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A. Summary: the different estimators considered in the present article
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Figure 8: The estimators considered in the article.
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Table 1: Different upper bounds α and corresponding functions β, γ,Γ,∆, η.
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Figure 9: Influence of the chosen mapping α on the constants.
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C. Technical Proofs
In this section are detailed the proofs of the theoretical claims stated in the core article.

C.1. Proof of Proposition 2

Roughly speaking, the median has the same behavior as that of a majority of observations. Similarly, the MoM has the
same behavior as that of a majority of blocks. In presence of outliers, the key point consists in focusing on sane blocks
only, i.e. on blocks that do not contain a single outlier, since no prediction can be made about blocks hit by an outlier, in
absence of any structural assumption concerning the contamination. One simple way to ensure the sane blocks to be in
(almost) majority is to consider twice more blocks than outliers. Indeed, in the worst case scenario each outlier contaminates
one block, but the sane ones remain more numerous. Let K denote the total number of blocks chosen, KO the number of
blocks containing at least one outlier, and KS the number of sane blocks containing no outlier. The crux of our proofs then
consists in determining some η > 1/2 (that eventually depends on ε) such that KS ≥ ηK. As discussed before, we thus
need to consider at least twice more blocks than outliers. On the other hand, K is by design upper bounded by n. The global
constraint can be written:

2nO = 2εn < K ≤ n. (8)

Let α : [0, 1/2]→ [0, 1] such that: ∀ε ∈ (0, 1/2), 2ε < α(ε) < 1. Several choices of acceptable function α are detailed in
Table 1, and illustrated in Figure 9. They include among others:

• the arithmetic mean: α(ε) = 1+2ε
2 .

• the geometric mean: α(ε) =
√

2ε.

• the harmonic mean: α(ε) = 4ε
1+2ε .

• the polynomial: α(ε) = ε(5/2− ε).

Once the function α is selected, Equation (8) is satisfied as soon as K verifies:

α(ε)n ≤ K ≤ n.

It directly follows that

KS = K −KO ≥ K − nO ≥ K − εn ≥
(

1− ε

α(ε)

)
K =

α(ε)− ε
α(ε)

K,

and one then may use

η = η(ε) =
α(ε)− ε
α(ε)

.

Once η(ε) is determined, a standard MoM deviation study can be carried out. If at least K/2 sane blocks have an empirical
estimate that is t close to the expectation, then so is the MoM. Reversing the implication gives:

P
{∣∣θ̂MoM − θ

∣∣ > t
}
≤ P

{ ∑
blocks without outlier

1

{∣∣θ̂block − θ
∣∣ > t

}
≥ KS −

K

2

}
,

≤ P

{ ∑
blocks without outlier

1

{∣∣θ̂block − θ
∣∣ > t

}
≥ 2η(ε)− 1

2η(ε)
KS

}
, (9)

with θ̂block = (1/B)
∑
i∈block Zi the block empirical mean. Now observe that Equation (9) describes the deviation of a
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binomial random variable, with KS trials and parameter pt = P{|θ̂block − θ| > t}. It can thus be upper bounded by

KS∑
k=d 2η(ε)−1

2η(ε)
KSe

(
KS

k

)
pkt (1− pt)KS−k ≤ p

2η(ε)−1
2η(ε)
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t
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(
KS

k

)
,

≤ p
2η(ε)−1

2η(ε)
KS

t 2KS ,

≤ p
2η(ε)−1

2 K
t 2η(ε)K .

By virtue of Chebyshev’s inequality, it holds that pt ≤ σ2/(Bt2), with B = bn/Kc denoting the size of the blocks. The
right-hand side can then be rewritten as

exp

(
2η(ε)− 1

2
K · log

[
2

2η(ε)
2η(ε)−1

σ2

Bt2

])
.

It can be set to δ by choosing K =
⌈

2
2η(ε)−1 log(1/δ)

⌉
, we will see later how this is compatible with the initial constraint

α(ε)n ≤ K ≤ n, and t such that 2
2η(ε)

2η(ε)−1σ2/(Bt2) = 1/e, or again:

t =
√
eσ

√
2

2η(ε)
2η(ε)−1

B
,

≤
√
eσ

√
4η2(ε)

(2η(ε)− 1)2

2K

n
,

≤ 4
√
eσ

η(ε)

(2η(ε)− 1)
3
2

√
1 + log(1/δ)

n
, (10)

where we have used 2
1
x ≤ 1/x2 for x ≤ 1/2, and bxc ≥ x/2 for x ≥ 1.

The final writing is obtained by setting

β(ε) =
2

2η(ε)− 1
=

2α(ε)

α(ε)− 2ε
,

and

γ(ε) =
η(ε)

(2η(ε)− 1)
3
2

=

√
α(ε)(α(ε)− ε)
(α(ε)− 2ε)

3
2

.

