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A. Additional experimental details
For NS-ada, we double the sketching dimension when λ̃f (xt+1) > c1λ̃f (xt) min(1, c2λ̃f (xt)τ ). Here c1, c2 > 0 and
τ ∈ [0, 1]. For all compared methods, we use the backtracking line search method to find a step size satisfying the Armijo
condition. For NS-ada, NS and NE, we stop the algorithm when λ̃f (x) < 10−6 or λf (x) < 10−6. For first-order methods,
we first compute a referenced solution x̃∗ based on NS-ada. Then, we stop the algorithm when f(x)−f(x̃∗)

1+f(x̃∗) < 10−6.

The parameters of NS-ada and NS with for each dataset are summarized in Tables 2 to 4.

Dataset m0 c1 τ c2
RCV1 100 2 0 1

MNIST 100 0.5 1 6
gisette 10 2 0 1
realsim 100 2 0 1
epsilon 100 1 0 1

a8a-kernel 10 0.5 0 1
w7a-kernel 10 0.5 0 1

Table 2. Parameters of adaptive Newton sketch with SJLT sketching.

Dataset m0 c1 τ c2
RCV1 100 1 0 1

MNIST 100 0.5 1 6
gisette 10 2 0 1
realsim 100 2 0 1
epsilon 100 1 0 1

a8a-kernel 10 0.5 0 1
w7a-kernel 100 0.5 0 1

Table 3. Parameters of adaptive Newton sketch with RRS sketching.

Dataset m (SJLT) m (RRS)
RCV1 800 800

MNIST 800 1600
gisette 400 400
realsim 800 3200
epsilon 800 3200

a8a-kernel 100 800
w7a-kernel 100 800

Table 4. Sketching dimensions of Newton Sketch.

We present numerical performance of compared methods with additional details and additional numerical experiments in
Figures 5 to 9. Comparatively, NS-ada-RRS tends to have larger sketching dimension than NS-ada-SJLT. This may come
from that NS-RRS has stronger oscillations than NS-SJLT in the plot of λ̃f (xt). Thus, NSN-ada-RRS can be slower than
NS-ada-SJLT in some test cases where n is not significantly larger than d.

For kernelized regularized logistic regression, the data matrices A and Ã are constructed as kernel matrices based on the
original data features. Namely, it follows

Ai,j = k(ãi, ãj), Atest
i,j = k(ãtesti , ãj),

where {ãi}ni=1 and {ãtestj }
ntext
i=1 are original data features from the training set and test set respectively. Here k(x, x′) :

Rd × Rd → R is a positive kernel function. We use the isotropic Gaussian kernel function:

k(x, x′) = (2πh)−d/2 exp

(
− 1

2h
‖x− x′‖22

)
,
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Figure 5. RCV1. n = 10000, d = 47236, µ = 10−3.

Figure 6. MNIST. n = 30000, d = 780, µ = 10−1.

Figure 7. realsim. n = 50000, d = 20958, µ = 10−3.
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Figure 8. gisette. n = 3000, d = 5000, µ = 10−3.

Figure 9. epsilon. n = 50000, d = 2000, µ = 10−1.
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where h > 0 is the bandwidth. We set h = 10 for a8a dataset and h = 20 for w7a dataset. For NS-ada-SJLT and
NS-ada-RRS, we let c1 = 0.5, τ = 0 and c2 = 1. For NS, the sketching dimensions are summarized in Table 5.

Dataset m (SJLT) m (RRS)
a8a-kernel 100 800
w7a-kernel 100 800

Table 5. Sketching dimensions of Newton Sketch. kernel matrix.

We present numerical results with additional details in Figures 10 and 11. We can also observe super linear convergence rate
of NS-ada in the plot of λ̃f (xt) when xt is close to the optimum of the optimization problem. Similarly, NS-ada-RRS tends
to have larger sketching dimension than NS-ada-SJLT.

Figure 10. a8a. kernel matrix. n = 10000, d = 10000, µ = 10.

Figure 11. w7a. kernel matrix. n = 12000, d = 12000, µ = 10.

B. Proof of main results
B.1. Proof of Lemma 1

Let x ∈ dom f . We use the shorthand A : = ∇2f0(x)1/2, and we let A = UΣV > be a thin SVD of A. We denote
by H1/2 an invertible square-root matrix of the Hessian H ≡ H(x) = A>A + ∇2g(x). Recall that HS ≡ HS(x) =



Adaptive Newton Sketch

A>S>SA+∇2g(x). Then, we have

CS = H−
1
2HSH

− 1
2 = H−

1
2 (H + (HS −H))H−

1
2

= Id +H−1/2(HS −H)H−1/2

= Id +H−1/2V Σ(U>S>SU − Id)ΣV >H−1/2 .

