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Abstract
The price of explainability for a clustering task
can be defined as the unavoidable loss, in terms
of the objective function, if we force the final par-
tition to be explainable. Here, we study this price
for the following clustering problems: k-means,
k-medians, k-centers and maximum-spacing. We
provide upper and lower bounds for a natural
model where explainability is achieved via deci-
sion trees. For the k-means and k-medians prob-
lems our upper bounds improve those obtained by
[Dasgupta et. al, ICML 20] for low dimensions.
Another contribution is a simple and efficient algo-
rithm for building explainable clusterings for the
k-means problem. We provide empirical evidence
that its performance is better than the current state
of the art for decision-tree based explainable clus-
tering.

1. Introduction
Machine learning models and algorithms have been used in
a number of systems that take decisions that affect our lives.
Thus, explainable methods are desirable so that people are
able to have a better understanding of their behavior, which
allows for comfortable use of these systems or, eventually,
the questioning of their applicability.

Although most of the work on the field of explainable ma-
chine learning has been focusing on supervised learning
(Ribeiro et al., 2016; Lundberg & Lee, 2017; Vidal & Schif-
fer, 2020), there has recently been some effort to devise
explainable methods for unsupervised learning tasks, in par-
ticular, for clustering (Dasgupta et al., 2020b; Bertsimas
et al., 2020). We investigate the framework discussed by
(Dasgupta et al., 2020b), where an explainable clustering is
given by a partition, induced by the leaves of a decision tree,
that optimizes some predefined objective function.

Figure 1 shows a clustering with three groups induced by a
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decision tree with 3 leaves. As an example, the blue cluster
can be explained as the set of points that satisfy Feature
1 ≤ 70 and Feature 2 > 40. Simple explanations as
this one are usually not available for the partitions produced
by popular methods such as the Lloyd’s algorithm for the
k-means problem.

In order to achieve explainability, one may be forced to
accept some loss in terms of the quality of the chosen ob-
jective function (e.g. sum of squared distances). In this
sense, explainability has its price. (Dasgupta et al., 2020b)
presents theoretical bounds on this price for the k-medians
and the k-means objective functions.

Here, we expand on their work by presenting new bounds
for these objectives and also providing nearly tight bounds
for two other goals that arise in relevant clustering problems,
namely, the k-centers and the maximum-spacing problems.
We note that the objective for the latter is the one opti-
mized by the widely known Single-Linkage method,
employed for hierarchical clustering. We also give a more
practice-oriented contribution by devising and evaluating
a simple and efficient algorithm for building explainable
clusterings for the k-means problem.

1.1. Problem definition

Let X be a set of n points in Rd. We say that a decision
tree is standard if each internal node v is associated with a
test (cut), specified by a coordinate iv ∈ [d] and a real value
θv , that partitions the points in X that reach v into two sets:
those having the coordinate iv smaller than or equal to θv
and those having it larger than θv . The leaves of a standard
decision tree induce a partition of Rd into axis-aligned boxes
and, naturally, a partition of X into clusters.
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Let k ≥ 2 be an integer. The clustering problems considered
here consist of finding a partition of X into k groups, among
those that can be induced by a standard decision tree with
k leaves, that optimizes a given objective function. For k-
means, k-medians and k-centers, in addition to the partition,
a representative µ(C) ∈ Rd for each group C must also be
output.

For the k-means problem the objective (cost function) to be
minimized is the Sum of the Squared Euclidean Distances
(SSED) between each point x ∈ X and the representative
of the cluster where x lies. Mathematically, the cost (SSED)
of a partition C = (C1, . . . , Ck) for X is given by

cost(C) =

k∑
i=1

∑
x∈Ci

||x− µ(Ci)||22.

The k-medians and the k-centers problems are also mini-
mization problems. For the former, the cost of a partition
C = (C1, . . . , Ck) is given by

cost(C) =

k∑
i=1

∑
x∈Ci

||x− µ(Ci)||1,

while for the latter it is given by

cost(C) = max
i=1,...,k

max
x∈Ci

{||x− µ(Ci)||2}.

The maximum-spacing problem is a maximization problem
for which the objective to be maximized is the spacing sp(C)
of a partition C, defined as

sp(C) = min{||x−y||2 : x and y lie in distinct groups of C}

We note that an optimal solution of the unrestricted version
of any of these problems, in which the decision tree con-
straint is not enforced, might be a partition that is hard to
explain in terms of the input features. Thus, the motivation
for using decision trees.

