 2016) and conditional ADA (C-ADA)
(Long et al., 2018). Unlike invariant predictors, invariant
representations can easily fail to generalize OOD: ADA
forces the predictor to have the same marginal predictions
P̂ (Y ), which is a mistake when P (Y ) in fact changes across

3See Appendix I for more discussion of relevant work in deep
learning.

4The first formal definition of an equipredictive representation
we found was by Koyama & Yamaguchi (2020), who use the term
“(maximal) invariant predictor”. We prefer our terminology since:
1) it is more consistent with Arjovsky et al. (2019), and 2) Φ is a
representation, not a predictor.
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Figure 2. Training accuracies (left) and risks (right) on colored MNIST domains with varying P (Y = 0|color = red) after 500 epochs.
Dots represent training risks, lines represent test risks on different domains. Increasing the V-REx penalty (β) leads to a flatter “risk plane”
and more consistent performance across domains, as the model learns to ignore color in favor of shape-based invariant prediction. Note
that β = 100 gives the best worst-case risk across the 2 training domains, and so would be the solution preferred by DRO (Sagawa et al.,
2019). This demonstrates that REx’s counter-intuitive propensity to increase training risks can be necessary for good OOD performance.

domains (Zhao et al., 2019); C-ADA suffers from the same
issue (Tachet et al., 2020).

2.3. Invariance and causality

The relationship between cause and effect is a paradigmatic
example of an invariant relationship. Here, we summarize
definitions from causal modeling, and discuss causal ap-
proaches to domain generalization. We will refer to these
definitions for the statements of our theorems in Section 3.2.

Definitions. A causal graph is a directed acyclic graph
(DAG), where nodes represent variables and edges point
from causes to effects. In this work, we use Structural
Causal Models (SCMs) (sometimes called Structural
Equation Models (SEMs)), which also specify how the
value of a variable is computed given its parents. An SCM,
C, is defined by specifying the mechanism, fZ : Pa(Z)→
dom(Z) for each variable Z.5 Mechanisms are determinis-
tic; noise in Z is represented explicitly via a special noise
variable NZ , and these noise variables are jointly indepen-
dent. An intervention, ι is any modification to the mecha-
nisms of one or more variables; an intervention can intro-
duce new edges, so long as it does not introduce a cycle.
do(Xi = x) denotes an intervention which sets Xi to the
constant value x (removing all incoming edges). Data can
be generated from an SCM, C, by sampling all of the noise
variables, and then using the mechanisms to compute the
value of every node whose parents’ values are known. This
sampling process defines an entailed distribution, PC(Z)
over the nodes Z of C. We overload fZ , letting fZ(Z) refer
to the conditional distribution PC(Z|Z \ {Z}).

Causal approaches to domain generalization. Instead
of assuming P (Y |X) is fixed (FRA), works that take a
causal approach to domain generalization often assume that

5Our definitions follow Elements of Causal Inference (Peters
et al., 2017); our notation mostly does as well.

the mechanism for Y is fixed; our term for this is the fixed
mechanism assumption (FMA). Meanwhile, such works
assume X may be subject to different (e.g. arbitrary) in-
terventions in different domains (Bühlmann, 2018). We
call changes in P (X,Y ) resulting from interventions on X
interventional shift. Interventional shift can involve both
covariate shift and/or concept shift. In their seminal work
on Invariant Causal Prediction (ICP), Peters et al. (2016)
leverage this invariance to learn which elements of X cause
Y . ICP and its nonlinear extension (Heinze-Deml et al.,
2018) use statistical tests to detect whether the residuals of
a linear model are equal across domains. Our work differs
from ICP in that:

1. Our method is model agnostic and scales to deep net-
works.

2. Our goal is OOD generalization, not causal inference.
These are not identical: invariant prediction can some-
times make use of non-causal relationships, but when
deciding which interventions to perform, a truly causal
model is called for.

3. Our learning principle only requires invariance of risks,
not residuals. Nonetheless, we prove that this can
ensure invariant causal prediction.