Finally, the first part of the proof is achieved by ensuring that K satisfies the initial constraint. To do so, one may restrict the
interval of acceptable δ’s. Indeed, it is enough for δ to satisfy:

α(ε)n ≤ β(ε) log(1/δ) ≤ n,

e−n/β(ε) ≤ δ ≤ e−nα(ε)/β(ε).

The limitation on the range of δ is typical of MoM’s concentration proofs. The left limitation is due to the constraint K ≤ n,
and is not very compelling in practice. The right limitation comes from the constraint 2nO < K (or α(ε)n ≤ K), and is
specific to our outlier framework. The purpose of the second part of Proposition 2 is precisely to remove the left limitation,
under the assumption that Z is ρ sub-Gaussian.

Assume now that Z is ρ sub-Gaussian. Chernoff’s bound now gives that pt ≤ 2e−Bt
2/2ρ2

. Plugging this bound into MoM’s
deviation yields

P
{∣∣θ̂MoM − θ

∣∣ > t
}
≤ exp

(
2η(ε)− 1

2
K · log

[
2

4η(ε)−1
2η(ε)−1 e−Bt

2/2ρ2
])

,

≤ exp

(
−2η(ε)− 1

16ρ2
nt2
)
,
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for all t such that

t2 ≥ 4ρ2

B

4η(ε)− 1

2η(ε)− 1
log 2,

Reverting in δ gives that it holds with probability at least 1− δ

∣∣θ̂MoM − θ
∣∣ ≤ 4ρ√

2η(ε)− 1

√
log(1/δ)

n
,

for all δ that satisfies
δ ≤ e−

log 2
4 (4η(ε)−1) nB , and in particular δ ≤ e−4nα(ε). (11)

Indeed it holds B = bn/Kc ≥ n/(2K), so that n/B ≤ 2K = 2dα(ε)ne ≤ 2(α(ε)n + 1) ≤ 4α(ε)n, since 1 ≤ 2nO =
2εn ≤ α(ε)n. When nO = ε = 0, one may choose K = 1, B = n, and δ ≤ 1/e.

The final writing is obtained by setting:

Γ(ε) =
1√

2η(ε)− 1
=

√
α(ε)

α(ε)− 2ε
.

To get the expectation bound, one may simply integrate the previously found deviation probabilities. Reverting the inequality
gives that it holds

P
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}
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for all t such that (using Assumption 3):
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√
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√
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ε
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One finally gets

E
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∫ ∞
0

P
{∣∣θ̂MoM − θ
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ε
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1dt+

∫ ∞
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e
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≤ 8ρ Γ(ε)
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+
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√
πρ Γ(ε)√
n

,

≤ 2ρ Γ(ε)

(
4CO

∆(ε)

n(1−αO)/2
+

√
π

n

)
,

with the notation

∆(ε) =

√
α(ε)

ε
.

Remark 2. Coming back to Equation (9), one may also use Hoeffding’s inequality to get:

P
{∣∣θ̂MoM − θ

∣∣ > t
}
≤ P

{
1

KS

∑
blocks without outlier

1

{∣∣θ̂block − θ
∣∣ > t

}
− pt ≥

2η(ε)− 1

2η(ε)
− σ2

Bt2

}
,

≤ exp

(
−2η(ε)K

(
2η(ε)− 1

2η(ε)
− σ2

Bt2

)2
)
. (13)
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The right-hand side can be set to δ by choosing K =
⌈

9
2

η(ε)
(2η(ε)−1)2 log(1/δ)

⌉
, and t’s that satisfy:

2η(ε)− 1

6η(ε)
=

σ2

Bt2
,

t =
√

6σ

√
η(ε)

2η(ε)− 1

1√
B
,

t ≤
√

6σ

√
η(ε)

2η(ε)− 1

√
2K

n
,

t ≤ 3
√

6σ
η(ε)

(2η(ε)− 1)
3
2

√
1 + log(1/δ)

n
.

Up to the constant term which is bigger (3
√

6 instead of 4
√
e), and the number of blocks which is more important, the

latter result is very similar to Equation (10). But constant factors were not the only reason motivating our choice of
using the Binomial concentration. Indeed, it should be noticed that the Hoeffding bound becomes vacuous when using
pt ≤ 2 exp(−Bt2/2ρ2) for a ρ sub-Gaussian r.v. Z. Even if this sharper bound for pt is plugged in Equation (13), the
quantity (2η(ε) − 1)/(2η(ε)) − 2 exp(−Bt2/(2ρ2)) may never go to 0, making it impossible to improve the confidence
range similarly to what has been done in Proposition 2. Notice that the same problem arises in the proof of Proposition 4.