Along the lines of (Dasgupta et al., 2020b), we define the
price of explainability ρ(P) for a clustering problem P ,
with a minimization objective function, as

ρ(P) = max
I

{
OPTexp(I)

OPTunr(I)

}
,

where I runs over all instances of P ; OPTexp(I) is the cost
of an optimal explainable clustering (via standard decision
trees) for instance I and OPTunr(I) is the cost of an opti-
mal unrestricted clustering for I . If P has a maximization
objective function, then ρ(P) is defined as

ρ(P) = max
I

{
OPTunr(I)

OPTexp(I)

}
.

1.2. Our contributions

We provide bounds on the price of explainability as a func-
tion of the parameters k, d and n for the aforementioned
objective functions. These objectives cover a spectrum that
includes both intra- and inter-clustering criteria as well as
worst-case and average-case measures.

First, we address the k-centers problem. We show that

ρ(k-centers) ∈

{
Ω(k1−1/d), if d ≤ ln k

ln ln k

Ω
(√

d · k·
√
ln ln k

ln1.5 k

)
, otherwise

and that ρ(k-centers) is O(
√
dk1−1/d). Our bounds are

tight, up to constant factors, when d is a constant. For an
arbitrary d, there is only a polylogarithmic gap in k between
the upper and the lower bounds. The magnitude of this gap
is exponentially smaller than that of these bounds.

For the k-medians it is known that the price of explain-
ability is O(k) and Ω(log k) (Dasgupta et al., 2020b). We
contribute to the state of the art by showing that O(d log k)
is also an upper bound – an exponential improvement for
constant dimensions. The upper bound follows from an in-
teresting connection with the literature of binary searching
in the presence of non-uniform testing costs (Charikar et al.,
2002; Laber et al., 2002).

For the k-means problem, we also improve, for low di-
mensions, the O(k2) bound from (Dasgupta et al., 2020b)
since we prove that ρ(k-means) is O(kd log k). Still, for
the k-means problem, we also give a more practice-oriented
contribution by devising and evaluating a simple and effi-
cient greedy algorithm. Our method outperformed the IMM
method from (Dasgupta et al., 2020b) on an empirical study
involving 10 real datasets. It should be noticed that IMM is
a strong baseline since it got the best results against 5 other
competitors on the same datasets according to (Dasgupta
et al., 2020a; Frost et al., 2020).

Finally, for maximum-spacing we provide a tight bound
by showing that the price of explainability is Θ(n − k).
The lower bound is particularly interesting since it shows
that this objective function is bad for guiding explainable
clustering, losing much more than the other considered
objectives in the worst-case.

To derive our upper bounds, we analyze polynomial-time
algorithms that start with an optimal k-clustering and trans-
form it into an explainable one. The unrestricted versions of
all the problems considered here, except for the maximum-
spacing problem, are NP-Hard (Megiddo & Supowit, 1984;
Aloise et al., 2009). However, all of them admit polynomial-
time algorithms with constant approximation (Williamson &
Shmoys, 2011; Kanungo et al., 2004) and, hence, if we start
with the partitions given by them, instead of the optimal
ones, we obtain efficient algorithms with provable approxi-
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mation guarantees. These guarantees are exactly the upper
bounds that we prove on the price of explainability. Due
to space constraints, most of the proofs can be found in the
supplementary material.

We believe that our results are helpful for the construction
of explainable clustering solutions as well as for guiding
the choice of an objective function when explainability is
required.

1.3. Related work

Our research is inspired by the recent work of (Dasgupta
et al., 2020b), where they propose an algorithm, namely
IMM, for building explainable clusterings, via standard deci-
sion trees, for both the k-means and the k-medians problems.
At each node IMM selects the cut that minimizes the number
of points separated from their representatives in a reference
clustering. Our approach for these problems, while similar,
uses a significantly different strategy to build the final de-
cision tree, based on trees that look at a single dimension
of the data. Moreover, as mentioned before, our algorithms
provide better upper bounds for low dimensions.

Decision trees have long been associated to hierarchical ag-
glomerative clustering (HAC), which produces a hierarchy
of clusters that is usually represented by a dendrogram. Ex-
amples of models that explicitly use decision trees for HAC
include (Fisher, 1987; Chavent et al., 1999; Blockeel et al.,
2000; Basak & Krishnapuram, 2005). To our knowledge,
the use of decision trees for non-hierarchical clustering was
first suggested in (Liu et al., 2000), in which a standard clas-
sification tree is used to identify dense and sparse regions
of data. In (Fraiman et al., 2013), unsupervised binary trees
are also used to create interpretable clusters. More recently,
an approach was presented in (Bertsimas et al., 2020) us-
ing optimal classification trees (Bertsimas & Dunn, 2017),
which are built in a single step by solving a mixed-integer
optimization problem. For numerical databases, (Loyola-
González et al., 2020) presents a decision approach that
decides on a split based on both the compactness of clusters
and the separation between them.

