Near-Optimal Confidence Sequences for Bounded Random Variables

A. Competing Concentration Bounds

Theorem 5 (Hoeffding; Theorem 3.1.2 of Giné & Nickl (2016)). If X4, ..., X,, are independent mean-zero random
variables satisfying P(B < X; < B) = 1, then

P (sn > \/;n(B _B)’log (;) ) <5, ¥e[o0,1].

(There is a generalization of Hoeffding’s inequality that relaxes the boundedness assumption by a sub-Gaussian assumption;
see Zhao et al. (2016) for details.)

Theorem 6 (Adaptive Hoeffding; Corollary 1 of Zhao et al. (2016)). If X1, ..., X,, are independent mean-zero random
variables satisfying P(B < X; < B) = 1, then

log(12
P (Eln >1:5,> (B —B)\/O.Gnlog(logl'l n+1)+ Og(18/6>n> <4, Vie[0,1].

Theorem 7 (Bernstein; Theorem 3.1.7 of Giné & Nickl (2016)). If X1,..., X, ... are independent random variables
satisfying (2), then

e 1 1 1 1 1
P(S,>,|2 Z A?log <5> + §B2 log? (6> + gBlog (6> <4, Viel0,1].

i=1

Theorem 8 (Empirical Bernstein; Eq. (5) of Mnih et al. (2008)). If X1, Xo, . .. are independent mean zero random variables
satisfying Q) with Ay = Ay = ... = A, then

P <E|n =>1:5, > \/27”7/T% log(3h(ky)/(26)) + 3Bn 10g(3h(kn)/(25))) < 4,
where A\% is the sample variance and k., is the constant defined in Theorem 2.

B. More Simulations
B.1. Hyperparameters of Stitching

In Section 3, we mentioned that there are two hyperparameters of our stitching methods: (1) the spacing parameter n > 1
and (2) the power parameter ¢ > 1 for the stitching function h.(k) = {(c¢)(k + 1)¢ where {(-) is the Riemann zeta function.
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Figure 7: The upper bound of \S,, obtained by adaptive Bentkus bound in Theorem 2 for different values of 7. Both the
variance A = 1/3/4 and the upper bound B = 3/4 is known.

Figure 7 illustrates that the choice of 7 determines how the budget ¢ is distributed across different sample sizes.
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Figure 8: Left: The stitching function h.(-) for different values of c¢. Right: The upper bound of S,, obtained by
A-Bentkus with different values of c. Both the variance A2 = 3/16 and the upper bound B = 3/4 is known.

Figure 8 shows both the stitching function /() and corresponding upper bound A-Bentkus obtains. For a fixed sample
size n, the bigger h.(k, ) is, the smaller budget §/h.(k,,) it obtains and hence it needs a larger upper bound. Hence, the
faster h.(-) grows, the more conservative upper bound (and corresponding, wider confidence interval) one will get.

B.2. Confidence Sequence for Bernoulli(0.5)

In this section, we present a comparison of our confidence sequence with A-Hoeffding, E-Bernstein,
HRMS-Bernstein, and HRMS-Bernstein—-GE on synthetic data from Bernoulli(0.5). In this case, Y7,Ys,... ~
Bernoulli(0.5) and the variance is 1/4. Hence in this case Hoeffding’s inequality is sharp and nothing can be gained by
variance exploitation. We observe this very fact in our experiment, where our method behaves as well as A-Hoeffding
for moderate to large sample sizes. Figures 9a and 9b show the comparison of confidence sequences in one replication and
comparison of average width over 1000 replications. As in the case of Bernoulli(0.1) (Section 4.1), for small sample sizes,
A-Hoeffding and A-Bentkus behave very closely and are better than all other methods but for n moderately large, the
sharpness of A-Bentkus clearly pays off by outperforming A-Hoef fding and all other methods.
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Figure 9: Comparison of the 95% confidence sequences for the mean when Y; ~ Bernoulli(0.5). Except A-Hoeffding,
all other methods estimate the variance. A-Bentkus is the confidence sequence in (17). HRMS-Bernstein-GE involves
a tuning parameter p which is chosen to optimize the boundary at n = 500. (a) shows the confidence sequences from a single
replication. (b) shows the average widths of the confidence sequences over 1000 replications. The upper and lower bounds
for all the other methods are cut at 1 and O for a fair comparison. The failure frequency is 0.001 for HRMS-Bernstein—-GE
and 0 for the others.
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B.3. Discussion for the Best Arm Identification Problem

In Section 4.3, we mentioned that a confidence sequence for which the radius R,, stays constant for a stretch of samples
yields a larger sample complexity. We present here more experimental details regarding this behavior.