We use the shorthand M : = ΣV >H−1/2. Using the fact that ∇2g(x) � µ Id, it follows that

‖M‖2F = trace(ΣV >H−1V Σ) 6 trace(ΣV >(A>A+ µId)
−1V Σ) = dµ(x) . (37)

It remains to control the spectral norm of M>(U>S>SU − Id)M .

(SJLT). It was shown in (Nelson & Nguyên, 2013) that for ε > 0 and p ∈ (0, 1/2), it holds with probability at least 1− p
that ‖M>(U>S>SU − Id)M‖2 6 ε provided that m > c0

‖M‖4F
ε2p , where c0 > 0 is a universal constant. Note that this

lower bound on the sketch size is increasing as a function of ‖M‖2F . From inequality (37), it is then sufficient to have

m > c0
dµ(x)

2

ε2p for the above inequality to hold with probability at least 1− p.

(SRHT). According to Theorems 1 and 9 in (Cohen et al., 2015), it holds with probability at least 1 − p that
‖M>(U>S>SU − Id)M‖2 6 ε provided that m > c0 ε

−2
(
‖M‖2F + log( 1

εp ) log(‖M‖2F /p)
)

, where c0 is a univer-

sal constant. Note that this lower bound on the sketch size is increasing as a function of ‖M‖2F . From inequality (37), it is

then sufficient to have m > c0 ε
−2
(
dµ(x) + log( 1

εp ) log(dµ(x)/p)
)

for the above inequality to hold with probability at
least 1− p.

B.2. Proof of Theorem 1

Let x ∈ dom f . Plugging-in the definitions of vne and vnsk, we have

‖vne − vnsk‖H(x) = ‖H1/2(vne − vnsk)‖2 = ‖H1/2(H−1S ∇f(x)−H−1∇f(x))‖2
= ‖(H1/2H−1S H1/2 − Id)H−1/2∇f(x)‖2
6 ‖C−1S − Id‖2 ‖H

−1/2∇f(x)‖2 .

Using that ‖H−1/2∇f(x)‖2 = ‖vne‖H(x), we further obtain

‖vne − vnsk‖H(x) 6 ‖C−1S − Id‖2 ‖vne‖H(x) .

Under the event Ex,m,ε, it holds for ε ∈ (0, 1/4) that (1 + ε/2)−1Id � C−1S � (1 − ε/2)−1Id. Using the facts that
(1 + ε/2)−1 > 1− ε and (1− ε/2)−1 6 1 + ε, we obtain the inequality ‖C−1S − Id‖2 6 ε, whence

‖vne − vnsk‖H(x) 6 ε ‖vne‖H(x) ,

which proves the first inequality of Theorem 1. On the other hand, we have

λ̃f (x)2 =
〈
∇f(x), H−1S ∇f(x)

〉
=
〈
H−

1
2∇f(x), H

1
2H−1S H

1
2H−

1
2∇f(x)

〉
= ‖C−

1
2

S H−
1
2∇f(x)‖2 .

It follows that

1

σmax(CS)
λf (x)2 6 λ̃f (x)2 6

1

σmin(CS)
λf (x)2 .

Conditional on the event Ex,m,ε and using that (1 + ε/2)−1 > 1− ε and (1− ε/2)−1 6 1 + ε, we obtain the claimed result,
i.e.,

(1− ε)λf (x)2 6 λ̃f (x)2 6 (1 + ε)λf (x)2 .
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B.3. Proof of Lemma 2

Our proof of this result closely follows the steps of the proof of Lemma 3(a) in (Pilanci & Wainwright, 2017): the core
arguments are the same, but we adapt the proof to our technical framework, that is, conditional on the event Ex,m,ε.

The strategy of the proof is to show that the backtracking line search leads to a step size s > 0 such that f(xnsk)−f(x) 6 −ν.
We define the univariate function g(u) : = f(x+uvnsk) and we set ε′ = 2ε

1−ε . We first show that û = 1

1+(1+ε′)λ̃f (x)
satisfies

the bound

g(û) 6 g(0)− aûλ̃2f (x) , (38)

which implies that û satisfies the exit condition of backtracking line search. Therefore, the step size s must be lower bounded
as s > bû, which further implies that the new iterate xnsk = x+ svnsk satisfies the decrement bound

f(xnsk)− f(x) 6 −ab λ̃f (x)2

1 + (1 + 2ε
1−ε )λ̃f (x)

.