A more similar method to REx is Invariant Risk Minimiza-
tion (IRM) (Arjovsky et al., 2019), which shares properties
(1) and (2) of the list above. Like REx, IRM also uses a
weaker form of invariance than ICP; namely, they insist
that the optimal (e.g. linear) classifier must match across
domains.6 Still, REx differs significantly from IRM. While
IRM specifically aims for invariant prediction, REx seeks
robustness to whichever forms of distributional shift are
present. Thus, REx is more directly focused on the problem
of OOD generalization, and can provide robustness to a

6In practice, IRMv1 replaces this bilevel optimization problem
with a gradient penalty on classifier weights.
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wider variety of distributional shifts, including more forms
of covariate shift. Also, unlike REx, IRM seeks to match
E(Y |Φ(X)) across domains, not the full P (Y |Φ(X)). This,
combined with IRM’s relative indifference to covariate shift,
make it more effective in cases where different domains or
examples are inherently more noisy.

2.4. Fairness

Equalizing risk across different groups (e.g. male vs. fe-
male) has been proposed as a definition of fairness (Donini
et al., 2018), generalizing the equal opportunity definition of
fairness (Hardt et al., 2016). Williamson & Menon (2019)
propose using the absolute difference of risks to measure de-
viation from this notion of fairness; this corresponds to our
MM-REx, in the case of only two domains, and is similar to
V-REx, which uses the variance of risks. However, in the
context of fairness, equalizing the risk of training groups is
the goal. Our work goes beyond this by showing that it can
serve as a method for OOD generalization.

2.5. On the effectiveness of invariant prediction and
domain generalization in deep learning

The practical and theoretical (dis)advantages of various deep
learning methods for domain generalization are not yet well
understood. In particular, the effectiveness of invariant pre-
diction has not been established, and several works provide
negative results.

Theoretically, Rosenfeld et al. (2020) prove that IRM can
sometimes successfully recover the optimal invariant pre-
dictor, but also that IRM (or REx) can fail to do so when
provided too few training domains. Rosenfeld et al. (2020)
also state that “IRM and its alternatives fundamentally do
not improve over standard Empirical Risk Minimization” in
the non-linear setting – non-linearity being a primary moti-
vation for the development of IRM. However, their theorem
only demonstrates the existence of a non-invariant model
which approximately satisfies the IRM criterion. This is
roughly analogous to demonstrating the existence of neural
network parameters that fit the training set but don’t gener-
alize to the test set – neither is sufficient to establish that the
method in question fails in practice.

Empirically, Gulrajani & Lopez-Paz (2020) perform a
methodologically sound comparison of existing methods
(including IRM) over a suite of popular benchmarks called
DomainBed, and find that no methods outperform ERM
on average;7 this result suggests that many positive results
in previous works could be the result of poor methodol-
ogy (e.g. tuning on the test distribution). Prior to Gulrajani
& Lopez-Paz (2020), we discussed this issue in a preprint
version of this work (Krueger et al., 2020), and in private

7V-REx is no exception, see Section 4.3

correspondence with the authors of Arjovsky et al. (2019),
after noting that their CMNIST experiments tune on the
test set.8 Gulrajani & Lopez-Paz (2020) also suggest that
domain generalization research might benefit from more
realistic benchmarks. In more recent work, Koh et al. (2021)
collect a set of such benchmarks called WILDS, and sev-
eral works (Wald et al., 2021; Shi et al., 2021; Robey et al.,
2021) demonstrate significant performance improvements
are possible on WILDS. The method of Wald et al. (2021)
in particular encourages invariant prediction by seeking a
model that is calibrated on all training domains.

3. Risk Extrapolation
Before discussing algorithms for REx and theoretical results,
we first expand on our high-level explanations of what REx
does, what kind of OOD generalization it promotes, and
how. The principle of Risk Extrapolation (REx) has two
aims:

1. Reducing training risks

2. Increasing similarity of training risks

In general, these goals can be at odds with each other; de-
creasing the risk in the domain with the lowest risk also de-
creases the overall similarity of training risks. Thus methods
for REx may seek to increase risk on the best performing do-
mains. While this is counter-intuitive, it can be necessary to
achieve good OOD generalization, as Figure 2 demonstrates.
From a geometric point of view, encouraging equality of
risks flattens the “risk plane” (the affine span of the training
risks, considered as a function of the data distribution, see
Figures 1 and 2). While this can result in higher training
risks, it also means that the risk changes less if the distribu-
tional shifts between training domains are magnified at test
time.