In the following, we experiment with a single instance of best arm identification problem where the number of arms is 2
(i.e., K = 2). The expected rewards are generated as the same as in Section 4.3, so that Arm 0 has mean pg = 1 is the best
arm, and Arm 1 has mean p; &~ 0.34. For all the methods, we use the same data.
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Figure 10: Identify the best arm out of two using A-Hoef fding and its truncated variant.
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We first explain this phenomenon using A-Hoeffding and its truncated variant. A-Hoe ffding can result in confidence
intervals that are larger than [0, 1]. In the truncated version of A—Hoe f £ding, the upper confidence term of a confidence
interval will be capped at 1, and the lower confidence term will be cut at 0, so that all the confidence intervals stay in [0, 1]
throughout the experiment. We shall see that the truncated variant would result in stationary radius and yield larger sample
complexity compared with A-Hoeffding.

Figures 10a and 10b show the confidence intervals of each arm at each iteration, when A-Hoeffding and truncated
A-Hoeffding are plugged into Algorithm 2. The algorithm will stop when the confidence intervals of the two arms
completely separate (i.e., the lower bound of Arm 0 goes above the upper bound of Arm 1). Figure 10a and 10b show that
A-Hoeffding used 107 iterations, while the truncated A-Hoef fding used 132 iterations. One can observe that in the
initial stage of the algorithm, the confidence interval, without truncation, will likely get updated once a sample adds in,
which does not hold for the truncated version; compare the first 15 iterations in Figures 10a and 10b. Therefore, the radius
will not get updated for truncated A-Hoeffding, as shown in Figure 10c. Recall that Algorithm 2 samples an arm with
largest radius; when both radii are same, we sample the arm with smaller empirical mean. Due to the stationary radius, in
those iterations, truncated A-Hoe f fding keeps sampling the same arm till an update happens.

In Figure 10d, we plot the difference between the radius for Arm 0 and Arm 1: Ry — R;. Arm 0 will be sampled if
this value is positive and vice versa. Again, if Ry is equal to R;, we shall sample the arm with lower empirical mean.
We can see the difference fluctuates evenly for A-Hoeffding, so that A-Hoeffding almost alternatively samples
each arm, and the confidence intervals of both arms gets updated alternatively as shown in Figure 10a. In contrast, for
truncated A-Hoef fding, the difference consistently stays above or below zero for some time, which means the same
arm gets sampled. See Figure 10e for the arms pulled at each iteration; the ‘+’ and °-’ appear almost side-by-side with
A-Hoeffding and they appear disproportionately with truncated A-Hoeffding.

As mentioned, Algorithm 2 stops when the two confidence intervals separate, and it is not crucial for those intervals to be
shorter. Hence, it will stop fast if (i) the confidence interval gets updated by every sample and (ii) the updates are significant
for small number of samples (the early stage). Truncated A-Hoe f £ding underperforms in both aspects. This is also the
reason why the Berstein type of confidence sequences underperforms A-Hoeffding in this problem (c.f. Section 4.3).
Even though they are shorter for larger samples; A-Hoe f fding is better with smaller samples.

Next, we investigate the performance for Bentkus type of methods. We write A-Bentkus to be the variant from Section 4.3,
that is, we output confidence interval {[!°"*, ;/"P*] n > 1} as in Theorem 4, but output radius R,, = p1P — plov,

I n n

We write original A-Bent kus to be the one directly from Theorem 4, i.e., we output confidence interval {[p}0%* uP*] n >

1} and radius R,, = piP* — plo"* Note that gP* = min;<;<,, ;' is the cumulative minimum, which essentially serves
as the truncation of the upper confidence term, and similarly does the p}°"*. We refer the readers to Theorem 4 for the
details. Similar to the previous experiment, we shall see that the original A-Bentkus results in a larger sample complexity

than A-Bentkus. Figure 11a presents the results.
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Figure 11: Identify the best arm out of two using original A-Bentkus and the variant introduced in Section 4.3.

Patterns similar to the A-Hoeffding and its truncated version happen here too. Although A-Bentkus keeps sampling
the same arm in the beginning phase, it alternates the samples in the later stage. Comparing Figures 10e (A-Hoeffding)
and 11le (A—-Bentkus), the sampling pattern of A-Hoe f £ding is more uniform, however, A-Bentkus still outperforms

A-Hoeffding due to its fast convergence.
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C. Computation of ¢(d;n, A, B)

In this section we provide some details on the computation of ¢(d; n, .4, B) based on Bentkus (2004) and Pinelis (2009).
We will restrict to the case where A; = Ay == A4, =--- = A.

For any random variable n, define
E[(n — z)7]

Py(u;m) := inf
Q(Ua 77) ;Iéu (U — 3?)3_

For any A, B, set pap = A%/(A% + B?). Define Bernoulli random variables Ry, Ra, ..., R, as
P(R,L = 1) = PAB = 1 —IP)(Rz = O)

Set Z, = Y. | R;. Z, is a binomial random variables with n trials and success probability pap: Z, ~ Bi(n,pag). For
0 < k < n, define

pr = P(Z,2k), e = E[Z,1{Z,>k}], v = E[Z21{Z,>Fk}].