By assumption, λ̃f (x) > η. Using the fact that the function u 7→ u2

1+(1+ 2ε
1−εu)

is monotone increasing, we get that

f(xnsk)− f(x) 6 −ab η2

1 + (1 + 2ε
1−ε )η

= ν ,

which is exactly the claimed result. It remains to prove the claims (38).

According to Lemma 4 in (Pilanci & Wainwright, 2017), we have for any u > 0 and γ > 0 that

g(u) 6 g(0)− uλ̃f (x)2 − γ − log(1− γ) , (39)

provided that u‖vnsk‖H(x) 6 γ < 1. By assumption, the event Ex,m,ε holds true. As a consequence of Theorem 1, we have
that

‖vnsk‖H(x) 6 (1 + ε)λf (x) 6
1 + ε

1− ε
λ̃f (x) = (1 + ε′)λ̃f (x) .

It follows that û‖vnsk‖H(x) 6 û(1 + ε′)λ̃f (x) < 1. Plugging-in u = û and γ = û(1 + ε′λ̃f (x)) into (39), we obtain that

g(û) 6 g(0)− ûλ̃f (x)2 − û(1 + ε′)λ̃f (x)− log(1− û(1 + ε′)λ̃f (x))

= g(0)−
{
û(1 + ε′)2λ̃f (x)2 + û(1 + ε′)λ̃f (x) + log(1− û(1 + ε′)λ̃f (x))− û((1 + ε′)2 − 1)λ̃f (x)2

}
.

Using that û(1 + ε′)2λ̃f (x)2 + û(1 + ε′)λ̃f (x) = (1 + ε′)λ̃f (x) and û((1 + ε′)2 − 1)λ̃f (x)2 =
(ε′2+2ε′)λ̃f (x)

2

1+(1+ε′)λ̃f (x)
, we find

that

g(û) 6 g(0)− (1 + ε′)λ̃f (x) + log(1 + (1 + ε′)λ̃f (x)) +
(ε′

2
+ 2ε′)λ̃f (x)2

1 + (1 + ε′)λ̃f (x)
.

Applying the inequality −z + log(1 + z) 6 − 1
2

z2

(1+z) with z = (1 + ε′)λ̃f (x), we further obtain that

g(û) 6 g(0)−
1
2 (1 + ε′)2λ̃f (x)2

1 + (1 + ε′)λ̃f (x)
+

(ε′
2

+ 2ε′)λ̃f (x)2

1 + (1 + ε′)λ̃f (x)

= g(0)−

(
1

2
− ε′

2

2
− ε′

)
λ̃f (x)2û

6 g(0)− aλ̃f (x)2û ,

where the final inequality follows by the assumption that a 6 1− 1
2

(
1+ε
1−ε

)2
, that is, a 6 1

2 −
ε′2

2 − ε
′. This concludes the

proof.
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B.4. Proof of Lemma 3

We recall Theorem 4.1.6 of (Nesterov, 2003) (see, also, Exercise 9.17 in (Boyd & Vandenberghe, 2004)): it guarantees that
for a step size s > 0 such that |1− s‖vnsk‖H(x)| < 1, we have

(1− s‖vnsk‖H(x))
2H(x) � H(x+ svnsk) � 1

(1− s‖vnsk‖H(x))2
H(x) . (40)

By assumption, the event Ex,m,ε′ holds. As a consequence of Theorem 1, we have ‖vnsk‖H(x) 6 (1 + ε′)‖vne‖H(x).
Plugging this bound into (40) and using that ‖vne‖H(x) = λf (x), we obtain

(1− s(1 + ε′)λf (x))2H(x) � H(x+ svnsk) � 1

(1− s(1 + ε′)λf (x))2
H(x) , (41)

for s > 0 such that s(1 + ε′)λf (x) < 1. Denote by snsk the step size obtained by backtracking line search. It satisfies
snsk = 1. Then, it holds that

snsk(1 + ε′)λf (x) 6 (1 + ε′)λf (x) 6
(i)

1 + ε′√
1− ε′

λ̃f (x)

6
(ii)

1 + ε′√
1− ε′

η

<
(iii)

1 ,

where inequality (i) follows from the assumption that Ex,m,ε′ holds and from Theorem 1; inequality (ii) follows from the
assumption that λ̃f (x) 6 η. Furthermore, we have ε′ 6 ε < 1/4, as well as η < 1/16 (see Lemma 7) and this yields
inequality (iii).