Figure 2 illustrates how flattening the risk plane can promote
OOD generalization on real data, using the Colored MNIST
(CMNIST) task as an example (Arjovsky et al., 2019). In
the CMNIST training domains, the color of a digit is more
predictive of the label than the shape is. But because the cor-
relation between color and label is not invariant, predictors
that use the color feature achieve different risk on different
domains. By enforcing equality of risks, REx prevents the
model from using the color feature enabling successful gen-
eralization to the test domain where the correlation between
color and label is reversed.

Probabilities vs. Risks. Figure 3 depicts how the extrap-
olated risks considered in MM-REx can be translated into
a corresponding change in P (X,Y ), using an example of
pure covariate shift. Training distributions can be thought

8See the official code release.

https://github.com/facebookresearch/InvariantRiskMinimization/blob/master/code/colored_mnist/reproduce_paper_results.sh##L43
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of as points in an affine space with a dimension for every
possible value of (X,Y ); see Appendix C.1 for an example.
Because the risk is linear w.r.t. P (x, y), a convex combi-
nation of risks from different domains is equivalent to the
risk on a domain given by the mixture of their distributions.
The same holds for the affine combinations used in MM-
REx, with the caveat that the negative coefficients may lead
to negative probabilities, making the resulting P (X,Y ) a
quasiprobability distribution, i.e. a signed measure with
integral 1. We explore the theoretical implications of this in
Appendix E.2.

Figure 3. Extrapolation can yield a distribution with negative P (x)
for some x. Top: P (x) for domains e1 and e2. Bottom: Point-
wise interpolation/extrapolation of P e1(x) and P e2(x). Since
MM-REx target worst-case robustness across extrapolated do-
mains, it can provide robustness to such shifts in P(X) (covariate
shift).

Covariate Shift. When only P (X) differs across do-
mains (i.e. FRA holds), as in Figure 3, then Φ(x) = x
is already an equipredictive representation, and so any op-
timal predictor is an invariant predictor. Arjovsky et al.
(2019) recognize this limitation of IRM in what they call
the “realizable” case. Yet even when capacity is too limited
to learn the optimal predictor, invariant prediction does not
encourage spending more capacity on low-density regions
of the input space, which can lead to poor performance if
rare examples become more common; this issue can arise
even when FRA does not hold. REx can provide such en-
couragement, however, as shown in Appendix C.2.

3.1. Methods of Risk Extrapolation
We now formally describe the Minimax REx (MM-REx)
and Variance-REx (V-REx) techniques for risk extrapola-
tion. While we use MM-REx to build geometric intuition
and emphasize the relationship with prior work such as
Sagawa et al. (2019), we believe V-REx is likely a more
practical algorithm, as it has a smoother optimization land-
scape, see Figure 3.1.9 See Appendix F for more on the

9Applying Algorithm 1 from Sagawa et al. (2019) to MM-
REx could be an alternative method of reducing optimization

relationship between V-REx and MM-REx.

Figure 4. Vector fields of the gradient evaluated at different val-
ues of training risks R1(θ), R2(θ). We compare the gradients
for RMM-REx (left) and RV-REx (right). Note that for RV-REx, the
gradient vectors curve smoothly towards the direction of the origin,
as they approach the diagonal (where training risks are equal); this
leads to a smoother optimization landscape.

Minimax-REx performs robust learning over a perturbation
set of affine combinations of training risks with bounded
coefficients:

RMM-REx(θ)
.
= max

Σeλe=1
λe≥λmin

m∑
e=1

λeRe(θ) (6)

= (1−mλmin) max
e
Re(θ) + λmin

m∑
e=1

Re(θ) ,

(7)

where m is the number of domains, and the hyperparame-
ter λmin controls how much we extrapolate. For negative
values of λmin, MM-REx places negative weights on the
risk of all but the worst-case domain, and as λmin → −∞,
this criterion enforces strict equality between training risks;
λmin = 0 recovers risk interpolation (RI). Thus, like RI,
MM-REx aims to be robust in the direction of variations in
P (X,Y ) between test domains. However, negative coeffi-
cients allow us to extrapolate to more extreme variations.
Geometrically, larger values of λmin expand the perturba-
tion set farther away from the convex hull of the training
risks, encouraging a flatter “risk-plane” (see Figure 2).