Proposition 2. For all u € R,

n
Bu + nA? Bu + nA?
P2 U,Z 7Zn :PQ 7;Zn .
= A2 + B2 A? 4+ B2
Furthermore, forany x > 0and 1 <k <n —1,
]" lf(E < npaB,
npap(l—pas) :
P (z: 7 _ (-’E_npAB)QB“‘npABJ(El—pAB)’ fnpap < < Z*Sa
2(2n) = 4 upeod jf vemr—(k—Dewoy o o vp—hey
z2pp—2xer+vg er_1—(k—1)pr_1 S cr—kpr?
P(Zn=n)=p213’ ifr > M=n.

en—1—(n—1)pn_1

Formally, we can set Py(x; Zy,) = 0 for all © > n because P(Z, > n) = 0.

Proof. The result is mostly an implication of Proposition 3.2 of Pinelis (2009). It is clear that
- a A2+ B? [ nA?
where R; ~ Bernoulli(A2?/(A? + B?)), that is,
P(R;=1) = pap = 1-P(R; =0).
Proposition 3.2(vi) of Pinelis (2009) implies that

Bu + nA?
Po(u; M,) = PQ( utn -Zn)

Hence it suffices to find Py(x; Z,) for all x € R. The support of Z,, is given by
supp(Z,) = {0,1,2,...,n}.
Proposition 3.2(iv) of Pinelis (2009) (with o« = 2) implies that

1, if

Furthermore, z — Ps(x; Y, | R;) is strictly decreasing on (npap,n). Define function F(h) : R — R such that

(18)
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For any npap < = < n, let h, be the unique solution of
F(h) =z (19)
(Uniqueness here is established by Proposition 3.2(ii) of Pinelis (2009).) Then by Proposition 3.2(iii) of Pinelis (2009),

2
Ptz - HehR)
E[Zn (Zn = ha) ] = haB[(Zn — o) /]
- (x —ha)?
(z = ha)E[(Zn — ha) ]
(& —hy)%
E[(Zn - hz)+]
(= ha)+

This holds for all nA? /(A% + B?) < x < n. We will now discuss solving (19).

(20)

Proposition 3.2(i) of Pinelis (2009) implies that A — F'(h) is continuous and increasing.

Ifh <0,
E(Z,.(Z,—h 1-— 2p2 . —h 1-—
F(h) = [Zn( )] _ npas(1 —pap) + n’pip — hnpap _ S np(l —pap)
E[Z, — h] npap — h np—h
This is strictly increasing on (—0, 0], and F'(0) = npap + (1 —pap). We get that for any npap < © < npap+(1—pan),

F(h)=xz < hy=npap— —npAB(l _pAB).
T —NPAB
This further implies (from (20)) that
E[Z, — hs]
T — hy
npap(l —pap)

B for n <T <N + (1 — .
(. —npap)? + npap(l —pap)’ PAB pap + (1 —pag)

P2(x§ Zn) =

If0 <h <n—1,setk = [h], in other words, k — 1 < h < k. Since {Z,, > h} < {Z,, > k}, hence

=
= E[Z21{Z, = k} {Z, = kY],
E[(Zn - h)+] = E[Znﬂ{zn = k}] —hP(Z, =2 k
Therefore,
]E[Z?L]I{Zn = k}] — hE[Zn]l{Zn = k}]
F(h) =
E[Z,1{Z, > k}] — hP(Z, > k)
B Vi — hek
ex — hpy

It is not difficult to verify that F'(-) is strictly increasing in (k — 1, k] and hence
he = T2 e Bk —1) <2 < F(k).
€k — TPk

Substituting this h,, in (20) yields the value of Ps(z; Z,), that is,
-1
Vi, — Tek Vi — TEE
Py(x; Zy,) = <:C — ) <€k - pk)
€k — TPk €k — TPk
er — TPk el — vpk
2zer — x2pp — vk €x — TPk
er — VkPk

= 5 , whenever F(k—1)<a < F(k),
2xer — x*pr — Vi
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Figure 12: Examples functions F'(h) and Py(z; Z,) whenn = 3, A = 0.1 and B = 1.0. We plot P»(z; Z,,) in both linear
(second plot) and log (third plot) scales on the y-axis.

where F'(k) = Z::Ilz;’;, 1<k<n-—1Henceforl <k<n-1,

2
VkPk — €L
22p, — 2xep + vk

1 —(k—=1)eg_ —k
vp—1 — ( )ek1<$<vk ek

whenever < .
ex—1 — (k—1)pr—1 er — kpg

P2(=7); Zn) =

)