C.2. Proof of Proposition 3

The proof of Proposition 2 can be fully reused, up to two details related toU -statistics. The first one is Chebyshev’s inequality,
used to bound pt in the general case. The latter now features the variance of the U -statistic, that can be upper bounded as
follows. Using the notation of van der Vaart (2000) (see Chapter 12 therein), for c ≤ d define ζc(h) = Cov(h(Zi1 , . . . , Zid),
h(Zi′1 , . . . , Zi′d)) when c variables are common. Noticing that ζ0(h) = 0, it holds:

Var
(
ŪB(h)

)
= Cov

 1(
B
d

) ∑
i1<...<id

h (Zi1 , . . . , Zid) ,
1(
B
d

) ∑
i′1<...<i

′
d

h
(
Zi′1 , . . . , Zi′d

) ,

=
1(
B
d

)2 ∑
i1<...<id
i′1<...<i

′
d

Cov
(
h (Zi1 , . . . , Zid) , h

(
Zi′1 , . . . , Zi′d

))
,

=
1(
B
d

) d∑
c=1

(
d

c

)(
B − d
d− c

)
ζc(h),

=

d∑
c=1

d!2

c!(d− c)!2
(B − d)(B − d− 1) . . . (B − 2d+ c+ 1)

B(B − 1) . . . (B − d+ 1)
ζc(h),

≤ d!

∑d
c=1

(
d
c

)
ζc(h)

B
,

=
Σ2(h)

B
,

with Σ2(h) = d!
∑d
c=1

(
d
c

)
ζc(h).

The second critical point that should be adapted is the upper bound pt ≤ 2e−Bt
2/2ρ2

when Z is ρ sub-Gaussian. If kernel h
is bounded, then Hoeffding’s inequality for U -statistics (Hoeffding, 1963) gives instead that pt ≤ 2e−Bt

2/2d‖h‖2∞ . The rest
of the proof is similar to that of Proposition 2. We stress that Hoeffding’s inequality is used on a sane block, so that we only
need h to be bounded if applied to r.v. Z. In particular, it needs not be bounded on the outliers. This happens e.g. for any
continuous kernel h and r.v. Z with bounded support.
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C.3. Proof of Proposition 4

Let us first recall the notation needed to the analysis of θ̂MoU2(H). The numbers of blocks are denoted by KX and KY , and
the block sizes by BX = bn/KXc and BY = bm/KY c respectively. The number of sane blocks are denoted by KX,S and
KY,S, and for k ≤ KX and l ≤ KY , we set:

Ûk,l(H) =
1

BXBY

∑
i∈BXk

∑
j∈BYl

H(Xi, Yj),

the (two-sample) U -statistic built upon blocks BXk and BYl . Let Itk,l = 1{|Ûk,l(H)− θ(H)| > t} be the indicator random
variable characterizing its t-closeness to the true parameter θ(H).

As previously discussed, the constraint on KX and KY now writes:

α(εX + εY − εXεY )nm ≤ KXKY ≤ nm. (14)

In order to simplify the computation, we will however consider the following double constraint:


√
α(εX + εY − εXεY )n ≤ KX ≤ n,√
α(εX + εY − εXεY )m ≤ KY ≤ m.

(15)

Equation (15) naturally implies Equation (14), and one may observe that it does not impact the limit condition εX + εY −
εXεY < 1/2. Similarly to previous proofs, Equation (14) yields

KX,SKY,S ≥
(

1− εX + εY − εXεY
α(εX + εY − εXεY )

)
KXKY := ηXY ·KXKY ,

for notation simplicity. On the other hand, Equation (15) ensures both


KX,S ≥

(
1− εX√

α(εX+εY −εXεY )

)
KX := ηX ·KX ,

KY,S ≥
(

1− εY√
α(εX+εY −εXεY )

)
KY := ηY ·KY ,

with a slight abuse of notation since ηX also depends on Y (and conversely). Notice that it holds true 1/2 ≤ ηX , ηY ≤ 1.
Using the same reasoning as before, one gets:

P
{∣∣θ̂MoU2

(H)− θ(H)
∣∣ > t

}
≤ P

{
KX∑
k=1

KY∑
l=1

Itk,l ≥
KXKY

2

}
,

≤ P

{ ∑∑
blocks without outlier

Itk,l ≥
2ηXY − 1

2ηXY
KX,SKY,S

}
.