The regions of space defined by decision-tree clustering will
be hyper-rectangles (some of them may also be half-spaces
if the overall region of interest is unbounded). Other ap-
proaches towards building hyper-rectangular clusters can be
found in (Pelleg & Moore, 2001), with a generative model,
and (Chen et al., 2016), with a discriminative one. Both
models allow for probabilistic (soft) clustering, and (Chen
et al., 2016) allows for incorporating previous knowledge
to the model, but neither one guarantees that the resulting
clusters can be represented by decision trees.

The main reason for using a (short) decision tree to build
clusters is that the results of such algorithms are easily

interpretable. Other avenues towards interpretable clus-
tering have been explored in recent years. The tech-
nique presented in (Plant & Böhm, 2011) is based on
the information-theoretic concept of minimum description
length. In (Saisubramanian et al., 2020), a tunable param-
eter (the fraction of elements in a cluster that share the
same feature value) leverages the tradeoff between cluster-
ing performance and interpretability. The same tradeoff is
explored in (Frost et al., 2020) by relaxing the requirement
from (Dasgupta et al., 2020b) that the explainable clustering
should be induced by a tree with no more than k leafs. In
(Horel et al., 2020), a feature selection model from (Horel
& Giesecke, 2019) is used for clustering interpretation in
the field of wealth management compliance. (Kauffmann
et al., 2019) uses a two-step approach, rewriting k-means
clustering models as neural networks and applying to these
networks techniques for interpreting supervised learning
models. More information regarding explainable clustering
may be found in (Chen, 2018; Baralis et al.).

Of all the works mentioned in this section, only (Dasgupta
et al., 2020b) presents approximation guarantees with re-
spect to the optimal unrestricted (i.e., potentially uninter-
pretable) solution. Two algorithms from (Saisubramanian
et al., 2020) also have an approximation guarantee, but with
respect to the optimal restricted (interpretable) solution, and
the definition of interpretability in that work is quite differ-
ent than ours (interpretable clusters are therein defined as
those in which a given proportion of points share the same
value for a predefined feature of interest).

2. On the price of explainability for the
k-centers problem

In this section we address the k-centers problem. We first
present a lower bound by constructing an instance for which
the price of explainability is high.

2.1. Lower bound

Let p ≤ min{d, log3 k} be a positive integer whose exact
value will be defined later in the analysis and let b be the
largest integer for which bp ≤ k. Note that b ≥ 3. Moreover,
let k′ = bp.

Our instance I has k + k′ · 2d points. We first discuss how
to construct the k points, referred as centers, that will be set
as representatives in an unrestricted k-clustering for I that
has a low cost. The first k′ centers will be obtained from the
representation of the numbers 0, . . . , k′ − 1 in base b while
the remaining k − k′ centers will be located sufficiently far
from the others so that they will be isolated in the low-cost
k-clustering for I . Let c0, . . . , ck

′−1 be the first k′ centers.

For a number i ∈ [k′−1] let (ip−1, . . . , i0)b be its represen-
tation in base b. For j ∈ [d], the value of the j-th component
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of center ci is obtained by applying (j − 1) times a circular
shift on (ip−1, . . . , i0)b. The values of the remaining d− p
components of ci are obtained by copying the p first values
d/p times so that cij = cij′ if (j − j′) mod p = 0.

As an example, if b = 3, p = 3 and d = 9 then
c14 = (14, 22, 16, 14, 22, 16, 14, 22, 16). In fact, since
14 = (1, 1, 2)3 we have that c141 = (1, 1, 2)3 = 14;
c142 = (2, 1, 1)3 = 22 and c143 = (1, 2, 1)3 = 16. The
values of c144 , . . . , c

14
9 are obtained by repeating the first 3

values.

The following observation is useful for our analysis.

Fact 1. For every ` ∈ [p], the values of the `-th coordi-
nate of the k′ first centers are a permutation of the integers
0, . . . , k′ − 1.

The remaining k − k′ centers, as mentioned above, should
be far from each other and also far away from the k′ first
centers. We can achieve that by setting ci = ki1 for all
i > k′ − 1, where 1 is the unit vector in Rd.

The next lemma gives a lower bound on the distance be-
tween any two centers.

Lemma 1. For any two centers ci and cj ,

||ci − cj ||2 ≥
√
bd/pc · (bp−1/2).

Proof. If one of the two centers is not among the k′ first
centers the result clearly holds. Thus, we assume that i, j ≤
k′ − 1.

It is enough to show that there is ` ∈ [p] for which |ci`−c
j
` | ≥

bp−1/2. In fact, if this inequality holds for some ` then
|ci`′−c

j
`′ | ≥ bp−1/2 for each `′ that is congruent to `modulo

p. Since there are bd/pc of them, due to our construction,
we get the desired bound.