Finally, we prove that F'(-) is a constant on [n — 1, n]. It is clear that

Up—1—(n—1)ep—_1
en—1—(n—1)pn—1

E[Z21{Z, =n —1}] — (n — VE[Z,1{Z, = n — 1}]
T EB[Zol{Zn=n—1}]- (n—1)P(Z, >n—1)
(n? —n(n—1))P(Z, =n) -
(n—(n—1))P(Zn = n)

Fn—1)=

Further if A > n — 1, then (Z,, — h); > 0 if and only if Z,, = h and hence from (18)

E[Z.(Z, —h)+] n(n—h)P(Z, =n)
P =5z, —hd Pz =m "

Therefore, the function F'(h) is constant on [n — 1, n].

For h > n, we set F'(h) = n since P(Z,, > h) = 0. To put all the pieces together, we have

npap + "HELAB) i p <=0,
—h
F(p) = { A= if O<h<n-—1,

ern] — hpra)

n if h>n-—1.

Consequently, for npap < x <mn,
he = F1(z) = NpAB — %@ﬁm, if npap <z <npap+(1—pan),
‘ vt if Flk—1)<x<Fk),1<k<n-1

As a graphical example, Figure 12 plots F'(h) and Py(xz; Z,,) whenn = 3, A = 0.1 and B = 1.0.
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C.1. Computation of the Quantile

Recallpap = A%/(A? + B?),Z,, = Y., | Ri,and >, | G, is identically distributed as B~'(A? + B?)(Z, — npag). We
will compute x5 such that

Py(z5; Zp) = 6. 21
This implies that

A2 B2 —nA? < A? 4+ B?)xs — nA?
P2<( + i ZG) or equivalently, q(é;n,A,B):( +B)ws —n .

B

Hence we concentrate on solving (21). Recall that forany x > 0and 1 < k <n —1,

1, ifx < npag,
npap(l—pap) ; < Yo _— _
Py(:2,) = | @) mmapmpagy TPA <3< = npas + (L= pa), 22)
2\ 4n) = Ve Dk —€5 if vp—1—(k—1)er_1 < < Vh—hek
z2pr—2xer+ug ek,—lf(kfl),m(c—l ) = er—kpr’
— — s Vp—1—(n—1)en_1 __
P(Zn =n) =php; ife > = Dpny — ™

The function P (+; Z,,) is a non-increasing function and hence if § < p”} 5, then we get x5 = n + 10~%; this corresponds to
the last case in (22). If Pa(vg/eg; Z,) < 6 < 1, then

1-6 1—
%:npAMw Jrupan(l = pas),

this corresponds to the first and second case in (22); note that P (vo/eo; Zn) = npan(1 —pan)/[(1 —pas)* + npap(1 —
pap)]- For the remaining cases, note that if there exists a 1 < k < n — 1 such that

P, (“k—kek;zn> <0< P <“’“‘1 — (k- Ue“;zn),

ek — kpy ex—1— (k= 1)pr—1
then
V-1 — (k’ — 1)€k,1 < 5 < Ve — k6k7 (23)
ex—1— (k= 1)pr—1 e — kpy
and using the closed form expression of Px(-; Z,,) on this interval, we get
— — )
oy = T vk = pi(vr — (vkpk — €3)/9) (24)

Pk

Using these calculations, one can find k looping over 1 < k < n — 1 such that (23) holds. This approach has a complexity
of O(n), assuming the availability of py, ex, and vg.

We now describe an approach that reduces the complexity by finding quick-to-compute upper and lower bounds on x.
Lemmas 1.1 and 3.1 of Bentkus et al. (2006) show that

[ V)

e

P(Z, = z) < Py(x; Z,) < E]P’O(Zn > ), (25)
where P°(Z,, > z) represents the log-linear interpolation of P(Z,, > x), thatis, for z € {0,1,...,n}
P°(Z, =) = P(Z, > ), (26)

and forz € (k — 1,k) suchthatz = (1 — \)(k — 1) + Ak,
P°(Z, = z) = (P(Z, =k — 1) "NP(Z, = k).
Equation (2) of Bentkus (2002) further shows that

P°(Zn = 2) < (1 = NP(Zy = k— 1) + \P(Z, > k). 27)



Near-Optimal Confidence Sequences for Bounded Random Variables

Hence, to find x = x; satisfying Ps(x; Z,) = 4, find k1 € {0,1,...,n} such that
P(Z, = k1) = .