However, unlike Equation (9), the above equation does not relate to a binomial random variable, as the Itk,l are not
independent, see Figure 4. An elegant alternative then consists in leveraging the independence between samples X and
Y and using Hoeffding’s inequality. Equation (6) gives σ2

BX ,BY
(H) ≤ Σ2(H)/(BX ∧ BY ), with Σ2(H) = σ2(H) +

σ2
1(H) + σ2

2(H), so that:
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≤ P

{
1

KX,SKY,S

∑∑
blocks w/o outlier

Itk,l − E
[
Itk,l |X

]
+ E

[
Itk,l |X

]
− E

[
Itk,l
]

≥ 2ηXY − 1

2ηXY
− Σ2(H)

(BX ∧BY )t2

}
,

≤ P

 1

KY,S

KY,S∑
l=1

J tl − E
[
J tl |X

]
≥ 2ηXY − 1

4ηXY
− Σ2(H)

2(BX ∧BY )t2

+

P

 1

KX,S

KX,S∑
k=1

E
[
Itk,l |X

]
− E

[
Itk,l
]
≥ 2ηXY − 1

4ηXY
− Σ2(H)

2(BX ∧BY )t2

 ,

≤ exp

(
−2ηYKY

(
2ηXY − 1

4ηXY
− Σ2(H)

2(BX ∧BY )t2

)2
)

+

exp

(
−2ηXKX

(
2ηXY − 1

4ηXY
− Σ2(H)

2(BX ∧BY )t2

)2
)
,

with the notation J tl =
1

KX,S

KX,S∑
k=1

Itk,l, and X = (X1, . . . , Xn).

Now the right-hand side is set to δ by choosing KZ =
⌈

18 η2
XY

ηZ(2ηXY −1)2 log(2/δ)
⌉

for Z = X,Y respectively, and for t that
satisfies:

Σ2(H)

2(BX ∧BY )t2
=

2ηXY − 1

12ηXY
,

t = Σ(H)

√
6ηXY

2ηXY − 1

√
1

BX ∧BY
,

≤ Σ(H)

√
6ηXY

2ηXY − 1

√
2 max(KX ,KY )

n ∧m
,

≤ 12
√

3 Σ(H)

(
ηXY

2ηXY − 1

) 3
2

√
1 + log(2/δ)

n ∧m
,

≤ 12
√

3 Σ(H) γ(εX + εY − εXεY )

√
1 + log(2/δ)

n ∧m
.

Constraints (15) are finally fulfilled by choosing δ such that:
√
α(εX + εY − εXεY )n ≤ 18 η2

XY

ηX(2ηXY −1)2 log(2/δ) ≤ n,√
α(εX + εY − εXεY )m ≤ 18 η2

XY

ηY (2ηXY −1)2 log(2/δ) ≤ m,

2 max
(
e−nβX , e−mβY

)
≤ δ ≤ 2 min

(
e−n
√
α/βX , e−m

√
α/βY

)
,

with the shortcut notation α = α(εX + εY − εXεY ), and βZ =
18 η2

XY

ηZ(2ηXY −1)2 for Z = X,Y .
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C.4. Proof of Proposition 5

Again, the proof can be directly adapted from that of Proposition 2. The first difference lies in the constraint K needs to
satisfy. It now writes: 2(nO +mO) = 2(εX +εY )n < K ≤ n, and the reasoning can then be reused in totality with εX +εY
instead of ε. The second difference is Chebyshev’s inequality, but Equation (6) gives that σ2

BX ,BY
(H) ≤ Σ2(H)/B, with

Σ2(H) = σ2(H) +σ2
1(H) +σ2

2(H). Finally, when ‖H‖∞ is finite, using the notation X = (X1, . . . , Xn), one may bound
pt as follows:

pt = P
{
|Û1,1(H)− θ(H)| > t

}
,

= P
{∣∣∣ 1

B2

∑
i∈BX1

∑
j∈BY1

H(Xi, Yj)− θ(H)
∣∣∣ > t

}
,

≤ P
{∣∣∣∣ 1

B

∑
j∈BY1

( ∑
i∈BX1

H(Xi, Yj)

B
− E

[ ∑
i∈BX1

H(Xi, Yj)

B

∣∣∣X])∣∣∣∣ > t

2

∣∣∣X}

+ P
{∣∣∣ 1

B

∑
i∈BX1

EY
[
H(Xi, Y )

]
− θ(H)

∣∣∣ > t

2

}
,

≤ 2e−Bt
2/8‖H‖2∞ + 2e−Bt

2/8‖H‖2∞ ,

where we have used Hoeffding’s inequality twice: on the
∑
i∈BX1

H(Xi,Yj)
B for j ∈ BY1 , conditionally to the Xi’s, and a

second time to the EY
[
H(Xi, Y )

]
for i ∈ BX1 , both random variables being bounded by ‖H‖∞. The rest of the proof is

similar to that of Proposition 2.