Using (41), we then obtain that

λf (xnsk) = ‖H(xnsk)−1/2∇f(xnsk)‖2

6
1

(1− (1 + ε′)λf (x))
‖H(x)−1/2∇f(xnsk)‖2

=
1

(1− (1 + ε′)λf (x))

∥∥∥∥H(x)−1/2
(
∇f(x) +

∫ 1

0

H(x+ svnsk)vnskds

)∥∥∥∥
2

6
1

(1− (1 + ε′)λf (x))
(M1 +M2) ,

where

M1 =

∥∥∥∥H(x)−1/2
(
∇f(x) +

∫ 1

0

H(x+ svnsk)vneds

)∥∥∥∥
2

,

M2 =

∥∥∥∥H(x)−1/2
∫ 1

0

H(x+ svnsk)(vnsk − vne)ds
∥∥∥∥
2

.

It remains to bound the terms M1 and M2. Regarding M1, we have after re-arranging and using inequality (41) that

M1 =

∥∥∥∥∫ 1

0

(
H(x)−1/2H(x+ svnsk)H(x)−1/2 − Id

)
dsH(x)1/2vne

∥∥∥∥
2

6

∣∣∣∣∫ 1

0

1

(1− s(1 + ε′)λf (x))2
ds− 1

∣∣∣∣ ∥∥∥H(x)1/2vne

∥∥∥
2

=
(1 + ε′)λ2f (x)

1− (1 + ε′)λf (x)
.
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Regarding M2, we have

M2 =

∥∥∥∥∫ 1

0

H(x)−1/2H(x+ svnsk)H(x)−1/2dsH(x)1/2(vnsk − vne)
∥∥∥∥
2

6

∥∥∥∥∫ 1

0

1

(1− s(1 + ε′)λf (x))2
dsH(x)1/2(vnsk − vne)

∥∥∥∥
2

=
1

1− (1 + ε′)λf (x)

∥∥∥H(x)1/2(vnsk − vne)
∥∥∥
2

6
ε′λf (x)

1− (1 + ε′)λf (x)
,

where the last inequality follows from the assumption that the event Ex,m,ε′ holds and as a consequence of Theorem 1.
Plugging these bounds on M1 and M2, we obtain that

λf (xnsk) 6
(1 + ε′)λf (x)2 + ε′λf (x)

(1− (1 + ε′)λf (x))2
. (42)

Recall that ε′ 6 ε λf (x)τ . Combining this inequality with (42), we obtain

λf (xnsk) 6
(1 + ε λf (x)τ )λf (x)2 + ε λf (x)1+τ

(1− (1 + ε λf (x)τ )λf (x))2
=

λf (x)1−τ + ε λf (x) + ε

(1− (1 + ε λf (x)τ )λf (x))2︸ ︷︷ ︸
: =α(τ,x)

λf (x)1+τ .

On the event Ex,m,ε′ , we have according to Theorem 1 that (1 + ε)λf (x) 6 (1+ε)λ̃f (x)√
1−ε 6 (1+ε)η√

1−ε 6 1
16 , where the last

inequality follows from Lemma 7. Hence, the denominator of α(τ, x) satisfies

1− (1 + ελf (x)τ )λf (x) > 1− (1 + ε)λf (x) >
15

16
,

while the numerator of α(τ, x) satisfies

λf (x)1−τ + ε λf (x) + ε 6
1

161−τ
+

1

32
+

1

2

Combining these bounds together, we obtain that

α(τ, x) 6
8 + 1/2 + 16τ

15
6 0.57 +

16τ

15
= α(τ) .

It is easy to verify that α(τ)1/τ 6 2 for any τ ∈ (0, 1]. Furthermore, for τ = 0, we obtain that α(0) ≈ 0.63333 6 0.64 = 16
25 ,

and this concludes the proof. Note that a similar linear convergence rate was obtained for the Newton sketch provided that
m & d (see Lemma 3 in (Pilanci & Wainwright, 2017)).

B.5. Proof of Lemma 4

By induction, we obtain for any t > 0 that α
1
τ βt 6 (α

1
τ η)(1+τ)

t

. To have βt 6
√
δ, it suffices that (α

1
τ η)(1+τ)

t

6 α
1
τ

√
δ.

Taking the logarithm on both sides, this yields (1+τ)t log(α
1
τ η) 6 log(α

1
τ

√
δ), i.e., (1+τ)t log(1/α

1
τ η) > log(1/α

1
τ

√
δ).