This implies (from (25)) that Ps(k1; Z,) > 0 and because © — Ps(x;Z,) is decreasing, x5 > k;. Further, find
ks € {0,1,...,n} such that

P(Z, = ko) < 25/e?.
This implies (from (27)) that P°(Z,, > ko) = P(Z,, > ks) < 26/e®. Hence using (26), we get Py (ko; Z,) < & which
implies that x5 < ko. Summarizing this discussion, we get that x5 satisfying P»(zs; Z,,) = ¢ also satisfies

k1 < x5 < ko, (28)

where

P(Z, > k1) =6 and P(Z, > ko) < 26/e>.
The bounds in (28) are not very useful because the closed form experssion (24) of x5 requires finding upper and lower
bounds for x4 in terms of (vy — keg)/(er — kpi)’s.

Now we note that
Uk‘g - kQGk‘g

v = ke = kzpk = = > k.
ko — k2pk2
This combined with (28) proves that
k < a5 < k < w
€k, — kapr,

The lower bound here is still not in terms of the ratios (vy — key)/(ex — kpy). But given the upper bound, we can search for
k < ko (by running a loop from k5 to 0) such that

V-1 — (k’ — 1)€k,1 Ve — kek
< x5 <K ———. 29)
ex—1 — (k—1)pr—1 b er — kpx (

Another approach is to make use of the lower bound in (28). Because k1 < (vg, — kiex,)/(ex, — k1pk, ), there are two
possibilities:

1. kl < xIs§ < (Ukl — klekl)/(ekl — klpkl);

2. ki < (vk, — kiex,)/(ex, — k1pr,) < 5.

In the first case, it suffices to search for k < kq such that (29). In the second case, we can search over k1 + 1 < k < ko as
before.

D. Proof of Theorem 1
It is clear that (S, F¢)7; with F; = 0{X1,..., X} is a martingale because

E [St‘ft_l] = St—l + E[Xt] = St—1~
Consider now the process

Dy := (5 — x)i_ for a fixed x> 0.
The function f : y — (y — x)% is continuous and satisfies

0 ify <z, 0, ify<
rw=1, IR VAL S
2y —x), ify>x, 2, ify>=x.

Therefore, f(-) is a convex function. This implies by Jensen’s inequality that

E[D¢|Fi—1] = E[f(St)|Ft—1] = f(St-1).
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Hence (Dy, F)}_, is a submartingale. Doob’s inequality now implies that

P(max Sy = u) @ P(max (Sy —z)2 = (u—x)i)

1<t<n 1<t<sn

- 2

=P (fgtasxn Dy = (u $)+)

(2 E[Dy,] < E[(Sn — x)i]
s e

Here equality (a) holds for every = < u and inequality (b) holds because of Doob’s inequality. Because x < u is arbitrary,
we get
E[(Sn —)%]

P max S; > u ) < inf 5

1<t<n e<u (u—uw

+
and condition (2) along with Theorem 2.1 of Bentkus et al. (2006) (or Pinelis (2006)) imply that

B[S, G~ )]

U (u — x)i

}P’(max St>u> < inf

1<t<n

The definition (10) of ¢(J; n, A, B) readily implies

]P’(max Sy = q(0;n, A, B)) <.

1<t<n

This completes the proof of (11). We now prove the sharpness. Note that the condition
P (fg&g{ Sy = ng(6Ym; A, B)) <d forall 6¢[0,1],
is equivalent to the existence of a function « — H (z; A, B) such that

P < max Sy > nu) < H"(u; A, B), forall w.

1<t<n
(The function & — §(6'/"; A, B) is the inverse of u — H™(u; A, B).) In particular, this implies that
P (S, =nu) < H"(u; A,B) forall uw.

Now, Lemma 4.7 of Bentkus (2004) (also see Eq. (2.8) of Hoeffding (1963)) implies that

— inf e "M™E [ehzlll Gi] )
h>0

Bu) ~(A2+Bu)/(A*+B?) L ) (B Bu)/(B>+A?) }"

where GGy, . .., G,, are independent random variables constructed through (6). Proposition 3.5 of Pinelis (2009) implies that

B[S, Gi — 03]

T<nu (nu — Z‘)a_

}1Lr>1% e "huR [ehzz‘zlgi] > inf

Summarizing the inequalities, we conclude

E[(>, G — x)? n
P (S, = nu) < inf (211 2x)+] < inf E [ehﬂﬁGi*h(nu)] <H"(wA,B) Vu

r<nu (nu — J,‘)+ h>=0

This proves that ¢(J;n, A, B) < ng(5'/"; A, B) for any valid §(-; A, B).
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E. Proof of Theorem 2

The proof is based on (11) and a union bound. It is clear that

P(Ht?l:

-
P

~
Il
—

i = q(8/h(kt); e, A, B))

A<t <[]

s

I
=

I
=
/N~

b
|

5/]1 k’t) Ct,.A B)})

=
Il
=}
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=)
_?T

~+
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g
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3
n
RE
S
%
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><

k+1

s
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i a(o/n(k); 1], AB)})

> q(8/h(k); [n" '], A»B))

B
Il
o

)
s
=
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[«

B
Il
o

F. Proof of Theorem 3

Theorem 2 implies that

Lemma F.1 (below) proves

In particular this implies that

P (Hn 1: A> min AS(52)> < 9.