Let i = (ip−1, . . . , i0)b and j = (jp−1, . . . , j0)b be the
representations of i and j in base b, respectively. Let f be
such that |if − jf | is maximum.

Thus, the difference between ci and cj in the coordinate
[(f + 1) mod p] + 1 is at least

|if − jf | ·

(
bp−1 −

p−2∑
g=0

bg

)
≥ bp−1/2,

where the last inequality holds because |if − jf | ≥ 1 and
b ≥ 3.

Now, we define the remaining points of instance I .

For each of the first k′ centers we create 2d associated
points: xi,1, . . . ,xi,2d. For j = 1, . . . , d, the point xi,2j−1

is identical to ci in all coordinates but on the j-th one, in
which its value is cij − 3/4. Similarly, the point xi,2j is

identical to ci in all coordinates but in the j-th one, in which
its value is cij + 3/4. By considering the k-clustering for I
where the k representatives are the k centers c0, . . . , ck−1

and each point xi,j lies in the group of ci, we obtain the
following proposition.

Proposition 1. There exists an unrestricted k-clustering for
instance I with cost 3/4.

Now we analyse the cost of an optimal explainable cluster-
ing for I . The following proposition is a simple consequence
of Fact 1.

Proposition 2. Let (j, θ) be a cut that separates at least
two points from the set A that includes the k′ first centers
and its associated k′ · 2d points. Then, (j, θ) separates one
point from its associated center.

Lemma 2. Any explainable k-clustering for instance I has
cost at least

√
bd/pc · (bp−1/4)− 3/8.

Proof. Let C be an explainable k-clustering for instance
I . It is enough to show that there is a cluster C ∈ C that
contains two points, say x and y, for which

||x− y||2 ≥
√
bd/pc · (bp−1/2)− 3/4.

In fact, in this case, due to the triangle inequality, for any
choice of the representative for C, either x or y will be at
distance at least

√
bd/pc · (bp−1/4)− 3/8 from it.

If two centers lie in the same cluster of C then it follows from
Lemma 1 that their distance is at least

√
bd/pc · (bp−1/2).

On the other hand, if every center lies on a different cluster
in C then let x be the point that was separated from its center,
say ci, by a cut that satisfies the condition of Proposition 2.
Then, x lies in the same cluster of cj , for some j 6= i. From
the triangle inequality we have that

||ci − cj ||2 ≤ ||ci − x||2 + ||cj − x||2.

Hence, ||cj − x||2 ≥
√
bd/pc · (bp−1/2)− 3/4.

By putting together Proposition 1 and Lemma 2 and, then,
optimizing the value of p we obtain the following theorem.

Theorem 1. The price of explainability for the k-centers
problem satisfies

ρ(k-center) ∈

{
Ω(k1−1/d), if d ≤ ln k

ln ln k

Ω
(√

d · k·
√
ln ln k

ln1.5 k

)
, otherwise.

2.2. Upper bound

In this section we show that the price of explainability for the
k-center problem isO

(√
dk

d−1
d

)
. Note that, for constant d,
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the upper bound matches the lower bound given by Theorem
1.

To obtain the upper bound we analyze the cost of the ex-
plainable clustering induced by the decision tree built by the
algorithm presented in Algorithm 1.

The algorithm has access to the set of representatives of an
optimal k-clustering C∗ for X . These representatives are
used as reference centers for the points in X , that is, the
reference center of a point x is the representative of x’s
group in C∗.

Let X ′ and S be, respectively, the subset of points in X and
the set of reference centers that reach a given node u. To
split u, as long as it is possible, the algorithm applies an
axis-aligned cut that does not separate any point x ∈ X ′
from its reference center. This type of cut is referred as a
clean cut with respect to (X ′, S). When there is no such cut
available for u, the algorithm partitions the bounding box
of the points in X ′ ∪ S into b|S|1/dcd axis-aligned boxes of
the same dimensions by using a decision tree that emulates
a grid. By the bounding box of X ′∪S we mean the smallest
box (hyper-rectangle) with axis-aligned sides that includes
the points in X ′ ∪ S.

Algorithm 1 Ex-kCenter( X ′: set of points)
S ← reference centers of the points in X ′
if |S| = 1 then

Return X ′ and the single reference center in S
else

if there exists a clean cut w.r.t. (X ′, S) then
(X ′L,X ′R)← partition induced by the clean cut
Create a node u
u.LeftChild←Ex-kCenter(X ′L)
u.RightChild←Ex-kCenter(X ′R)
Return the tree rooted at u

else
H ← bounding box for X ′ ∪ S

Du ← decision tree that partitions H into b|S|1/dcd
identical axis-aligned boxes
Return Du as well as an arbitrarily chosen representative
for each of its leaves

end if
end if

Theorem 2. The price of explainability for k-centers is
O
(√

dk1−1/d
)

.