By assumption, log(1/α
1
τ η) > 0 and log(1/α

1
τ

√
δ) > 0. Therefore, after dividing both sides by log(1/α

1
τ η) and taking

again the logarithm, we find that it is sufficient to have

t > d 1

log(1 + τ)
log

(
log(1/α

1
τ

√
δ)

log(1/α
1
τ η)

)
e

= d 1

log(1 + τ)
log

1 + τ log(1/δ)
2 log(1/α)

1 + τ log(1/η)
log(1/α)

e
= Tτ,α,δ .
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B.6. Proof of Theorem 2

We denote N1 : = f(x0)−f(x∗)
ν and p̃ : = p0

T+2
, where T : = N1 + 1 + Tτ, 38 δ . Recall that we pick ε = 1/8.

Our proof strategy proceeds as follows. In a first phase, we show that f(xnsk)− f(x) 6 −ν until such a decrement cannot
occur anymore, i.e., until f(xt)− f(x∗) < ν. Technical arguments for Phase 1 essentially follow from Lemma 2. Then, we
enter a second phase where we observe a geometric decrease of the Newton decrement as described in Lemma 3.

We define

t : = inf
{
k > 0 | λ̃f (xk) 6 η

}
,

According to Lemma 8, we have t 6 N1 with probability at least 1−N1p̃.

We turn to the analysis of Phase 2. We suppose that Tf > t (i.e., the algorithm has not terminated during Phase 1), we define
the additional number of iterations J : = min{Tτ, 38 δ, Tf − t− 1}, and we introduce the event

E(2) : =
{
Ext,mt,ε ∩

J⋂
j=0

E
xt+1+j ,mt+1+j ,εδ

τ
2

}
.

Let us assume that E(2) holds true, which happens with probability at least 1 − (2 + Tτ, 38 δ)p̃ according to Corollary 1.
According to Lemma 9, we have for any j = 0, . . . , J that mt+1+j = m2 and,

α(τ)
1
τ λf (xt+1+j) 6 (α(τ)

1
τ λf (xt+1))(1+τ)

j

.

Further, we have from Lemma 3 and Theorem 1 that λf (xt+1) 6 16
25 λf (xt) 6 λ̃f (xt)√

1−ε 6 η√
1−ε 6 1

16 . Hence,

α(τ)
1
τ λf (xt+1) < 1/8. As a consequence of Lemma 4, we must have that λf (xt+1+j)

2 6 3
8δ for some j 6 Tτ, 38 δ,

which further implies that

λ̃f (xt+1+j)
2 6 (1 + ε)λf (xt+1+j)

2 6
3(1 + ε)

8
δ 6

3

4
δ .

The above inequality implies termination of the algorithm before the time t + 1 + Tτ, 38 δ. Using a union bound over
{t 6 N1} and E(2), we find that the algorithm terminates within N1 + 1 + Tδ, 38 δ iterations with probability at least
1− (N1 + 2 + Tτ, 38 δ)p̃.

It remains to guarantee that the algorithm returns a point x̃ such that f(x̃) − f(x∗) 6 δ. Note that the exit criterion
guarantees that λ̃f (x̃)2 6 3

4δ. Furthermore, the final sketch size m̃ necessarily satisfies m̃ > m1, so that, according to
Theorem 1, we have with probability at least 1− p̃ that λf (x̃)2 6 1

1−ε λ̃f (x̃)2 6 δ. Self-concordance of f further implies
that f(x̃)− f(x∗) 6 λf (x̃)2 6 δ.

In conclusion, we have shown that the algorithm returns a δ-accurate solution within N1 + 1 + Tτ, 38 δ iterations with
probability at least 1− (N1 + 3 + Tτ, 38 δ)p̃ = 1− p0. This concludes the proof.

B.6.1. COMPLEXITY GUARANTEES FOR THE SJLT

With the SJLT, consider the quadratic convergence case, i.e., τ = 1. Let p0 > 0 be a failure probability, and consider the
sketch sizes

m1 �
d
2

µ log log 1/δ

p0
, m2 �

1

δ

d
2

µ log log 1/δ

p0
.

We observe quadratic convergence with Tf = O(log log( 1
δ

)
) iterations. Further, assuming that the sketching cost O(nd)

dominates the cost O(m2d) of solving the randomized Newton system, i.e., n &
d
4
µ log(log(1/δ))2

δ2p20
, then the total complexity

results in

C = O
(
nd log log 1/δ

)
.
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Similarly, we consider the linear convergence case, i.e., τ = 0, and pick a failure probability p0 > 0. Consider the sketch
sizes

m1 � m2 �
d
2

µ log 1/δ

p0
.

We observe linear convergence with Tf = O(log 1
δ ) iterations. Assuming again that the sketching cost dominates the cost of

solving the randomized Newton system, i.e., n &
d
4
µ log2(1/δ)

p20
, we obtain the total time complexity

C = O(nd log(1/δ)) .