While MM-REx makes the relationship to RI/RO clear, we
found using the variance of risks as a regularizer (V-REx)
simpler, stabler, and more effective:

RV-REx(θ)
.
= β Var({R1(θ), ...,Rm(θ)}) +

m∑
e=1

Re(θ)

(8)

Here β ∈ [0,∞) controls the balance between reducing
average risk and enforcing equality of risks, with β = 0
recovering ERM, and β → ∞ leading V-REx to focus
entirely on making the risks equal.

difficulties.
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While exact equality of risks might be desirable in principle
in some settings (e.g. as discussed in Section 3.2, in practice,
we treat β and λmin as hyperparameters which effectively
determine the size of the perturbation set. Conceptually,
strict equality is undesirable in practice, since finite datasets
make it impossible to determine if differences in training
risks are due to the predictor being non-invariant or simply
due to sample noise.

3.2. Theoretical Conditions for REx to Perform Causal
Discovery

We now prove that exactly equalizing training risks (as in-
centivized by REx) leads a model to learn the causal mech-
anism10 of Y under assumptions similar to those of Peters
et al. (2016), namely:

1. The causes of Y are observed, i.e. Pa(Y ) ⊆ X .

2. Domains correspond to interventions on X .

3. Homoskedasticity (a slight generalization of the addi-
tive noise setting assumed by Peters et al. (2016)). We
say an SCM C is homoskedastic (with respect to a loss
function `), if the Bayes error rate of `(fY (x), fY (x))
is the same for all x ∈ X .11

The contribution of our theory (vs. ICP) is to prove that
equalizing risks is sufficient to learn the causes of Y . In con-
trast, they insist that the entire distribution of error residuals
(in predicting Y ) be the same across domains. The primary
purpose of these results is merely to help explain why REx
can encourage invariant prediction. In particular, we do not
provide any guarantees for the settings where we imagine
REx being applied (and which our experiments tackle) –
namely, deep networks and finitely many training domains.
We provide proof sketches here and complete proofs in the
appendix.

Theorem 1 demonstrates a practical result: we can identify
a linear SCM model using REx with a number of domains
linear in the dimensionality of X.

Theorem 1. Given a Linear SEM, Xi ←
∑
j 6=i β(i,j)Xj +

εi, with Y .
= X0, and a predictor fβ(X)

.
=
∑
j:j>0 βjXj+

εj that satisfies REx (with mean-squared error) over a per-
turbation set of domains that contains 3 distinct do() inter-
ventions for each Xi : i > 0. Then βj = β0,j ,∀j.

10See Section 2.3 for background on causality, including defini-
tions and notation.

11 Note that our definitions of homoskedastic/heteroskedastic
do not correspond to the types of domains constructed in Arjovsky
et al. (2019), Section 5.1, but rather are a generalization of the
definitions of these terms as commonly used in statistics. Specif-
ically, for us, heteroskedasticity means that the “predictability”
(e.g. variance) of Y differs across inputs x, whereas for Arjovsky
et al. (2019), it means the predictability of Y at a given input
varies across domains; we refer to this second type as domain-
homo/heteroskedasticity for clarity.

Proof Sketch. We adapt the proof of Theorem 4i from
Peters et al. (2016). They show that matching the resid-
ual errors across observational and interventional domains
forces the model to learn fY . We use the weaker condition
of matching risks to derive a quadratic equation that the
do() interventions must satisfy for any model other than
fY . Since there are at most 2 solutions to a quadratic equa-
tion, insisting on equality of risks across 3 distinct do()
interventions forces the model to learn fY .

Given the assumption that a predictor satisfies REx over all
interventions that do not change the mechanism of Y , we
can prove a much more general result. We now consider an
arbitrary SCM, C, generating Y and X , and let EI be the
set of domains corresponding to arbitrary interventions on
X , similarly to Peters et al. (2016).

Theorem 2. Suppose ` is a (strictly) proper scoring rule.
Then a predictor that satisfies REx over EI uses fY (x) as
its predictive distribution on input x for all x ∈ X .

Proof Sketch. Since the distribution of Y given its par-
ents doesn’t depend on the domain, fY can make reliable
point-wise predictions across domains. This translates into
equality of risk across domains when the overall difficulty
of the examples is held constant across domains, e.g. by
assuming homoskedasticity.12 While a different predictor
might do a better job on some domains, we can always find
a domain where it does worse than fY , and so fY is both
unique and optimal.