Proof. We argue that for each leaf ` of the tree D built by
Ex-kCenter(X ), the maximum distance between a point
in ` and its representative is OPT

√
dk1−1/d, where OPT

is the cost of the optimal unrestricted clustering.

We split the proof into two cases. The first case addresses
the scenario in which only clean cuts are used in the path
from the root of D to the leaf `. The second case addresses
the remaining scenarios.

Case 1. In this case all points that reach ` lie in the same
cluster of the optimal unrestricted k-clustering C∗. Thus, the
maximum distance from a point in ` to the single reference
center in S is upper bounded by OPT .

Case 2. Let u be the first node in the path from the root to
` for which a clean cut is not available. Moreover, let X u

be the set of points that reach u and let s = |S|, that is, the
number of reference centers that reach u. In this case the
algorithm splits the bounding box for X u ∪ S into boxes of
dimensions

L1

bs1/dc
× · · · × Ld

bs1/dc
,

where Li is the difference between the maximum and mini-
mum values of the i-th coordinate among points in X u ∪ S.

The maximum distance between a point in ` and its repre-
sentative can be upper bounded by the length of the diagonal
of the axis-aligned box corresponding to `. Let m ∈ [d]
be such that Lm = max{L1, . . . , Ld}. Then, the length
of the diagonal is upper bounded by Lm

√
d/bs1/dc ≤

2Lm

√
d/s1/d.

Thus, it suffices to show that OPT ≥ Lm/(2s). Let
c1, . . . , cs be the s reference centers that reach node u. In
addition, let xj be a point in X u with reference center cj

and such that |xjm − cjm| is maximum, among the points in
X u with reference center cj . Then, we must have

s∑
j=1

2|xjm − cjm| ≥ Lm,

for otherwise there would be a clean cut (m, θ), with
θ ∈ [a, b], where a = min{ym|y ∈ X u ∪ S} and
b = max{ym|y ∈ X u ∪ S}. Hence, for some point xj ,
|xjm − cjm| ≥ Lm/(2s). Since OPT ≥ |xjm − cjm| we get
that OPT ≥ Lm/(2s).

3. Improved bounds on k-medians for low
dimensions

We show that the price of explainability for k-medians is
O(d log k), which improves the bound from (Dasgupta et al.,
2020b) when d = o(k/ log k).

As in the previous section we use an optimal unrestricted
k-clustering C∗ for X as a guide for building an explainable
clustering. Again, by the reference center of a point x ∈ X
we mean its representative in C∗.

We need some additional notation. For a decision tree D
and a node u ∈ D, let diam(u) be the d-dimensional vector
whose i-th coordinate diam(u)i is given by the difference
between the maximum and the minimum values of coordi-
nate i among the reference centers that reach u. Let tu be
the number of points that reach u and are separated from
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their reference centers by the cut employed in u. Note that
a point x ∈ X can only contribute to tu if both x and its
reference center reach u. Finally, we use OPT to denote
the cost of the optimal unrestricted clustering C∗.

The following lemma from (Dasgupta et al., 2020b), ex-
pressed in our notation, will be useful.

Lemma 3. (Dasgupta et al., 2020b) Let C∗ be an optimal
unrestricted k-clustering for X and let D be a decision tree
for X in which each representative of C∗ lies in a distinct
leaf. Then, the clustering C induced by D satisfies

cost(C) ≤ OPT +
∑
u∈D

tu||diam(u)||1. (1)

In order to obtain a low-cost explainable clustering we focus
on finding a decision tree D for which the rightmost term
of the above inequality is small. This is the approach taken
by IMM (Dasgupta et al., 2020b), a greedy strategy that at
each node u selects the cut that yields the minimum possible
value for tu.

Although we follow the same approach, our strategy for
building the tree is significantly different. In order to explain
it, we first rewrite the rightmost term of (1):

∑
u∈D

tu||diam(u)||1 =

d∑
i=1

∑
u∈D

tudiam(u)i. (2)

Motivated by Lemma 3 and the above identity, our strategy
constructs d decision trees D1, . . . ,Dd, where Di is built
with the aim of minimizing

∑
u∈D

tudiam(u)i, (3)

ignoring the impact on the coordinates j 6= i.

Next, it constructs a decision tree D for X by picking nodes
from these d trees. More precisely, to split a node u ofD the
strategy first selects a coordinate i ∈ [d] for which diam(u)i
is maximum. Next, it applies the cut that is associated with
the node in Di which is the least common ancestor (LCA)
of the set of reference centers that reach u.

In the pseudo-code presented in Algorithm 2, S′ is a subset
of the set S of representatives of C∗. Moreover, X ′ is a
subset of the points in X . The procedure is called, initially,
with X ′ = X and S′ = S.

