Generalization Bounds in the Presence of Outliers: a Median-of-Means Study

A. Summary: the different estimators considered in the present article
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Figure 8: The estimators considered in the article.
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Table 1: Different upper bounds « and corresponding functions 3, v, ', A, n.
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C. Technical Proofs

In this section are detailed the proofs of the theoretical claims stated in the core article.

C.1. Proof of Proposition 2

Roughly speaking, the median has the same behavior as that of a majority of observations. Similarly, the MoM has the
same behavior as that of a majority of blocks. In presence of outliers, the key point consists in focusing on sane blocks
only, i.e. on blocks that do not contain a single outlier, since no prediction can be made about blocks #it by an outlier, in
absence of any structural assumption concerning the contamination. One simple way to ensure the sane blocks to be in
(almost) majority is to consider twice more blocks than outliers. Indeed, in the worst case scenario each outlier contaminates
one block, but the sane ones remain more numerous. Let K denote the total number of blocks chosen, Ko the number of
blocks containing at least one outlier, and K's the number of sane blocks containing no outlier. The crux of our proofs then
consists in determining some 7 > 1/2 (that eventually depends on ¢) such that Ks > nK. As discussed before, we thus
need to consider at least twice more blocks than outliers. On the other hand, K is by design upper bounded by n. The global
constraint can be written:

2no =2en < K < n. (8)

Let a: [0,1/2] — [0, 1] such that: Ve € (0,1/2), 2e < a(e) < 1. Several choices of acceptable function « are detailed in
Table 1, and illustrated in Figure 9. They include among others:

142e

* the arithmetic mean: a(e) = =5

* the geometric mean: a(e) = v/2¢.

4e
142e-

* the harmonic mean: a(e) =
o the polynomial: a(e) = (5/2 — ¢).
Once the function « is selected, Equation (8) is satisfied as soon as K verifies:
ale)n < K <n.

It directly follows that
Ks=K-Ko>K—-no>K—-en> (1—)[(:

and one then may use

Once 7)(¢) is determined, a standard MoM deviation study can be carried out. If at least /2 sane blocks have an empirical
estimate that is ¢ close to the expectation, then so is the MoM. Reversing the implication gives:

P{‘éMOM—9‘>t}SP{ Z ]l{’éblock_e‘>t}2KS_I2(}>

blocks without outlier

<P{ Z ]l{|éblock_0| >t} > 2772(78725_)1‘[{5}’ )

blocks without outlier

with Ohjock = (1/B) 3 cpiock Zi the block empirical mean. Now observe that Equation (9) describes the deviation of a
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binomial random variable, with K trials and parameter p; = P{ \éblock — 0| > t}. It can thus be upper bounded by

Ks _ Ks
KS k 2n(e) IKS KS
1 _ Ks—k < 2n(e)
S ()rranrst <M S (7).

k=[ 25 K| -
2n(e)—1 Ks

S pt 2n(e) QKS’
2n(e)=1 g

< p, 2 on(@) K

By virtue of Chebyshev’s inequality, it holds that p; < 02 /(Bt?), with B = |n/K | denoting the size of the blocks. The
right-hand side can then be rewritten as

2n(e) —1 (o) o2
- B . 1 22n(e)—1 .
exp ( 8 B2

2

2
2n(e)—1

2n(e)
a(e)n < K < n, and t such that 2251 o2 /(Bt2) = 1/e, or again:

It can be set to § by choosing K = [ log(1/6 )—‘ , we will see later how this is compatible with the initial constraint

2n(e)
2 2n(e)—1

B b
dn*(e) 2K
(2n(e) =1)2 n’
o n(e) 1+ log(1/6)
SR T

t=+/eo

<Veo

: (10)

where we have used 27 < 1/2? forx <1/2,and |z| > x/2 forz > 1.

The final writing is obtained by setting

_ 2 _ 2a(e)
Ale) = 2n(e) —1  a(e) —2¢’
and
() = n(e) _ Va(e)(a(e) - 5).

(2n(e) - 12 (ale) —2)%

Finally, the first part of the proof is achieved by ensuring that K satisfies the initial constraint. To do so, one may restrict the
interval of acceptable d’s. Indeed, it is enough for ¢ to satisfy:

a(e)n < Ble)log(1/s) < n,

e /BE) <« § < gnale)/B(e)
The limitation on the range of ¢ is typical of MoM’s concentration proofs. The left limitation is due to the constraint K < n,
and is not very compelling in practice. The right limitation comes from the constraint 2ng < K (or a(e)n < K), and is
specific to our outlier framework. The purpose of the second part of Proposition 2 is precisely to remove the left limitation,
under the assumption that Z is p sub-Gaussian.

