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1 Examples of moment calculation using Isserlis’ Theorem

Theorem 1.1. Isserlis’ theorem [1]. Let x ∼ N d(0,Σ) be a d−dimensional random variable.

E[x1, · · · , xd] =
∑
p∈P 2

d

∏
{i,j}∈p

E[xixj ] =
∑
p∈P 2

d

∏
{i,j}∈p

Σij (1)

Where d is assumed to be an even number and P is the set of all possible ways of partitioning
{1, · · · , d} in to pairs {i, j}. For odd d’s, E[x1, · · · , xd] = 0.

For example, two 4th order moments are computed using the Isserlis’ theorem below.
E[x21x

2
2] = E[x1x1x2x2]

= Σ11Σ22 + Σ12Σ12 + Σ12Σ12

= Σ11Σ22 + 2Σ12Σ12

E[x21x2x3] = E[x1x1x2x3]

= Σ11Σ23 + Σ12Σ13 + Σ13Σ12

= Σ11Σ23 + 2Σ12Σ13

2 Poisson regression with softplus as the link function

s We use the softplus link function µ = E[y|x,θ] = log(1 + exp(xTθ)). The probability mass
function is given by

Pr[y|x,θ] =
µy exp(−µ)

y!
=

(log(1 + exp(xTθ)))y exp(− log(1 + exp(xTθ)))

y!
(2)

And the log-likelihood is given by

log
[

Pr[y|x,θ]
]
∝ y log(log(1 + exp(xTθ)))− log(1 + exp(xTθ)) (3)

Now we find the normal approximation to each term in equation 3.

2.1 log(1 + exp(xTθ))

The second part of the likelihood i.e. log(1 + exp(xTθ)) is non-linear and its approximate compu-
tation requires a m order polynomial expansion. The summary statistics are t(x) = ([x]k)k∀k ∈
Nd :

∑
j kj = m′,m′ ≤ m, where [x]k =

∏d
j=1 x

kj

j . An example of a second order (i.e. m = 2)
approximate summary statistic t(x) for logistic regression when d = 4 is given below.

t(x) =
[
1, x1, x2, x3, x4, x

2
1, x

2
2, x

2
3, x

2
4, x1x2, x1x3, x1x4, x2x3, x2x4, x3x4

]
(4)

The entries for µs and Σs for the second part of the summand is given by the following.



1. E[xai x
b
j ] =

{
Ex[xai x

b
j ] for even a+b’s

0 for odd a+b’s

}
, a, b : a+ b = m′ ≤ m

2. Cov[xai x
b
j , x

c
kx

d
l ] = Ex[xai x

b
jx

c
kx

d
l ]−E[xai x

b
j ]E[xckx

d
l ]a, b : a+ b = m′, c+d = m′,m′ ≤

m.

According to the Isserlis’ theorem, only the even degree moments are non zero. Therefore we have
the following cases.

Cov[xai x
b
j , x

c
kx

d
l ] =

 Ex[xai x
b
jx

c
kx

d
l ]− Ex[xai x

b
j ]Ex[xckx

d
l ] a+b and c+d are even

Ex[xai x
b
jx

c
kx

d
l ] a+b and c+d are odd

0 a+b+c+d is odd


2.2 y log(log(1 + exp(xTθ)))

The entries of t(x) for log(log(1 + exp(xTθ))) are the same as those are for log(1 + exp(xTθ)).
So let’s compute the entries for µs for yt(x).

Ex[t(x)y] = Ex[xai x
b
jEy|x[y]] = Ex[xai x

b
j log(1 + exp(xTθ))] ≈ Ex

[
xai x

b
j

(
log(2) +

xTθ

2
+

(xTθ)2

8
− (xTθ)4

192

)]
.

Here log(1+exp(xTθ)) is approximated using the first four terms of the its Taylor expansion. Each
monomial in the expansion of (xTθ)p, p ∈ N≥0 has degree p and we expand these monomials using
the multinomial theorem. Once again after applying the Isserlis’ theorem, we have the following
cases.