B.7. Proof of Lemma 5

Let S ∈ Rm×n be an embedding, and CS : = H−1/2HSH
−1/2. We use the notations A : = ∇2f0(x)1/2, and we let

A = UΣV > be a thin SVD of A. Then, we have

CS = H−
1
2HSH

− 1
2 = H−

1
2 (H + (HS −H))H−

1
2

= Id +H−1/2(HS −H)H−1/2

= Id +M>(U>S>SU − Id)M ,

where M : = ΣV >H−1/2. According to (Cohen et al., 2015), it holds that ‖M>(U>S>SU − Id)M‖2 6 dµ
2 (i.e.,

‖CS‖2 6 1 +
dµ
2 ) with probability at least 1− p, provided that m > Ω(log2(1/p)) for a SRHT S, and, m > Ω(1/p) for a

SJLT S.

Then, we use the fact that

λ̃f (x)2 = 〈H−1/2∇f(x), H1/2H−1S H1/2H−1/2∇f(x)〉 > 1

‖CS‖2
λf (x)2 .

Conditional on ‖CS‖2 6 1 +
dµ
2 , it follows that

λf (x)2 6 ‖CS‖2 λ̃f (x)2 6 (1 +
dµ
2

)
δ

d
6 δ .

Using the self-concordance of f , we obtain that f(x)− f(x∗) 6 δ. This concludes the proof.

B.8. Proof of Theorem 3

We introduce the notations

T = Tτ,α(τ,ε), δd
+N1 , p̃ =

p0

T
and ε′ = ε

(
δ

(1 + ε)d

)τ/2
.

We consider m a sketch size such that Ex,m,ε′ holds with probability at least 1− p̃, that is,

m = Ω
(dτd2µT
p0δτ

)
for the SJLT ,

m = Ω

(
dτ

δτ

(
dµ + log

( Tdτ/2
p0δτ/2

)
log
(dµT
p0

)))
for the SRHT .

Phase 2. Let t > 0 be the first iteration such that mt > m, if any. Let x ≡ xt+j be an iterate after time t, for some j > 0.
The sketch size is non-decreasing, whence m ≡ mt+j > m. We assume that Ex,m,ε′ holds, and that the algorithm has not
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yet terminated, i.e., λ̃f (x)2 > δ/d. Note that ε > ε′, whence Ex,m,ε also holds. By Theorem 1, this implies in particular
that λ̃f (x)2 6 (1 + ε)λf (x)2, and we further obtain that λf (x)2 > δ

(1+ε)d , i.e.,

ε′ < ελf (x)τ .

There are two possible events.

• E1: Either λ̃f (x) > η. Using the fact that Ex,m,ε holds, it follows from Lemma 2 that f(xnsk)− f(x) 6 −ν.

• E2: Or λ̃f (x) 6 η. Using the facts that Ex,m,ε′ holds and that ε′ < ελf (x)τ , it follows from Lemma 3 that
λf (xnsk) 6 α(τ) (λf (x))1+τ . Assuming further that the event Exnsk,m,ε′ holds, we have according to Lemma 6 that
λ̃f (xnsk) 6 λ̃f (x) 6 η and then

λ̃f (xnsk) 6
(i)

√
1 + ε λf (xnsk) 6

√
1 + ε α(τ) (λf (x))1+τ

6
(ii)

√
1 + ε α(τ) (λ̃f (x)/

√
1− ε)1+τ

= α(τ, ε) (λ̃f (x))1+τ ,

where inequalities (i) and (ii) are immediate consequences of Theorem 1.

Hence, conditional on E2 occurs once, then the event E2 occurs K additional times in a row with probability at least 1−Kp̃.
According to Lemma 4, if K > Tτ,α(τ,ε), δd

then the algorithm terminates. On the other hand, the event E1 can occur at
most N1 times.

In summary, conditional on mt > m, the algorithm must terminate within T additional iterations with probability at least
1− T p̃ = 1− p0, and with final sketch size m 6 2m.

Phase 1. At each iteration, one of the following events must occur:

e1 : = {λ̃f (x) > η, f(xnsk)− f(x) 6 −ν}

e2 : = {λ̃f (x) 6 η, λ̃f (xnsk) 6 α(τ, ε)(λ̃f (x))1+τ}
e3 : = {m← 2m} .