Assume now that Z is p sub-Gaussian. Chernoff’s bound now gives that p, < 2e~Bt*/20%, Plugging this bound into MoM’s

deviation yields
j 2 -1 n(e)—
]P{|9M0M -6 > t} < exp <77(€)K log [Qi,,ﬁsﬂ_}eBtQ/Qp?]) 7

2
2 -1
< exp (7756)71152> ,
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for all ¢ such that

2> @ dn(e) — 1

log 2
~ B 2n(e)-1 08

Reverting in ¢ gives that it holds with probability at least 1 — §

4p log(1/3)

|Onom — 0] <

for all § that satisfies -
§<e a E-DE  andin particular 0§ < e 4nale) (11

Indeed it holds B = |n/K| > n/(2K), so that n/B < 2K = 2[a(e)n] < 2(a(e)n 4+ 1) < 4a(e)n, since 1 < 2np =
2en < a(e)n. When ng = &€ = 0, one may choose K = 1, B=n,and § < 1/e.

The final writing is obtained by setting:

1 a(e)

T V) -1 Va2

To get the expectation bound, one may simply integrate the previously found deviation probabilities. Reverting the inequality
gives that it holds

I'(e)

nt?
]P){‘GMOM - (9‘ > t} < e 16077 =,
for all ¢ such that (using Assumption 3):

ale)  Co

t > 8pT(e)yv/a(e), andin particular t > 8pT'(g) . iag)2"
n e

(12)
One finally gets

E [ — 0] = /Omp{\éMoM 0] >t}

a(e) o

8p L'(e)\ == —a=agi/z 00 2
</ 1dt+/ e~ TR dt,
0 0

a(e)  Co 2ympT(e)
& n—a0)/2 N

Ale ™
<2pT(e) (4CO ﬁ + \/2) .

with the notation

Remark 2. Coming back to Equation (9), one may also use Hoeffding’s inequality to get:

~ 1 R 9 _q 5
P{| 0o — 0] > t} SP{K S b0 >t} -pi> 772(226)_ ;2}

s blocks without outlier

< exp (—217(5)1( (2772(;)(6_)1 — gﬁ) ) . 13)
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The right-hand side can be set to 6 by choosing K = {% ﬁ log(1/ 5)—‘ and t’s that satisfy:
2m(e) -1 o
6n(s)  Bt?’

on(e) 1
= Voo 2(e) — 1

ik
nle) 2K
t < V6o sme) 1 1/

t < 3v60 n(e) 1—|—10g(1/5)
(2n(e) — 1) n

Up to the constant term which is bigger (3\/6 instead of 4./e), and the number of blocks which is more important, the
latter result is very similar to Equation (10). But constant factors were not the only reason motivating our choice of
using the Binomial concentration. Indeed, it should be noticed that the Hoeffding bound becomes vacuous when using
pe < 2exp(—Bt?/2p?) for a p sub-Gaussian r.v. Z. Even if this sharper bound for p; is plugged in Equation (13), the
quantity (2n(e) — 1)/(2n(e)) — 2 exp(—Bt?/(2p?)) may never go to 0, making it impossible to improve the confidence
range similarly to what has been done in Proposition 2. Notice that the same problem arises in the proof of Proposition 4.

C.2. Proof of Proposition 3

The proof of Proposition 2 can be fully reused, up to two details related to U-statistics. The first one is Chebyshev’s inequality,
used to bound p; in the general case. The latter now features the variance of the U-statistic, that can be upper bounded as
follows. Using the notation of van der Vaart (2000) (see Chapter 12 therein), for ¢ < d define {.(h) = Cov(h(Z;,, ..., Z;,),
h(Zi, ..., Zi,)) when c variables are common. Noticing that (o (h) = 0, it holds:

Var (Up(h)) = Cov | 5= > h(Z Z)% 3 h(zﬂl,...,zi&) ,

(d i1 <...<ig (d) i) <...<i),

a2 (B-d)(B-d—1)...(B—2d+c+1)
=2 Ja—op BB _1)...(B_d+il) Ce(h),

with $2(h) = d' 0 (D¢ (h)