E[xai x
b
j log(1 + exp(xTθ))] =

 Ex[xai x
b
j

(
log(2) + (xT θ)2

8 − (xT θ)4

192

)
] for even a+b’s

Ex[xai x
b
j

(
xT θ
2

)
] for odd a+b’s

 , a, b : a+ b = m′ ≤ m.

(5)

Similarly the terms of Σs for all a, b : a+ b = m′ ≤ m, c+ d = m′,m′ ≤ m are:

Cov[xai x
b
jy, x

c
kx

d
l y] = Ex[xai x

b
jx

c
kx

d
l Ey|x[y2]]− Ex[xai x

b
jEy|x[y]]Ex[xckx

d
l Ey|x[y]]

= Ex[xai x
b
jx

c
kx

d
l log2(1 + exp(xTθ))]− Ex[xai x

b
j log(1 + exp(xTθ))]Ex[xckx

d
l log(1 + exp(xTθ))].

The second part of this subtraction can be evaluated using Equation 5. Next, we evaluate
Ex[xai x

b
jx

c
kx

d
l log2(1 + exp(xTθ))]. Using the Taylor series expansion,

log2(1 + exp(xTθ)) ≈ log2(2) + (xTθ) log(2) +
(xTθ)2(1 + log(2))

4
+

(xTθ)3

8
.

The surviving even degree moments that we evaluate are.

E[xai x
b
jx

c
kx

d
l log2(1 + exp(xTθ))] =

 Ex
[
xai x

b
jx

c
kx

d
l

(
log2(2) + (xT θ)2(1+log(2))

4

)]
for even a+b+c+d’s

Ex
[
xai x

b
jx

c
kx

d
l

(
(xTθ) log(2) + (xT θ)3

8

)]
for odd a+b+c+d’s

 .

These expressions are further simplified using the multinomial theorem once again.

3 Sensitivity results

3.1 Individual sensitivities

Lemma 3.1.1. Consider two vectors x,x′ ∈ Rd such that ||x||2 ≤ R and ||x′||2 ≤ R. Then, an
elementary analysis shows that

||t1(x)− t1(x′)||2 ≤ 2R,

||t2(x)− t2(x′)||2 ≤
√

2R2.
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When considering the Gaussian mechanism for releasing t1(x) or t2(x) such that element-wise
Gaussian noises of variances 4R2σ2 and 2R4σ2 are added to t1(x) and t2(x), respectively, their
(ε, δ)-analyses are equivalent to the analysis of Gaussian mechanism with sensitivity 1 and variance
σ2. However, when releasing the linear and quadratic terms simultaneously, a better utility can be
obtained. To this end, we need the following relations.

3.2 Second order terms

In the case of m = 2, we release the terms (x2i , xixj) with multipliers (1,
√

2). By rearranging, we
have

‖t2(x)− t2(x′)‖22 =

d∑
i=1

(x2i − x′2i )2 + 2
∑
i>j

(xixj − x′ix′j)2

=
∑
i

x4i +
∑
i

x′4i − 2
∑
i

x2ix
′2
i + 2

∑
i>j

x2ix
2
j + 2

∑
i>j

x′2i x
′2
j − 4

∑
i>j

xixjx
′
ix
′
j

=

∑
i

x4i + 2
∑
i>j

x2ix
2
j

+

∑
i

x′4i + 2
∑
i>j

x′2i x
′2
j

− 2
∑
i

x2ix
′2
i − 4

∑
i>j

xixjx
′
ix
′
j

=

∑
i

x4i +
∑
i6=j

x2ix
2
j

+

∑
i

x′4i +
∑
i 6=j

x′2i x
′2
j

− 2
∑
i

x2ix
′2
i − 2

∑
i 6=j

xixjx
′
ix
′
j

= ‖x‖42 + ‖x′‖42 − 2〈x, x′〉2.

3.3 Third and fourth order terms

We first illustrate the general case with the cases m = 3 and m = 4. In the next section we describe
the release mechanism and give its tight sensitivity for general m.