1<s<n
Combining the inequalities above with a union bound (and Lemma H.2) proves the result.

Lemma F.1. Under the assumptions of Theorem 3, we have for any 0 € [0, 1],

c/2|(B—-B)A__, 20
P<3t>1zvzlt/2jlt/2jA2< [/J\(@ )<I> <1e2h(kt)>><6’

where Wl = (Xgi - X2i71)2/2 and V;g = let:/?] Wl
Proof. Fix x = 0. Note that for any v > —z,

P (lrgtag( {Vay —tA%} < —x) P ( max (u — {Var —tA?})y = (u+ x)+) ,

E[(u — {Van — 2nA4%})%]
N (u+ )3 '

where the last inequality follows from the fact that {(u — {V2; — tA%}};>1 is a submartingale. Therefore,

E[(u — {Van —nA?})]

P < max {Va, —tA?} < x) < inf
1<t<n

u>—g (u+z)2
) E[(u + nA? — Va,)% ]
= inf 5
uz—x (u + x)+

. E[(u — Van)3 ]
= lnf — 5 -
u=>nA2—x (U — 7’LA2 + .I‘)2

(30)



Near-Optimal Confidence Sequences for Bounded Random Variables

Corollary 2.7 (Eq. (2.24)) of Pinelis (2016) implies that

. Ef(u — L271)2+] 2
_ K . — = ., N L—
u;ir}xf;ﬂo (4 —nA2 + 2)° < Py(Erp + ZA/Esn;nA x) = Po(Evp + ZA/Esn; Er p — ), 3D

where I ; = ZEZ?J E[Wf ] for j = 1,2 and Z stands for a standard normal distribution. Inequality (31) is not the best
inequality to use and there is a more precise version; see Theorem 2.4(I) and Corollary 2.7 of Pinelis (2016). With the more
precise version, the following steps will lead to a refined upper bound on A; we will not pursue this direction here.

It now follows from Bentkus (2008) that

2
Py(Brp + ZVEop; By — 7) < =P (Z <-——2 ) .

? \ E27n

Because X; € [B, B] with probability 1, W; < (B — B)?/2 and hence
— 2 E[W?] < Z (B — B)*Ey /2 = n(B — B)?A?/2.

This implies that

2
AN < < ___ v
P(féltaéi{v?t 1A% < x) <3P (Z S T /n(B-B)A

Equating the right hand side to ¢ yields

P <1r£taé<n{vzt —tA%} < —\/H(BﬁmAcbl <1 - 25)) <4 (32)

Because of this maximal inequality, we can apply stitching and get (30). Note that

P <3 L: Vapgo) — [£/2] A7 Vi 2l(B = B)A ;- (1 2 >>

NG 2h(kr)

=P <3t >2: Voo — [t/2]A% < m\(/g 7B)A¢r1 (1 — e2/§f’w)))

- (Qo {HW‘] St s Vo) — [1/2)4% < - lCt/QJ\(g 2l (1 - @2357%)) }>
<3 (am’ﬂ < Vi ly2ja? < M E B g (1 ka)))

< :O hfk) <9,

where the last inequality follows from (32) applied to {1 < ¢ < |¢;/2]}.
Inequality (30) yields

2 lee/2](B-B)A 4 _ 20 _ < > >1-—
]P’(tA V2 o 1 h(kr) Vor <0 Viz1|>1-46.

Inequality

tA® —
holds for A > 0 if and only if

lc:/2|(B—B)A | 26
V2 ® (1 ~ e2h(ky)

A< gor+4/95+ 9305

)—VQt<O
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where

~V0e2(B=B)A_ 20 _ Vopry)
g2t = ol ot (1 €2h(k?t)> and g3 = /2]

Hence a rewriting of (30) is
P(A>g2,t tA/G5: g3 Vi 1) >1-0.
It is clear that go; = O(1/+/t) and E[Vas/9)/[t/2]] = A? and hence the upper bounds above grows like A +

O(y/1og(h(k))/t). H

G. Proof of Theorem 4

The assumption P(L < X; < U) = 1 implies that P(L — u < X; — u < U — p) = 1 and hence applying Theorem 2 with
X, — pv and its upper bound U — i yields

P(En?l:Z(Xi—u)>q<lj(lk/2);cmA,U—ﬂ>><521. (33)
i=1 n

Similarly applying Theorem 2 with p — X; and its upper bound p — L yields

= 01/2 01
Plian>1: -Xi)zq|l ——; ¢, A, pu—L < —. 34
< n izl(u )=q (h(kn) Cny A )) 5 (34)
Finally Lemma F.1 implies that B
P(A3n>1: A= A%(65;U,L)) < 6. (35)