Algorithm 2 BuildTree(X ′ ∪ S′)
Create a node u and associate it with X ′ ∪ S′

if |S′| = 1 then
Return the leaf u

else
Select i ∈ [d] for which diam(u)i is maximum.
v ← node in Di which is the LCA of the centers in S′

Split X ′ ∪ S′ into X ′L ∪ S′L and X ′R ∪ S′R using the cut
associated with v.
u.LeftChild→ BuildTree(X ′L ∪ S′L)
u.RightChild→ BuildTree(X ′R ∪ S′R)
Return the decision tree rooted at u

end if

To fully specify the algorithm we need to explain how the
decision trees Di are built. Let c1, . . . , ck be the reference
centers sorted by coordinate i, that is, cji < c

j+1
i for j =

1, . . . , k − 1. Moreover, let (i, θj) be the cut that separates
the points inX with the i-th coordinate smaller than or equal
to θj = (cji + cj+1

i )/2 from the remaining ones.

For 1 ≤ a ≤ b ≤ k, letFa,b be the family of binary decision
trees with (b−a) internal nodes and b−a+1 leaves defined
as follows:

(i) if a = b, then Fa,b has a single tree and this tree
contains only one node.

(ii) if a < b, then Fa,b consists of all the decision trees D′
with the following structure: the root ofD′ is identified
by a number j ∈ {a, . . . , b − 1} and associated with
the cut (i, θj); one child of the root of D′ is a tree in
the family Fa,j while the other is a tree in Fj+1,b.

For our analysis, in the next sections, it will be convenient
to view Fa,b as the family of binary search trees for the
numbers in the set {a, . . . , b− 1}.

Let Tj be the number of points in X that are separated from
their centers by cut (i, θj). For every tree D′ ∈ Fa,b we
define UBi(D′) as

UBi(D′) =

b−1∑
j=a

Tj · diam(j)i,

where diam(j) is the diameter of the node identified by j
in D′.

The tree Di is, then, defined as

Di = argmin{UBi(D′) | D′ ∈ F1,k}.

The motivation for minimizing UBi() is that for every tree
D′ ∈ F1,k, UBi() is an upper bound on (3), that is,

∑
u∈D′

tudiam(u)i ≤
k−1∑
j=1

Tj · diam(j)i = UBi(D′).
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To see that, let j be the integer identified with the node
u ∈ D′. By definition diam(u)i = diam(j)i. Moreover,
we have tu ≤ Tj because tu only accounts the points that
are separated from their reference centers among those that
reach u, while Tj accounts all the points in X regardless of
whether they reach u or not.

We discuss how to construct Di efficiently. Let OPTa,b =
min{UBi(D′) | D′ ∈ Fa,b}, if a < b, and let OPTa,b = 0
if a = b. Hence, UBi(Di) = OPT1,k. The following
relation holds for all a < b:

OPTa,b = min
a≤j≤b−1

{
Tj(c

b
i − cai ) +OPTa,j +OPTj+1,b

}
.

(4)

Thus, given a set of k reference centers and the values Tj’s,
Di can be computed in O(k3) time by solving equation (4),
for a = 1 and b = k, via standard dynamic programming
techniques.

3.1. Approximation analysis: overview

We prove that the cost of the clustering induced by D is
O(d log k) ·OPT . To reach this goal, we first show that

UBi(Di) ≤ 2 log k

k−1∑
j=1

(cj+1
i − cji )Tj

 . (5)

The proof of this bound relies on the fact that Di can be
seen as a binary search tree with non-uniform probing costs.
We use properties of this kind of tree, in particular the one
proved in (Charikar et al., 2002) about its competitive ratio.

Let
OPTi =

∑
x∈X
|xi − c(x)i|

be the contribution of coordinate i to OPT , where c(x)
is the reference center of x. Our second step consists of
showing thatk−1∑

j=1

(cj+1
i − cji )Tj

 /2 ≤ OPTi. (6)

Roughly speaking, the proof of this bound consists of pro-
jecting the points of X and the reference centers onto the
axis i and then counting the number of times the interval
[cji , c

j+1
i ] appears in the segments that connect points in X

to their reference centers. This is exactly the same line of
reasoning employed to prove Lemma 6 from the supplemen-
tary version of (Dasgupta et al., 2020b).

At this point, from the two previous inequalities, we obtain

UBi(Di) ≤ 4 log k ·OPTi. (7)

Finally, we prove that a factor of d is incurred when we
build the tree D from the nodes of the trees D1, . . . ,Dd:

∑
v∈D

tv||diam(v)||1 ≤ d
d∑

i=1

UBi(Di). (8)

From (7), (8) and the identity OPT =
∑d

i=1OPTi, we
obtain ∑

v∈D
tv||diam(v)||1 ≤ 4d log k ·OPT.