In the case of m = 3, we release all the distinct terms of the form

(x3i , x
2
ixj , xixjxk)

with the corresponding multipliers (1,
√

3,
√

3). By rearranging, we have

‖t3(x)− t3(x′)‖22 =

d∑
i=1

(x3i − x′3i )2 + 3
∑
i 6=j

(x2ixj − x′2i x′j)2 + 3
∑

i>j>k

(xixjxk − x′ix′jx′k)2

=
∑
i

x6i +
∑
i

x′6i − 2
∑
i

x3ix
′3
i + 3

∑
i 6=j

x4ix
2
j + 3

∑
i6=j

x′4i x
′2
j

− 6
∑
i 6=j

x2ixjx
′2
i x
′
j + 3

∑
i>j>k

x2ix
2
jx

2
k + 3

∑
i>j>k

x′2i x
′2
j x
′2
k − 6

∑
i>j>k

xixjxkx
′
ix
′
jx
′
k

=

∑
i

x6i + 3
∑
i 6=j

x4ix
2
j + 3

∑
i>j>k

x2ix
2
jx

2
k

+

∑
i

x′6i + 3
∑
i 6=j

x′4i x
′2
j + 3

∑
i>j>k

x′2i x
′2
j x
′2
k


− 2

∑
i

x3ix
′3
i − 6

∑
i 6=j

x2ixjx
′2
i x
′
j − 6

∑
i>j>k

xixjxkx
′
ix
′
jx
′
k

= ‖x‖62 + ‖x′‖62 − 2〈x, x′〉3.

In the case of m = 4, we release all the distinct the terms of the forms

(x4i , x
3
ixj , x

2
ix

2
j , x

2
ixjxk, xixjxkx`)

with the corresponding multipliers (
√

4,
√

6,
√

6,
√

4). By rearranging, we have
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‖t4(x)− t4(x′)‖22 =

d∑
i=1

(x4i − x′4i )2 + 4
∑
i 6=j

(x3ixj − x′3i x′j)2 + 6
∑
i>j

(x2ix
2
j − x′2i x′2j )2

+ 6
∑

i 6=j,i 6=k,j 6=k

(x2ixjxk − x′2i x′jx′k)2 + 4
∑

i>j>k>`

(xixjxkx` − x′ix′jx′kx′`)2

=

(∑
i

x8i +
∑
i

x′8i − 2
∑
i

x4ix
′4
i

)
+

(
4
∑
i 6=j

x6ix
2
j + 4

∑
i 6=j

x′6i x
′2
j

− 8
∑
i 6=j

x3ixjx
′3
i x
′
j

)
+

(
6
∑
i>j

x4ix
4
j + 6

∑
i>j

x′4i x
′4
j − 12

∑
i>j

x2ix
2
jx
′2
i x
′2
j

)

+

(
6

∑
i6=j,i 6=k,j 6=k

x4ix
2
jx

2
k + 6

∑
i 6=j,i 6=k,j 6=k

x′4i x
′2
j x
′2
k − 12

∑
i 6=j,i 6=k,j 6=k

x2ixjxkx
′2
i x
′
jx
′
k

)

+

(
4

∑
i>j>k>`

x2ix
2
jx

2
kx

2
` + 4

∑
i>j>k>`

x′2i x
′2
j x
′2
k x
′2
` − 8

∑
i>j>k>`

xixjxkx`x
′
ix
′
jx
′
kx
′
`

)

=

(∑
i

x8i + 4
∑
i6=j

x6ix
2
j + 6

∑
i>j

x4ix
4
j + 4

∑
i>j>k>`

x2ix
2
jx

2
kx

2
`

)
+

+

(∑
i

x′8i + 4
∑
i6=j

x′6i x
′2
j + 6

∑
i>j

x′4i x
′4
j + 4

∑
i>j>k>`

x′2i x
′2
j x
′2
k x
′2
`

)

− 2

(∑
i

x4ix
′4
i + 4

∑
i 6=j

x3ixjx
′3
i x
′
j + 6

∑
i 6=j,i 6=k,j 6=k

x2ixjxkx
′2
i x
′
jx
′
k

+ 6
∑
i>j

x2ix
2
jx
′2
i x
′2
j + 4

∑
i>j>k>`

xixjxkx`x
′
ix
′
jx
′
kx
′
`

)
= ‖x‖82 + ‖x′‖82 − 2〈x, x′〉4.