C.5. Extension to U -statistics of Arbitrary Degrees and Number of Samples

Similarly to the extension from Proposition 2 to Proposition 3, the first important step consists in upper bounding the
variance of the U -statistic. To allow an effective use of Chebyshev’s inequality, the latter must be of the orderO(1/n), where
we recall that n is the number of observations in the sample (or the size of the smallest sample in the case of a multisample
U -statistic). This is for instance the case in Equation (6), i.e. for the 2-sample U -statistic of degree (1, 1). As a first go, we
detail here the derivation of Equation (6). We then show that with similar computations, it is direct to show that for any
p-sample U -statistic of degrees (1, . . . , 1), the O(1/n) condition holds. Finally, we extend it to arbitrary degrees. Recall
that we compute the variance of the 2-sample U -statistic of degrees (1, 1), based on the samples SXn = {X1, . . . , Xn}, and
SYm = {Y1, . . . , Ym}. It holds:

Var
( 1

nm

n∑
i=1

m∑
j=1

H(Xi, Yj)
)

=
1

n2m2
Var

 n∑
i=1

m∑
j=1

H(Xi, Yj)

 ,

=
1

n2m2
E

 n∑
i,i′=1

m∑
j,j′=1

H(Xi, Yj)H(Xi′ , Yj′)

− θ2(H),

=
1

nm
E
[
H2(X,Y )

]
+
m− 1

nm
E [H(X,Y )H(X,Y ′)] +

n− 1

nm
E [H(X,Y )H(X ′, Y )]− n+m− 1

nm
θ2(H),

=
1

nm
σ2(H) +

m− 1

nm
σ2

1(H) +
n− 1

nm
σ2

2(H),

≤ Σ2(H)

n ∧m
,
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with Σ2(H) = σ2(H)+σ2
1(H)+σ2

2(H), σ2(H) = Var (H(X,Y )), σ2
1(h) = Cov (H(X,Y ), H(X,Y ′)) = Var(H1(X)),

with H1(x) = E [H(x, Y )], and σ2
2(h) = Cov (H(X,Y ), H(X ′, Y )) = Var(H2(Y )), with H2(y) = E [H(X, y)].

To highlight the mechanism at stake, we reproduce the above computations for a 3-sample U -statistic of degrees (1, 1, 1). It
is then direct to see that for any p-sample U -statistic of degrees (1, . . . , 1), the O(1/n) condition holds. We have now at
disposal a new sample SZq = {Z1, . . . , Zq}, and the variance of the U -statistic writes:

Var
( 1

nmq

n∑
i=1

m∑
j=1

q∑
k=1

H(Xi, Yj , Zk)
)

=
1

n2m2q2
Var

 n∑
i=1

m∑
j=1

q∑
k=1

H(Xi, Yj , Zk)

 ,

=
1

n2m2q2
E

 n∑
i,i′=1

m∑
j,j′=1

∑
k,k′

H(Xi, Yj , Zk)H(Xi′ , Yj′ , Zk′)

− θ2(H), (16)

=
1

nmq
E
[
H2(X,Y, Z)

]
+

(m− 1)(q − 1)

nmq
E [H(X,Y, Z)H(X,Y ′, Z ′)]

+
(n− 1)(q − 1)

nmq
E [H(X,Y, Z)H(X ′, Y, Z ′)] +

(n− 1)(m− 1)

nmq
E [H(X,Y, Z)H(X ′, Y ′, Z)]

+
n− 1

nmq
E [H(X,Y, Z)H(X ′, Y, Z)] +

m− 1

nmq
E [H(X,Y, Z)H(X,Y ′, Z)] +

q − 1

nmq
E [H(X,Y, Z)H(X,Y, Z ′)]

− nmq − (n− 1)(m− 1)(q − 1)

nmq
θ2(H),

=
1

nmq
σ2(H) +

(m− 1)(q − 1)

nmq
σ2

1(H) +
(n− 1)(q − 1)

nmq
σ2

2(H) +
(n− 1)(m− 1)

nmq
σ2

3(H)

+
n− 1

nmq
σ2

23(H) +
m− 1

nmq
σ2

13(H) +
q − 1

nmq
σ2

12(H)

≤ Σ2(H)

n ∧m ∧ q
,

with Σ2(H) = σ2(H) + σ2
1(H) + σ2

2(H) + σ2
3(H) + σ2

23(H) + σ2
13(H) + σ2

12(H), and with a notation abuse σ2
i/ij =

Var
(
Hi/ij(X,Y, Z)

)
, with Hi/ij(X1, X2, X3) = E[H(X1, X2, X3) | Xi] or E[H(X1, X2, X3) | Xi, Xj ] respectively.