Fix any iteration t > 0, and suppose that the algorithm has not yet terminated. Consider the sequence of events c0, . . . , ct ∈
{e1, e2, e3} up to time t. According to Lemma 4, any subsequence of {cj}tj=0 which contains only the event e2 would result
in termination of Algorithm 2 if its length is greater or equal to Tτ,α(τ,ε),δ/d + 1. Consequently, any such subsequence must
have length smaller or equal to Tτ,α(τ,ε),δ/d. Between two consecutive longest subsequences containing only e2, either e1 or
e3 occur. The event e1 occurs at mostN1 times. By assumption on the choice ofm0, once e3 has occurred at leastO

(
log(dµ)

)
times then the sketch size is greater than m. Consequently, there are at most T1 : = O

((
N1 + log(dµ)

)
Tτ,α(τ,ε),δ/d

)
iterations before reaching a sketch size m such that m > m without termination. In the latter case, we enter Phase 2.

Combining Phase 1 and Phase 2. Combining the two above results, we obtain with probability at least 1 − p0 that
Algorithm 2 terminates with a final sketch size m smaller than 2m and within a number of iterations T scaling as

T = T1 + T2 = O
((
N1 + log(dµ)

)
Tτ,α(τ,ε),δ/d

)
= O

(
log(dµ)Tτ,α(τ,ε),δ/d

)
,

where the last equality holds by treating N1 as O(1).

Total complexity. The worst-case complexity per iteration is given as follows.

(1) For a SJLT S, the sketching cost is at most O(nd) at each iteration, and forming and solving the linear system
HSvnsk = −∇f(x) with a direct method using the Woodbury identity takes time O(m2d). Multiplying by the number
of iterations, we obtain the total time complexity

C = O

(nd+
d
4

µd
2τ+1T 2

τ,α(τ,ε),δ/d

δ2τp20

)
log(dµ)Tτ,α(τ,ε),δ/d

 .
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For τ ≈ 1, we have that Tτ,α(τ,ε),δ/d = O(log(log(d/δ))). For n &
d
4
µd

2 log(log(d/δ))2

δ2p20
, the memory and time

complexities simplify to

m = Ω

(
dd

2

µ log(log(d/δ))

p0δ

)
, C = O

(
nd log(dµ) log(log(d/δ)))

)
.

For τ = 0, we have Tτ,α(τ,ε),δ/d = O(log(d/δ)). For n &
d
4
µ log(d/δ)2

p20
, the memory and time complexities simplify to

m = Ω

(
d
2

µ log(d/δ)

p0

)
, C = O

(
nd log(dµ) log(d/δ))

)
.

(2) We assume for simplicity that dµ & log2(log(d/δ)). For the SRHT, the sketching cost is O(nd logm), whereas
forming and solving the Newton linear system takes time O(m2d). Thus, the total complexity is given by

C = O
((
nd logm+ dm2

)
log(dµ)Tτ,α(τ,ε),δ/d

)
.

For τ ≈ 1, we have Tτ,α(τ,ε),δ/d = O(log(log(d/δ))). Picking p0 � 1/dµ, we obtain the memory complexity

m � d

δ

(
dµ + log(d/δ) log(dµ)

)
.

Consequently, logm . log(d/δ) and m2 . d2

δ2 (d
2

µ + log2(d/δ) log2(dµ)). Hence, provided that n &
d2d

2
µ

δ2 , we obtain

C = O
(
nd log(d/δ) log(dµ) log(log(d/δ))

)
.

For τ = 0, we have Tτ,α(τ,ε),δ/d = O(log(d/δ)). Picking p0 � 1/dµ, we obtain the memory complexity

m � dµ .

Consequently, logm . log(dµ) and m2 . d
2

µ. Assuming that n & d
2

µ/ log(dµ), the total time complexity is

C = O
(
nd log(dµ)2 log(d/δ)

)
.

This concludes the proof.

C. Auxiliary results

Lemma 6. Let x ∈ dom f and ε ∈ (0, 1/4). Suppose that the event Ex,m,ε ∩Exnsk,mnsk,ε holds, and that λ̃f (x) 6 η. Then,
we have that

λ̃f (xnsk) 6 λ̃f (x) 6 η . (43)

Proof. By assumption, the event Exnsk,mnsk,ε holds. It follows from Theorem 1 that λ̃f (xnsk) 6
√

1 + ε λf (xnsk). We have
by assumption that Ex,m,ε holds and that λ̃f (x) 6 η. As a consequence of Lemma 3, we have λ̃f (x) 6 16

25 λf (x). As a
consequence of Theorem 1, we have λf (x) 6 1√

1−ε λ̃f (x). Combining these bounds together, we obtain that

λ̃f (xnsk) 6

√
1 + ε

1− ε
16

25
λ̃f (x) .