This together with Lemma 3 allows us to establish the main
theorem of this section.
Theorem 3. The price of explainability for k-medians is
O(d log k).

4. The k-means problem
4.1. Improved bounds for low dimensions

The result we obtained for the k-medians problem can be
extended to the k-means problem:
Theorem 4. The price of explainability for k-means is
O(dk log k).

From an algorithmic perspective, in order to establish the
theorem, we only need to replace the definition of UBi(D′)
for a tree D′ in Fa,b with

UB′i(D′) =

b−1∑
j=a

Tj · (diam(j)i)
2.

Note that the only difference is the replacement of diam(j)i
with (diam(j)i)

2. As a consequence, for the k-means prob-
lem, the tree Di is defined as the tree D′ in F1,k for which
UB′i(D′) is minimum. It can also be constructed via dy-
namic programming.

Theorem 4 can be proved by using arguments similar to
those employed to bound the price of explainability for k-
medians. In fact, the following inequalities are, respectively,
counterparts of the inequalities (1), (5), (6) and (8):

cost(C) ≤ OPT +
∑
v∈D

tv||diam(v)||22, (9)

UB′i(Di) ≤ 2k log k

k−1∑
j=1

(cj+1
i − cji )

2 · Tj

 , (10)

k−1∑
j=1

(cj+1
i − cji )

2 · Tj

 /2 ≤ OPTi, (11)
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∑
v∈D

tv||diam(v)||22 ≤ d
d∑

i=1

UB′i(Di). (12)

The only significant difference occurs in inequality (10)
since it incurs an extra factor of k with respect to its coun-
terpart. From the three last inequalities and the identity
OPT =

∑d
i=1OPTi, we obtain∑

v∈D
tv||diam(v)||22 ≤ 4dk log k ·OPT.

This together with the inequality (9) allows us to establish
Theorem 4.

4.2. Ex-Greedy: a practical algorithm for explainable
k-means

We propose a simple greedy algorithm, denoted by
Ex-Greedy, for building explainable clustering for the
k-means problem. We provide evidence that it performs
very well in practice.

The algorithm starts with the set S of representatives of an
unrestricted k-clustering Cini for the dataset X and then
builds a decision tree D with k leaves, where each of them
includes exactly one representative from S.

Let u be a node of the decision tree and let X u and Su be,
respectively, the set of points and the set of reference centers
(representatives of Cini) that reach u. We define the cost of
a partition (L,R) of the points in X u ∪ Su as

cost(L,R) =
∑

x∈L∩Xu

min
c∈L∩Su

||x− c||22+∑
x∈R∩Xu

min
c∈R∩Su

||x− c||22.

To split a node u, that is reached by more than one rep-
resentative, Ex-Greedy selects the axis-aligned cut that
induces a partition with minimum cost.

Ex-Greedy can be implemented in O(ndkH + nd log n)
time, where H is the depth of the resulting decision tree.
Note that H ≤ k and in many relevant applications k is
small. The time complexity corresponds to H iterations of
Lloyd’s k-means algorithm.

Experiments. (Dasgupta et al., 2020a; Frost et al., 2020)
compared 6 methods that build explainable clusterings, over
10 datasets. These methods also allow the construction of
decision trees with more than k leaves but this is not rele-
vant for our experiments. For trees with k leaves, the IMM
algorithm proposed in (Dasgupta et al., 2020b) obtained the

Table 1. Comparison of Ex-Greedy (Ex-G) and IMM over 10
datasets

Dataset n d k IMM Ex-G
BreastCancer 569 30 2 1.00 1.00

Iris 150 4 3 1.04 1.04
Wine 178 13 3 1.00 1.00

Covtype 581,012 54 7 1.03 1.03
Mice 552 77 8 1.12 1.09

Digits 1,797 64 10 1.23 1.21
CIFAR-10 50,000 3,072 10 1.23 1.17
Anuran 7,195 22 10 1.30 1.15
Avila 20,867 12 12 1.1 1.09

Newsgroups 18,846 1,069 20 1.01 1.01

best results, or was very close to it, for all datasets but one
(CIFAR-10).

Given the success of IMM, we compared it with our method
Ex-Greedy on the same datasets. The column IMM (resp.
Ex-G) of Table 1 shows the average ratio between the cost
of the clustering obtained by IMM (resp. Ex-Greedy) and
that of the initial unrestricted clustering Cini produced by
scikit-learn’s KMeans algorithm (Pedregosa et al., 2011).
Following (Frost et al., 2020), the value of k is the number of
classes for the classification task associated with the dataset.