From this second example we can extrapolate the mechanism that generates the variance of the U -statistic. Coming back
to Equation (16), we have to compute a certain number of covariance terms. The important thing that distinguishes the
different covariances is the number of variables shared between H(Xi, Yj , Zk) and H(Xi′ , Yj′ , Zk′). Depending on this
number, and on which variable(s) is (are) shared, one of the σ2

i/ij variances appears. This variance is multiplied by the
number of times a suitable combination arise. For a shared variable, this is n (respectively, m or q, i.e. the size of the
associated sample). For non-shared variables, this is n(n− 1). As at least one variable is shared (otherwise the two terms
are independent, and the expectation is then equal to θ2(H), that cancels with the last term of Equation (16)), we end up
with variance terms, multiplied by 1/nmin at most (because of the 1/(n2m2q2) factor). This reasoning validates the O(1/n)
condition discussed earlier, and is applicable to an arbitrary number of samples. Notice finally that it can be shown that all
partial variance terms are smaller than σ2(H) = Var

(
H(X1, . . . , Xp)

)
, so that a simple condition for all the variance terms

to be finite is σ2(H) < +∞. The same analysis also applies to arbitrary numbers of samples and degrees. Combining it to
the variance computation of appendix C.2, it is direct to show that the O(1/n) remains valid in this setting.

The second important step is the generalization of Hoeffding’s inequality when the essential supremum is bounded. There is
no particular difficulty here, since Hoeffding’s inequality for U -statistics of arbitrary degrees can be used, possibly combined
with the condition trick introduced in the previous section when several samples are considered.
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C.6. Proof of Theorem 1

Using the fact that ĝMoU minimizes MoUSn(`g) over G, one gets:

R(ĝMoU)−R(g∗) ≤ R(ĝMoU)−MoUSn(`ĝMoU
) + MoUSn(`g∗)−R(g∗),

≤ 2 sup
g∈G

∣∣MoUSn(`g)−R(g)
∣∣,

≤ 2 sup
g∈G
|MoUSn(`g)− E[`g]| .

For a fixed g ∈ G, Proposition 3 and Assumption 6 gives that for all δ ∈ (0, exp(−4nα(ε))], we have with probability larger
than 1− δ: ∣∣MoUSn(`g)− E[`g]

∣∣ ≤ 4
√

2M Γ(ε)

√
log(1/δ)

n
.

By virtue of Sauer’s lemma, Assumption 5 altogether with the union bound then gives that for all δ ∈ (0, exp(−4∆2(ε)nO)],
it holds with probability at least 1− δ:

sup
g∈G

∣∣MoUSn(`g)− E[`g]
∣∣ ≤ 4

√
2M Γ(ε)

√
VCdim(G)(1 + log(n)) + log(1/δ)

n
.

C.7. Generalization Bound via Entropic Complexity

In this section, we highlight the versatility of the concentration bounds established in Section 2 by deriving generalization
guarantees through another complexity assumption than that used in Theorem 1. Namely, we use the following entropic
characterization.
Assumption 7. The collection of functions LG = {`g : g ∈ G} is a uniform Donsker class (relative to ‖ · ‖∞) with
polynomial uniform covering numbers, i.e. there exist constants CG > 0 and r ≥ 1 such that: ∀ζ > 0,

N (ζ,LG , L∞(Q)) ≤ CG(1/ζ)r,

where N (ζ,LG , ‖ · ‖∞) denotes the number of ‖ · ‖∞-balls of radius ζ > 0 needed to cover class LG .

Now, let ζ > 0, and `1, . . . , `N (ζ,LG ,‖·‖∞) be a ζ-coverage of LG with respect to ‖ · ‖∞. From now on, we use N =
N (ζ,LG , ‖ · ‖∞) for notation simplicity. Let `g be an arbitrary element of LG . By definition, there exists i ≤ N such that
‖`g − `i‖∞ ≤ ζ. It holds then:∣∣MoUSn(`g)− E [`g]

∣∣ ≤ ∣∣MoUSn(`g)−MoUSn(`i)
∣∣+
∣∣MoUSn(`i)− E [`i]

∣∣+
∣∣E [`i]− E [`g]

∣∣,
≤ 2ζ +

∣∣MoUSn(`i)− E [`i]
∣∣. (17)

Applying the second claim of Proposition 3 to every `i, the union bound gives that for all δ ∈ (0, e−4nα(ε)], choosing
K = dα(ε)ne, it holds with probability at least 1− δ:

sup
i≤N

∣∣MoUSn [`i]− E [`i]
∣∣ ≤ 4

√
2MΓ(ε)

√
log(N/δ)

n
.

Taking the supremum in both sides of Equation (17), it holds with probability at least 1− δ:

sup
g∈G

∣∣MoUSn [`g]− E [`g]
∣∣ ≤ 2ζ + 4

√
2MΓ(ε)

√
log(N/δ)

n
.

Choosing ζ ∼ 1/
√
n, it holds with probability at least 1− δ:

sup
g∈G

∣∣MoUSn [`g]− E [`g]
∣∣ ≤ 2√

n
+ 4
√

2MΓ(ε)

√
(r/2) log(n) + log(CG/δ)

n
.

We recover the bound of Theorem 1 up to a log(n) factor.
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C.8. Proof of Theorem 2

First, we detail the assumptions needed to derive Theorem 2, that were not explicited in the core text due to space constraints.
They are adaptations of the assumptions used to derive Theorem 3 in Lecué et al. (2018). They state as follows.