Finally, using that ε ∈ (0, 1/4), we get that
√

1+ε
1−ε

16
25 6 1, whence,

λ̃f (xnsk) 6 λ̃f (x) 6 η .
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Lemma 7. For ε ∈ (0, 1), it holds that

η 6
1− ε
1 + ε

1

16
6

1

16
. (44)

Proof. Set γ =
(

1+ε
1−ε

)2
. We aim to show that η

√
γ 6 1/16. Plugging-in the definition of η and using that a > 0, we have

η
√
γ = 1

8

1− γ2−a
γ 6 1

8

1− γ2
γ . Since ϕ(γ) : = 1

8

1− γ2
γ is monotone decreasing and since γ > 1, we obtain that η

√
γ 6 ϕ(1),

i.e., η
√
γ 6 1

16 .

C.1. Technical lemmas for the proof of Theorem 2

Lemma 8 (Phase 1). It holds that

t 6 N1 , with probability at least 1−N1p̃ .

Proof. Let j < t be any iteration before t1. Note by construction of Algorithm 1 that mj = m1. Assuming that the event
Exj ,mj ,ε holds true, it follows from Lemma 2 that we observe the decrement f(xnsk)− f(xj) 6 −ν. Consequently, under
the event E(1) : =

⋂t−1
j=0 Exj ,mj ,ε, we obtain that

f(x∗)− f(x0) 6 f(xt)− f(x0) =

t−1∑
j=0

f(xj+1)− f(xj) 6 −t ν .

Hence, under E(1), we must have t 6 f(x0)−f(x∗)
ν , i.e., t 6 N1. According to Lemma 1 and the choice of m1, each

event Exj ,mj ,ε holds with probability at least 1 − p̃. Using a union bound, the event E(1) holds with probability at least
1−N1p̃.

Lemma 9 (Phase 2). Under the assumption that E(2) holds, we have for any j = 0, . . . , J that
mt+1+j = m2 ,

λ̃f (xt+1+j) 6 η ,

α(τ)
1
τ λf (xt+1+j+1) 6 (α(τ)

1
τ λf (xt+1+j))

1+τ .

Proof. We prove this claim by induction. We start with j = 0. By definition of the time t, we have λ̃f (xt) 6 η. Therefore,
by construction of Algorithm 1, we have mt+1 = m2. From Lemma 6 and under E(2), we get that λ̃f (xt+1) 6 λ̃f (xt) 6 η.
Furthermore, before termination, we have that λ̃f (xt+1)2 > 3

4δ. It follows from Theorem 1 that

λf (xt+1)2 >
1

1 + ε
λ̃f (xt+1)2 >

3

4(1 + ε)
δ =

2

3
δ ,

and this implies in particular that εδτ/2 6 ε( 3
2 )τ/2λf (xt+1)τ 6 2ελf (xt+1)τ . Consequently, the hypotheses of Lemma 3

are verified and we have α(τ)
1
τ λf (xt+2) 6 (α(τ)

1
τ λf (xt+1))1+τ .

Now, we prove the induction hypothesis for any j = 1, . . . , J , assuming that it holds for j − 1. Since λ̃f (xt+1+j−1) 6 η,
it follows by construction of Algorithm 1 that mt+1+j = m2. From Lemma 6 and under E(2), we get that λ̃f (xt+1+j) 6
λ̃f (xt+1+j−1) 6 η. Furthermore, before termination, we have λ̃f (xt+1+j)

2 > 3
4δ. It follows from Theorem 1 that

λf (xt+1+j)
2 >

1

1 + ε
λ̃f (xt+1+j)

2 >
3

4(1 + ε)
δ =

2

3
δ ,

and this implies in particular that εδτ/2 6 ε( 3
2 )τ/2λf (xt+1+j)

τ 6 2ελf (xt+1+j)
τ . Consequently, the hypotheses of

Lemma 3 are verified and we have α(τ)
1
τ λf (xt+1+j+1) 6 (α(τ)

1
τ λf (xt+1+j))

1+τ .

Corollary 1. The event E(2) holds true with probability at least 1− (2 + Tτ, 38 δ)p̃.
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Proof. Recall that mt = m1 by definition of the time t. According to Lemma 9, if E(2) holds true, then mt+1+j = m2 for
j = 0, . . . , J . From Lemma 1, we have that P(Ext,m1,ε) > 1− p̃ and P(Ext+1+j ,m2,εδτ/2) > 1− p̃. We obtain by a union
bound that P(E(2)) > 1− (2 + Tτ, 38 δ)p̃.