Remark. Theorem 2 is only meant to provide insight into
how the REx principle relates to causal invariance; the per-
turbation set in this theorem is uncountably infinite. Note,
however, that even in this setting, the ERM principle does
not, in general, recover the causal mechanism for Y . Rather,
the ERM solution depends on the distribution over domains.
For instance, if all but an ε→ 0 fraction of the data comes
from the CMNIST training domains, then ERM will learn
to use the color feature, just as in original the CMNIST
task. Furthermore, while access to this perturbation set im-
plies access to the test domain, it does not mean we know
which domain(s) we will encounter at test time; and thus,
we cannot simply train on the test domain(s) of interest.

4. Experiments
We evaluate REx and compare with IRM on a range of
tasks requiring OOD generalization. REx provides gener-
alization benefits and outperforms IRM on a wide range of
tasks, including: i) variants of the Colored MNIST (CM-
NIST) dataset (Arjovsky et al., 2019) with extra covariate
shift, ii) continuous control tasks with partial observability
and spurious features, iii) domain generalization tasks from

12Note we could also assume no covariate shift in order to fix
the difficulty, but this seems hard to motivate in the context of
interventions on X , which can change P (X).
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Figure 5. REx outperforms IRM on Colored MNIST variants that include covariate shift. The x-axis indexes increasing amount of shift
between training distributions, with p = 0 corresponding to disjoint supports. Left: class imbalance, Center: shape imbalance, Right:
color imbalance.

Method train acc test acc

V-REx (ours) 71.5± 1.0 68.7± 0.9
IRM 70.8± 0.9 66.9± 2.5
MM-REx (ours) 72.4± 1.8 66.1± 1.5
RI 88.9± 0.3 22.3± 4.6
ERM 87.4± 0.2 17.1± 0.6

Grayscale oracle 73.5± 0.2 73.0± 0.4
Optimum 75 75
Chance 50 50

Table 2. Accuracy (percent) on Colored
MNIST. REx and IRM learn to ignore the spurious color
feature. Strikethrough results achieved via tuning on the test set.

the DomainBed suite (Gulrajani & Lopez-Paz, 2020). On
the other hand, when the inherent noise in Y varies across
environments, IRM succeeds and REx performs poorly.

4.1. Colored MNIST
Arjovsky et al. (2019) construct a binary classification prob-
lem (with 0-4 and 5-9 each collapsed into a single class)
based on the MNIST dataset, using color as a spurious fea-
ture. Specifically, digits are either colored red or green,
and there is a strong correlation between color and label,
which is reversed at test time. The goal is to learn the causal
“digit shape” feature and ignore the anti-causal “digit color”
feature. The learner has access to three domains:

1. A training domain where green digits have a 80%
chance of belonging to class 1 (digits 5-9).

2. A training domain where green digits have a 90%
chance of belonging to class 1.

3. A test domain where green digits have a 10% chance
of belonging to class 1.

We use the exact same hyperparameters as Arjovsky et al.
(2019), only replacing the IRMv1 penalty with MM-REx
or V-REx penalty.13 These methods all achieve similar
performance, see Table 2.

13When there are only 2 domains, MM-REx is equivalent to a
penalty on the Mean Absolute Error (MAE), see Appendix F.2.2.

CMNIST with extra covariate shift. To test our hypothe-
sis that REx should outperform IRM under covariate shift,
we construct 3 variants of the CMNIST dataset. These ex-
periments include the original interventional shift of the
original CMNIST (i.e. P (Green|Y = 1) still differs across
training domains) plus these extra forms of covariate shift:

1. Class imbalance: varying p = P (shape(x) ∈
{0, 1, 2, 3, 4}); as in Wu et al. (2020).

2. Digit imbalance: varying p = P (shape(x) ∈
{1, 2} ∪ {6, 7}); digits 0 and 5 are removed.

3. Color imbalance: We use 2 versions of each color,
for 4 total channels: R1, R2, G1, G2. We vary p =
P (R1|Red) = P (G1|Green).

While (1) also induces change in P (Y ), (2) and (3) induce
only covariate shift in the causal shape and anti-causal color
features (respectively). We compare across several levels
of imbalance, p ∈ [0, 0.5], using the same hyperparameters
from Arjovsky et al. (2019), and plot the mean and standard
error over 3 trials.