• for any u ∈ Rp and z, z′ ∈ Z2, it holds:
∥∥∇u`(gu, z, z′)∥∥ ≤ L,

• for any sample Sn, there exists a unique minimum umin = argminu∈Rp Epart [MoUSn(`g) | Sn], where the expectation
is taken with respect to all possible ways of partitioning of sample Sn,

•
∑∞
t=1 γt = +∞, and

∑∞
t=1 γ

2
t < +∞,

• for any sample Sn, model u ∈ Rp, and ε > 0, it holds: inf‖u−umin‖>ε(u− umin)>Epart [∇uMoUSn(`g) | Sn] < 0,

• for any sample Sn and model u ∈ Rp, there exists an open convex set B containing u such that for any equipartition of
{1, . . . , N} into K blocks B1, . . . ,Bk there exists kmed ≤ K such that for all v ∈ B, Bkmed is the median block. Note
that this condition must hold almost surely (in Sn) and almost everywhere (in u).

Under these five assumptions, a direct adaptation of Theorem 3 in Lecué et al. (2018) then gives the almost sure convergence
of the output of Algorithm 1 towards umin. We have now to study the excess risk of ĝalg = gumin . Jensen’s inequality gives:

R(ĝalg)−R(g∗) ≤ 2 sup
g∈G

∣∣Epart [MoUSn(`g)]−R(g)
∣∣ ≤ 2 Epart

[
sup
g∈G

∣∣MoUSn(`g)− E[`g]
∣∣].

Applying Theorem 1 then allows to upper bound the right-hand side with high probability, and to conclude.

D. Numerical Experiments
In this section, we present numerical experiments highlighting the remarkable robustness-to-outliers of MoM-based
estimators. In particular, we present mean and (multisample) U -statistics estimation experiments under Assumption 3, that
emphasize the superiority of MoM/MoU/MoU2 compared to standard alternatives (see Appendix D.1). We also provide
implementations of Algorithm 1 on both ranking and metric learning problems (Appendix D.2). They illustrate the good
behavior of the MoU Gradient Descent (MoU-GD) when the training dataset is contaminated.

D.1. Estimation Experiments

For all our experiments, we set nO =
√
n, so that Assumption 3 is fulfilled with CO = 1, αO = 1/2. We next specify

particular instances of Assumption 2, i.e. a distribution for Z (or for X and Y ), and a distribution for the outliers, such
that standard estimators are dramatically damaged, while the MoM-based versions studied in the present article are barely
impacted, corroborating the theoretical guarantees established in Propositions 2, 3 and 5. We have selected K according to
the Harmonic upper bound, so that Assumption 4 is fulfilled as well.

Ruining the mean. In this first example, the sane data is drawn according to a standard Gaussian distribution (hence θ = 0,
and the sub-Gaussian assumption is satisfied with ρ = 1), and outliers follow a Dirac δn1/2 . The expected value of the
empirical mean estimator θ̂avg is then given by: ESn [θ̂avg] = (1 − ε) · 0 + ε ·

√
n = 1, always missing the true value. In

contrast, MoM’s performance improves with n, showing almost no perturbation due to the outliers, see Figure 10a.

Ruining the median. The Median-of-Means can be seen as an interpolation between the empirical mean (achieved for
K = 1) and the empirical median (K = n). If the first one is known to be very sensitive to abnormal observations, the
second is however very robust. Yet, there are some cases where the median fails and MoM succeeds. Of course, MoM is
a mean estimator while the empirical median estimates the 1/2 quantile q1/2. Hence, we need to consider a case where
both coincide to ensure a fair comparison. In our second example, sane data follow a Bernoulli of parameter θ = 1/2, and
outliers a Dirac δ1. When applying blindly the median, one is actually estimating q1/2+ε = 1. The results are reported in
Figure 10b. This phenomenon highlights the importance of correctly choosing α, a too rough approximation such as the
median’s leading to poor results.

Trimmed mean. We have also benchmarked the results obtained by the Trimmed Mean (TM, Lugosi and Mendelson
(2019b)), which provides similar performances for the mean estimation, see Figure 10a.
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(a) Ruining the mean (avg. 500 runs).
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(d) MoU estimation of MW-stat (avg. 500 runs).

Figure 10: Performances of MoM-based estimators in presence of outliers.

Ruining the variance. The empirical variance σ̂2
n = 1/(n(n− 1))

∑
i<j(Zi − Zj)2 is a typical example of a (1-sample)

U -statistic of degree 2, with kernel h : (Z,Z ′) 7→ (Z − Z ′)2/2. Our third setting is as follows: Z follows a uniform law
on [0, 1] (so that θ = 1/12, and the supremum of h(Z,Z ′) is finite equal to 1/2), while outliers are drawn according to
the Dirac δn1/4 . Similarly to the mean, one then has ESn

[
σ̂2
n

]
of the order of 1, no matter the number of observations

considered. In contrast, MoU behaves almost as if the dataset were not contaminated, see Figure 10c.