Now combining inequalities (33), (34), and (35) yields with probability > 1 — d; — do, foralln > 1

1 51/2 Sn 1 51/2 n
nq<h(kn), Cny As ) i T S (h(kn) c U u) and n(02)

On this event, we getby usingU —uy < U —Landpy— L <U — L,

low up
Ho & S PSS Mg,

and then recursively using pl°%, < pu < P |,

1 51/2 — Sn 1 01/2 — 1
- 71714*(S ) b - L < — - < — TN n7A*6 aU_ Oiv .

nq(h(kn)v c n( 2) M1 ) n 1% qu(h(lfn) c n( 2) M —q
This proves the result.
H. Auxiliary Results
Define M;,t > 1as M, := >'_, G;, with

B? A2
2

Lemma H.1. Foranyt > 1and x € R, the map (Aq, ..., Ar) — E[(M; — x)%] is non-decreasing.
Proof. Suppose we prove that for every y € R,

Ay — E[(Gy — y)2] is non-decreasing, (36)
then by conditioning on G, ..., Gy and taking y = = + G + - - - + Gy, we get for A < A

E[(G1(A1) —9)3] < E[(G1(4) — )il
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Now taking expectations on both sides with respect to G, . .., G; implies non-decreasingness of A; — E[(M; — z)2].
This implies the result.

To prove (36),

B? A2\ A3
B il = g (5 v) B vt
Because A; — A?/B? is increasing, it suffices to show A%/B? — E[(G; — y)2 ] is non-decreasing with respect to A?/B2.
Set p = A?/B? and define
P
1+p

1 2 2
g(p)—Hp( Bp —y), + B—y)i.

Differentiating with respect to p yields

dg(p) ~ (=Br-y)} 2B(-Bp-y)+ (B-y)i

o (1+p?  1+4p (1+p)?
_ —(=Bp—y)3 —2B(1+p)(—=Bp—y)+ + (B—y)2
- (1+p)> '

Ify < —Bptheny + Bp <0and B —y > B(1 + p) > 0 and hence

dglp)  —Bp+y)?+2B(1+p)(Bp+y)+(B—y)? B>+ B*?+2B%

_ > 0.
op (1+p)? (1+p)?
If -Bp <y < Btheny+ Bp > 0and B — y > 0 and hence
N2
0!i(p) _B-y

op (1+p)?
If y > B, then dg(p)/dp = 0. Hence dg(p)/0p = 0 for all p. This proves (36). O
Recall the definition of ¢(d;¢,.4, B) from (10). In the case of equal variances, that is, 41 = Ay = ... = A, we write

A, q(d;t, A, B) for A, q(d;t, A, B), respectively. We now prove that A — ¢(J; t2, A, B) is an non-decreasing function.

Lemma H.2. Foranyt > 1, the function A — q(§;t, A, B) is an non-decreasing function.

Proof. Lemma H.1 proves that A — E[(M; — )2 ] is non-decreasing. This implies that I(A; u) is also non-decreasing in

A, where ,

E|(M; —

I(A;u) := inf 7[( i x2)+]
e<u (u—1x)%

Lemma 3.1 of Bentkus et al. (2006) proves that I (A; u) is also non-increasing in u. Fix A; < As. From the definition of J,
I(A1,q(0;t,A;,B)) =38 and I(As,q(d;t, Az, B)) = 4.
Because I(A;w) is non-decreasing in A,
I(A2;q(6;t, A2, B)) = 6 = 1(A1;q(0¢t, A1, B)) < 1(A2;4(3;¢t, A1, B))

Hence 1(As;q(d;t, As, B)) < I(As;q(d;t, Ay, B)) and because I(A;w) is non-increasing in u, we conclude that
q(8;t, A1, B) < q(6;t, Ao, B). This proves the result modulo the condition A — E[(M; — x)% ] is non-decreasing. [

Lemma H.3. Forany § € [0,1], ¢(6;t, AB, B®) = Bq(6;t, A, B).
Proof. Recall that q(6;t, AB, B?) is defined as the solution of

inf Tt T4l
;Islu (ufl’)+
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where M is defined as M} = 3_, G with

P (G, = —(A’B*)/B?) = B! __ B and

i - A2B2 4 BY A2 4 B2 ’
A2B? A2

T A2B?4BY T A4+ B?

P(G] - 1Y)

This implies that G, 4 BG; and hence M| 4 BM;. Therefore,
E[(M; — )1] = E[(BM; — x)1] = B’E[(M; — 2/B)3],

and
E[(M]! — z)? E[(M; — z/B)? E[(M, — z)?
o FUOE— 02 BN a/BR) B 0]
e<u (u—x)% e<u B%(u/B —x/B).  a<u/B (u/B—x)%
The right hand side above equals §, when u = Bq(d;t, A, B) because the definition of ¢(d; ¢, A, B) implies that
B[, ]
e<q(5:t,4,B) (q(0;t, A, B) — x)%

= 0.