Each dataset was run for 10 iterations, with random seeds
from 1 to 10, to ensure the reproducibility of results.
For each iteration, we initially achieve an unrestricted so-
lution Cini by running the KMeans algorithm provided
in the scikit-klearn package with default parame-
ters. We then pass Cini to the implementation of IMM
from (Frost et al., 2020), available at https://github.
com/navefr/ExKMC, and to our implementation of
Ex-Greedy, to find two explainable clustering solutions
induced by decision trees.

For 5 datasets, the results were very similar while for the
others (bold in Table 1) Ex-Greedy performed better than
IMM. Figure 1 presents box plots for the 5 datasets where
there was a difference of at least 0.01 on the average results.
It is interesting to note that the dispersion of Ex-Greedy
is considerably smaller.

In terms of running time both methods spent less than 1
second, for 6 datasets. For the remaining datasets IMM
was the fastest as shown in Table 2. In spite of that, we
understand that Ex-Greedy is fast enough to be used in
practice.

Additional Details. All our experiments were executed in
a MacBook Air, 8Gb of RAM, processor 1,6 GHz Dual-
Core Intel Core i5, executing macOS Catalina, version
10.15.7. Our code is availble in https://github.com/

https://github.com/navefr/ExKMC
https://github.com/navefr/ExKMC
https://github.com/lmurtinho/ExKMC
https://github.com/lmurtinho/ExKMC
https://github.com/lmurtinho/ExKMC
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Figure 1. Box Plots for the datasets with difference at least 0.01

Table 2. Average running times in seconds for Ex-Greedy and
IMM

Dataset IMM (sec) Ex-Greedy (sec)
Avila 1.7 2.4
Covtype 42 53

Newsgroups 41 102
CIFAR-10 312 378

lmurtinho/ExKMC.

The datasets Iris, Wine, Breast Cancer, Digits,
Covtype, Mice and Newsgroup are available in
Python’s scikit-learn; Cifar-10 is available in
TensorFlow; Anuran and Avila were downloaded
from UCI.

For Mice, the examples with missing values were removed.
For Avila, the training set and the testing set are used
together. Finally, for Newsgroup, we removed headers,
footers, quotes, stopwords, and words that either appear in
less than 1% or more than 10% of the documents, following
(Frost et al., 2020).

5. Maximum-Spacing clustering
We show that the price of explainability for the maximum-
spacing problem is Θ(n− k).

5.1. Lower bound

The following simple construction shows that the price of
explainability is Ω(n− k).

Let C1 = {(0, i)|0 ≤ i ≤ p} ∪ {(i, 0)|0 ≤ i ≤ p}. More-
over, for i = 2, . . . , k, let Ci = {(i − 1)(p − 1), (p − 1)}.
The dataset X for our instance is given by C1 ∪ . . . ∪ Ck.

The unrestricted k-clustering (C1, . . . , Ck) has spacing
p − 1 = (n − k)/2 − 1. On the other hand, every ex-

plainable k-clustering has spacing 1. To see that, note that
we cannot have all the points of C1 ∪C2 in the same cluster,
for otherwise we would have at most k − 1 clusters. Thus,
we need to separate at least 2 points from C1 ∪ C2 and the
only way to accomplish that, via axis-aligned cuts, forces
the separation of 2 points in C1 that are at distance 1 from
each other. Thus, the spacing will be 1.
Lemma 4. The price of explainability for the maximum-
spacing clustering problem is Ω(n− k).

5.2. Upper bound

We present an algorithm that always obtains an explainable
clustering with spacing O((n − k)OPT ), where OPT is
the spacing of the optimal unrestricted clustering. That,
together with the previous lemma, implies that the price of
explainability for the maximum-spacing problem is Θ(n−
k).

Algorithm 3 receives an optimal k-clustering C∗ as input
and uses it as a guide to transforming an initial single cluster
containing all points of X into an explainable k-clustering.
The existence of cluster C at line (*) follows from a simple
pigeonhole argument. The motivation for this choice is that
C has two points at distance at least OPT , which is used to
show the existence of a cut with a large enough margin.

Algorithm 3 Ex-SingleLink(X )
C∗ ← optimal unrestriced k-clustering for points in X .
C ← single cluster containing all points of X
for i = 1, . . . , k − 1 do

Select a cluster C ∈ C that contains two points that lie in
different clusters in C∗. (*)
Split C using an axis-aligned cut that yields a 2-clustering
(C′, C′′) with maximum possible spacing.
Remove C from C and update C to C ∪ {C′, C′′}

end for

Lemma 5. Given a set of points X , Ex-SingleLink(X )
obtains a k-clustering C with spacing at least OPT/(n−
k), where OPT is the spacing of an optimal unrestricted
clustering.

We can state the main result of this section.
Theorem 5. The price of explainability for the maximum-
spacing problem is Θ(n− k).
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