Estimating the Mann-Whitney statistic. A classical 2-sample U -statistic of degrees (1, 1) is the Mann-Whitney statistic.
Given two random variables X and Y , it aims at estimating P {X ≤ Y }. From two samples of realizations (X1, . . . Xn)
and (Y1, . . . , Ym) of X and Y , it is computed by: ÛMW

n,m = 1/(nm)
∑n
i=1

∑m
j=1 1{Xi ≤ Yj}. This example is very

interesting as it highlights the importance of the bounded assumption. Indeed, to get the convergence of MoU2, we only
need boundedness of H on the inliers. In particular, examples a) and c) above use the unboundedness of the kernel on the
outliers to make the empirical mean (respectively variance) arbitrary far away from the true value. Here, since the kernel
H : (X,Y ) 7→ 1{X ≤ Y } is always bounded, the empirical version actually shows more resistance, and the advantage of
MoU2 is less important than in other configurations, see Figure 10d.

D.2. Additional Learning Experiments

Learning experiments have been run in order to highlight the good generalization capacity of MoU minimizers, theoretically
established in Theorems 1 and 2. In this section, we consider a ranking problem, on tow benchmark datasets, boston housing
and wine quality. We first corrupted the datasets, in a way described below, before running Algorithm 1.
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In ranking, the observations available to the practitioner are typically composed of feature vectors X ∈ Rp describing
different objects, and labels Y ∈ R representing how much the objects are appreciated by some subject. One is then
interested in learning a decision rule g : Rp × Rp → {−1, 1} to predict if object X is preferred over object X ′ (i.e.
Y ≥ Y ′). We considered the set of decision functions deriving from a scoring function s : Rp → [0, 1] such that
g(X,X ′) = 2 · 1{s(X) ≥ s(X ′)} − 1. The scoring functions themselves are indexed by vectors w ∈ Rp such that
s(x) = σ(w>x), with σ the sigmoid function. ERM then consists in minimizing the disagreements among the training pairs,
that writes:

min
w∈Rp

2

n(n− 1)

∑
i<j

1{gw(X,X ′)(Y − Y ′) ≤ 0},

and can be relaxed into:
min
w∈Rp

2

n(n− 1)

∑
i<j

max
(

0, 1− gw(X,X ′)(Y − Y ′)
)
. (18)

We have run Algorithm 1 with criterion (18) on two datasets: boston housing1, that gathers 506 houses described by 13
real features (e.g. number of rooms, distance to employment centers), along with a label corresponding to their prices (real,
between 5 and 50), and red wine quality2, that gathers 1, 600 wines described by 12 chemical features, along with a label
corresponding to a note between 0 and 10. The datasets have first been normalized, and divided into a train set of size
80%, and a test set of size 20%. The outliers have then been generated as follows. A standard GD is first run on the sane
training dataset, returning an optimal vector ŵsane. Then, 2% and 5% of outliers (for boston and wine respectively) have
been generated by sampling (Xoutlier, Youtlier) uniformly around (−λŵsane, λ), for some real value λ. This way, one has:

gŵsane(X,Xoutlier)(Y − Youtlier) ≈
(
σ(ŵ>saneX)− σ(ŵ>saneXoutlier)

)
(Y − λ),

=
(
σ(ŵ>saneX)− σ(−λ‖ŵsane‖2)

)
(Y − λ).

Making λ tend to +∞ (respectively −∞), the first term becomes always positive and the second very negative (respectively
always negative and very positive), incurring important losses preventing from converging toward ŵsane. For boston, λ was
set to −500, and to 50 for wine. The GD trajectories obtained are very similar to that of the metric learning example, and
are thus not reproduced here. The generalization errors obtained on the test dataset of size 20% are gathered in Table 2.
Again, MoU-GD shows a remarkable resistance to the presence of outliers, and attains almost the same performance as
standard GD on the sane dataset, empirically validating our theoretical findings.

GD MOU-GD

boston
sane 0.35 ± 0.04 0.36± 0.05
cont. 0.99 ± 0.68 0.36 ± 0.05

wine
sane 0.73 ± 0.02 0.74 ± 0.02
cont. 0.92 ± 0.11 0.74 ± 0.02

Table 2: Ranking test losses (avg. 50 runs).

1https://scikit-learn.org/stable/modules/generated/sklearn.datasets.load_boston.html
2https://archive.ics.uci.edu/ml/datasets/wine+quality

https://scikit-learn.org/stable/modules/generated/sklearn.datasets.load_boston.html
https://archive.ics.uci.edu/ml/datasets/wine+quality