This completes the proof. ]

I. Alternative Empirical Bentkus Confidence Sequences with Estimated Variance

In Section 3.5, we presented one actionable version of Theorem 2, where we used an analytical upper bound on the variance
A2 In this section, we present an alternative empirical Bentkus confidence sequence that requires numerical computation. In
our initial experiments, we found solving for the upper bound of A in this way to be unstable. Because the proof technique
here is very analogues to that of the empirical Bernstein bound in Audibert et al. (2009, Eq. (48)-(50)), we present the
alternative bound below.

Define the empirical variance as
ﬁ% = n7 Y0 (X — X,)?, where X, =n"'Y" X
For any 41, 65 € [0, 1], define

A, = sup{a;O: A2 > ag—%q (%;cma,B) —%qQ (%;cn,a,B)}.

Lemma I.1 shows that A,, is an over-estimate of A uniformly over n and yields the following actionable bound. Recall that
Sn = Z?:l Xz = ’fLXn

Theorem 9. If X1, Xo, . .. are mean-zero independent random variables satisfying Var(X;) = A% and P(|X;| > B) =0
foralli =1, then for any 61,65 € [0,1],

P (Eln =>1:1S.]>=¢ <2h(22);cn,A;‘;,B> or Az A§(51)> < 81 + 2,

where A% := miny<s<n As. Here k,, and c,, are same as those defined in Theorem 2.

This theorem is an analogue of the empirical Bernstein inequality Mnih et al. (2008, Eq. (5)). Furthermore, the upper bound

A, on A is better than that in the Bernstein version Audibert et al. (2009, Eq. (49)-(50)); see Lemma 1.2.

I.1. Proof of Theorem 9 and Comparison of Standard Deviation Estimation from Other Inequalities
Lemma L.1. If X1, Xo, ... are mean-zero independent random variables satisfying

Var(X;) = A*> and P(|X;|>B)=0, forall i>1,
then for any § € [0,1]

Pl3t>1: A% < Az—gq <h<5k);ct,A,B) _1
t
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Proof. Consider the random variable X? — E[X?]. These are mean zero and are bounded in absolute value by B?. Further

the variance can be bounded as
Var(X? — E[X?]) = E[(X? — E[X?])?] < B%E[|X,|?] = B242.

)
Applying Theorem 2 with variables X2 — E[X?] implies

t
PlIt=1:)Y —(X2—E c,AB,B2> <4
( l; ( i =q h t
Lemma H.3 proves that
) )
AB,B*) =B A B).
i A1) q(h(k wd5)

Hence we get with probability at least 1 — J, simultaneously for all t > 1
t ¢ t 2
M- %t - Y- 1 (3
i=1

i=1
Et E[X2]—B —, C AB — =
i q h(kt)7 b ’ t

i=1

Hence for any § € [0, 1],

P(3t>1: A2 <tA? - (h(‘]it) e, A, B) 121)( <0
This completes the proof. O
We will now prove Theorem 9. Theorem 2 implies that
P<3t>l ixi >q< > ;ct,A,B>><527 (37)
= 2h(k)
Lemma I.1 implies that
‘ 2
Hence with probability at least 1 — §; — do, simultaneously for all ¢ > 1,
Zt: X; ( 02 ic, A B>
= 2h(ky)”

t

2
> x

- t B & 1
A? < A% - e, A,B| — ———
tS t1q<h(l<:t)’ct’ ’ ) tt—1) |~

On this event, A < A; simultaneously for all ¢+ > 1 which in turn implies that A < min;<,<; A, also holds simultaneously
for all ¢ > 1. Substituting this in (37) (along with Lemma H.2) implies the result.

Lemma L2. Suppose § — G(6Y/™; A, B) is a function such that

P ( max Sy = ng(6'/"; A B)) <4, (38)
1<t<n
Sor all § € [0, 1] and independent random variables X1, . .., X,, satisfying (2). Define the (over)-estimator of A as
~ Bc - c 2 c
A = sup{ >0: A2>a%— —tq ((5/(3h(kt)))1/ ta B) t—; ( (6/(3h (k)Y t;a,B)}.

Then A,, < A,.
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Proof. We have proved in Appendix D that (38) implies
q(d;n,a,B) < ng (51/";01,3) ,

for all n, a, and B. Hence if a satisfies

~ B 1) 1 1)
A2 = 2_ R — Bl - — 2 . B
t a tq<3h(kt)76t’a7 ) t2q (3h(kt)act7aa ) )

then
B2 a2 = PG ((6/n(k) 0, B) — % ((6/3h(k)) 450, B),

which implies the result.