3.4 General case

For a general m, if we release each distinct mth order termof the form

xk1
i1
· · ·xkm′

im′ ,

where
∑

i ki = m, 1 ≤ m′ ≤ m, multiplied with the multinomial factor
√(

m
k1,...,km′

)
, then the

function tm(x) has the sensitivity

‖tm(x)− tm(x′)‖22 = ‖x‖2m2 + ‖x′‖2m2 − 2〈x, x′〉m.

This is shown similarly as above for t2(x), t3(x) and t4(x). Namely, we have

‖tm(x)− tm(x′)‖22 =
∑

k1+...km′=m, 1≤m′≤m

∑
i1,...im′

(
m

k1, . . . , km′

)
(xk1

i1
· · ·xkm′

im′ − x
′k1
i1
· · ·x′km′

im′ )2

=

( ∑
k1+...km′=m, 1≤m′≤m

∑
i1,...im′

(
m

k1, . . . , km′

)
x2k1
i1
· · ·x2km′

im′

)

+

( ∑
k1+...km′=m, 1≤m′≤m

∑
i1,...im′

(
m

k1, . . . , km′

)
x′2k1
i1
· · ·x′2km′

im′

)

− 2 ·
( ∑

k1+...km′=m, 1≤m′≤m

∑
i1,...im′

(
m

k1, . . . , km′

)
xk1
i1
x′k1
i1
· · ·xkm′

im′ x
′km′
im′

)
= ‖x‖2m2 + ‖x′‖2m2 − 2〈x, x′〉m,

4



where
∑

k1+...km′=m, 1≤m′≤m denotes a sum over all combinations of positive integers
(k1, . . . , km′) such that k1 + . . . km′ = m and∑

i1,...im′

xk1
i1
· · ·xkm′

im′

denotes a sum over all different monomials with (k1, . . . , km′) as exponents.

4 Preliminary experiments on Poisson regression

Implementation. We used Metropolis-Hastings algorithm to infer the model parameter posteriors
for Poisson regression. We gave the regression coefficients θs a standard normal prior and the
data covariance Σs an Inverse Wishart prior. As mentioned in the main draft, to the best of our
knowledge, this is the first work that analyzes Poisson regression under DP constraints. Instead
of employing the Isserlis theorem, we approximated the normal approximation parameters using
MC integration. Specifying a more accurate, efficient, and scalable model for Poisson regression in
sophisticated probabilistic programmings frameworks such as Stan is marked as a future exercise.
We use synthetic data of 500 samples generated with θ = [0.3,−0.6, 0.8] and a valid non-identity
co-variance matrix. We filter out ||x||2 > Rx = 1. The proposal standard deviation for the MH
sampler was set to 0.01. Our sampler runs for 50,000 iterations, out of which we discard the first
25,000 burn-in samples. We repeat each inference for 5 times.

Results. Figure 1 compares private and non-private empirical CDFs for θ′s for various ε values
within range [0.1, 1.1]. The last plot shows the Kolmogorov-Smirnov scores between these CDFs
for a few ε values in the same range. We note that the private CDFs tend to (partially) overlap
on their non-private variants as ε increases. We suspect that the overlap is not as strong as it is
in logistic regression due to a) more noise, which is a consequence of significantly more number
of approximate sufficient statistics and larger range of y (already explained by Lemma 3.5 in the
main draft), b) smaller sample size of 500 and smaller number of inference repeats causing more
uncertainty.

We believe that it may be possible to improve these results with faster converging sampling al-
gorithms and by designing better prior distributions. However, these preliminary explorations do
demonstrate the merit of our model and tight sensitivity resultst.

Figure 1: Comparison of differentially private and non-private empirical CDFs for θ’s posteriors
for Poisson regression for various ε values. We use a synthetic dataset of N = 500 samples and
Rx = 1, Ry = 5, δ = 10−5. The right-most column shows the Kolmogorov-Smirnov scores
between non-private and private empirical CDFs for the same set of ε values.
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