V-REx significantly outperforms IRM in every case, see
Figure 5. In order to verify that these results are not due
to bad hyperparameters for IRM, we perform a random
search that samples 340 unique hyperparameter combina-
tions for each value of p, and compare the the number of
times each method achieves better than chance-level (50%
accuracy). Again, V-REx outperforms IRM; in particu-
lar, for small values of p, IRM never achieves better than
random chance performance, while REx does better than
random in 4.4%/23.7%/2.0% of trials, respectively, in the
class/digit/color imbalance scenarios for p = 0.1/0.1/0.2.
This indicates that REx can achieve good OOD generaliza-
tion in settings involving both interventional shift and more
intense covariate shift, whereas IRM struggles to do so.

4.2. Toy Structural Equation Models (SEMs)

REx’s sensitivity to covariate shift can also be a weakness
when reallocating capacity towards domains with higher
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Figure 6. Performance and standard error on walker_walk (top), finger_spin (bottom).

Algorithm ColoredMNIST VLCS PACS OfficeHome

ERM 52.0 ± 0.1 77.4 ± 0.3 85.7 ± 0.5 67.5 ± 0.5
IRM 51.8 ± 0.1 78.1 ± 0.0 84.4 ± 1.1 66.6 ± 1.0

V-REx 52.1 ± 0.1 77.9 ± 0.5 85.8 ± 0.6 66.7 ± 0.5

Table 3. REx, IRM, and ERM all perform comparably on a set of domain generalization benchmarks.

risk does not help the model reduce their risk, e.g. due to ir-
reducible noise. We illustrate this using the linear-Gaussian
structural equation model (SEM) tasks introduced by Ar-
jovsky et al. (2019). Like CMNIST, these SEMs include
spurious features by construction. They also introduce 1)
heteroskedasticity, 2) hidden confounders, and/or 3) ele-
ments of X that contain a mixture of causes and effects of
Y . These three properties highlight advantages of IRM over
ICP (Peters et al., 2016), as demonstrated empirically by
Arjovsky et al. (2019). REx is also able to handle (2) and
(3), but it performs poorly in the heteroskedastic tasks. See
Appendix G.2 for details and Table 5 for results.

4.3. Domain Generalization in the DomainBed Suite

Methodologically, it is inappropriate to assume access to the
test environment in domain generalization settings, as the
goal is to find methods which generalize to unknown test
distributions. Gulrajani & Lopez-Paz (2020) introduced the
DomainBed evaluation suite to rigorously compare existing
approaches to domain generalization, and found that no
method reliably outperformed ERM. We evaluate V-REx
on DomainBed using the most commonly used training-
domain validation set method for model selection. Due
to limited computational resources, we limited ourselves
to the 4 cheapest datasets. Results of baseline are taken
from Gulrajani & Lopez-Paz (2020), who compare with
more methods. Results in Table 3 give the average over 3
different train/valid splits.

4.4. Reinforcement Learning with partial observability
and spurious features

Finally, we turn to reinforcement learning, where covariate
shift (potentially favoring REx) and heteroskedasticity
(favoring IRM) both occur naturally as a result of ran-
domness in the environment and policy. In order to show
the benefits of invariant prediction, we modify tasks
from the Deepmind Control Suite (Tassa et al., 2018) to
include spurious features in the observation, and train
a Soft Actor-Critic (Haarnoja et al., 2018) agent. REx
outperforms both IRM and ERM, suggesting that REx’s
robustness to covariate shift outweighs the challenges it
faces with heteroskedasticity in this setting, see Figure 6.
We average over 10 runs on finger_spin and
walker_walk, using hyperparameters tuned on
cartpole_swingup (to avoid overfitting). See
Appendix for details and further results.

5. Conclusion
We have demonstrated that REx, a method for robust
optimization, can provide robustness and hence out-of-
distribution generalization in the challenging case where
X contains both causes and effects of Y . In particular, like
IRM, REx can perform causal identification, but REx can
also perform more robustly in the presence of covariate shift.
Covariate shift is known to be problematic when models are
misspecified, or when training data is limited or does not
cover areas of the test distribution (Ben-David et al., 2010b).
As such situations are inevitable in practice, REx’s ability
to outperform IRM in scenarios involving a combination of
covariate shift and interventional shift makes it a powerful
approach.
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