The second critical point that should be adapted is the upper bound p; < 2e~Bt*/20* when Z is p sub-Gaussian. If kernel h
is bounded, then Hoeffding’s inequality for U-statistics (Hoeffding, 1963) gives instead that p; < 2¢~5 /241715 | The rest
of the proof is similar to that of Proposition 2. We stress that Hoeffding’s inequality is used on a sane block, so that we only
need h to be bounded if applied to r.v. Z. In particular, it needs not be bounded on the outliers. This happens e.g. for any
continuous kernel h and r.v. Z with bounded support. O
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C.3. Proof of Proposition 4

Let us first recall the notation needed to the analysis of 67MOU2 (H). The numbers of blocks are denoted by K x and Ky, and
the block sizes by Bx = |n/Kx | and By = |m/Ky | respectively. The number of sane blocks are denoted by K x s and
Kys,and for k < Kx and [ < Ky, we set:

Uk‘,l(H) = BXlBY Z Z H(X%Y])a

ieBy jeBy
the (two-sample) U-statistic built upon blocks B;X and B} Let I, = 1{|Ux(H) — 6(H)| > t} be the indicator random
variable characterizing its t-closeness to the true parameter 6(H ).
As previously discussed, the constraint on K x and Ky now writes:

alex +ey —exey)nm < Kx Ky < nm. (14)

In order to simplify the computation, we will however consider the following double constraint:

Valex +ey —exey)n < Kx <n,
(15)

Valex +ey —exey)m < Ky < m.

Equation (15) naturally implies Equation (14), and one may observe that it does not impact the limit condition e x + ¢y —
exey < 1/2. Similarly to previous proofs, Equation (14) yields

Ex +E€y —EXEY
Oz(EX + ey —EXEY)

KxsKys > (1 - ) Kx Ky =nxy  KxKy,

for notation simplicity. On the other hand, Equation (15) ensures both

Kxs>|(1- £X Kx = - K
XS Z ( \/Q(EXHYE)(W)) X Nx X

_ ey — .
KY’S = (1 \/oz(Ex+€y—6X€Y)) Ky =mny - Ky,

with a slight abuse of notation since nx also depends on Y (and conversely). Notice that it holds true 1/2 < nx,ny < 1.
Using the same reasoning as before, one gets:

al

. Kx Ky KoK
sy {5, 55}

k=11=1

2nxy — 1
]P{ > Iﬁ,zZ%XYKX,SKY,S}-

blocks without outlier

IN

However, unlike Equation (9), the above equation does not relate to a binomial random variable, as the I,? ; are not
independent, see Figure 4. An elegant alternative then consists in leveraging the independence between samples X and
Y and using Hoeffding’s inequality. Equation (6) gives 03 p (H) < ¥*(H)/(Bx A By), with ¥*(H) = o*(H) +
o?(H) + 03(H), so that:
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<ot S ih-El xRl 1 X] -2 [,
X5 YSblocks w/o outlier
> 277XY -1 22(H)
- 2nxy (BX A By)t2
Kys
277XY -1 22(H)
< — X _
- Y,S Z Jl Jl ‘ } 47]XY Q(BX A By)t2 *
Kxs
277XY -1 ZQ(H)
> _
K Z E [l | X] B L] 2 dnxy 2(Bx ABy)t? (7
2
277XY -1 ZQ(H)
< K —
= &P ( 2y Ky ( 477XY Q(BX A By)t2 +
2
27]XY -1 EQ(H)
o K _
exp ( Nx K x ( 47]XY 2(BX A BY)tQ )
Kx s
with the notation J} = Frs ; It and X = (Xq,...,Xp).

Now the right-hand side is set to § by choosing Kz = [% log(2/ 6)-‘ for Z = X, Y respectively, and for ¢ that

satisfies:

¥2(H) _ 2nxy —1
Q(BX A\ By)t2 o 12nxy

6nxy \/ 1
t=%(H
( )\/277xyl Bx A By’
GT]XY 2 max KX Ky
2nxy —1 nAm

§12\/§E(H)( Xy )2 1+10g(2/6)7

2nxy —1 nAm

1+ 1og(2/5).

nAm

<12V3X(H) y(ex + ey —exey)

Constraints (15) are finally fulfilled by choosing ¢ such that:

2
\/a(sx +ey —exey)n < 77)((12?7)"(%1)2 log(2/6) <n

18
Valex +ey —exey)m < 7]3’(27127(]%1)2 log(2/6) <m

2 max (e‘"ﬂx,e_mﬁy) < ¢ < 2min (e—"\/a/ﬁx,e—m\/a/ﬁy)’

. . i _ 18 n? i
with the shortcut notation o« = a(ex + ey —exey), and fz = m forZ =X,Y. O
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C4. Proof of Proposition 5

Again, the proof can be directly adapted from that of Proposition 2. The first difference lies in the constraint /' needs to
satisfy. It now writes: 2(no+mo) = 2(ex +ey)n < K < n, and the reasoning can then be reused in totality with e x +¢cy
instead of e. The second difference is Chebyshev’s inequality, but Equation (6) gives that 03 By (H) < ¥2(H)/B, with
Y2(H) = 0*(H) +0?(H)+ o3(H). Finally, when || H||  is finite, using the notation X = (Xj,..., X,,), one may bound
p; as follows:

pi = {1001 (H) = 0(H)| > ]

_ p{ =5 2 > HXLY) 9(H)'>t},
ieBX jeBY
< — il el Bl A il Sl Bl A -
_P{BZ(Z B E[_Z B X >2’X
jeBY “ieBX i€B]

+p{ % S Ey [H(X,, V)] —H(H)‘ > ;}

ieBX
a2 2 B2 2
< 2e  BY/BIHISG 4 9o~ Bt /SHHHW7

H(X Y;)

where we have used Hoeffding’s inequality twice: on the ), BX for j € BY, conditionally to the X;’s, and a

second time to the Ey [H (X;,Y)] for i € B{*, both random variables belng bounded by || H || The rest of the proof is
similar to that of Proposition 2. O

C.5. Extension to U-statistics of Arbitrary Degrees and Number of Samples

Similarly to the extension from Proposition 2 to Proposition 3, the first important step consists in upper bounding the
variance of the U-statistic. To allow an effective use of Chebyshev’s inequality, the latter must be of the order O(1/n), where
we recall that n is the number of observations in the sample (or the size of the smallest sample in the case of a multisample
U-statistic). This is for instance the case in Equation (6), i.e. for the 2-sample U-statistic of degree (1, 1). As a first go, we
detail here the derivation of Equation (6). We then show that with similar computations, it is direct to show that for any
p-sample U-statistic of degrees (1,...,1), the O(1/n) condition holds. Finally, we extend it to arbitrary degrees. Recall
that we compute the variance of the 2-sample U-statistic of degrees (1, 1), based on the samples S;X = {X1,..., X,,}, and
SY ={v1,...,Y,}. Itholds:

1 n m
Vaf(*mzz X))
Var zn:iH X, Y;) |,
Jj=1

=1

B | 30 3 HEG AN | -6,

i,i/=1j,j'=1
= %UQ(H) m— 10%(H) . n;llaS(H),
$*(H)

IN
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with X2(H) = 0%(H)+0?(H)+03(H),0?(H) = Var (H(X,Y)), 02(h) = Cov (H(X,Y),H(X,Y")) = Var(H, (X)),
with Hy(z) = E[H(z,Y)], and 03(h) = Cov (H(X,Y), H(X',Y)) = Var(Hz(Y)), with Hy(y) = E[H (X, y)].
To highlight the mechanism at stake, we reproduce the above computations for a 3-sample U-statistic of degrees (1,1,1). It

is then direct to see that for any p-sample U-statistic of degrees (1, ..., 1), the O(1/n) condition holds. We have now at
disposal a new sample SqZ ={Z,..., Zq}, and the variance of the U-statistic writes:

i=1 j=1k=1
1 n m g
~ nZmig? ZZHX“YJ’Zk '
i=1 j=1 k=1
m
=n2m2 5E Z Y H(X:, Y5, Zy)H (X, Yy, Zy) | — 6°(H), (16)

i,4'=17,7'=1 k,k’

= niqu [HQ(X, Y, Z)} + %E [H(X,Y,Z)H(X, Y/,Z’)]

- W@ [H(X,Y, 2)H(X',Y, 2')] + WB [HX.Y, HH(X',Y", 2)]
T;Lr_nqlE [H(X,Y, 2)H(X',Y, Z)] + Z;qlE [H(X,Y, 2)H(X,Y", Z)] + zl;ql]E[H(X%Z)H(X’KZ')]
nmgq

nmgq nmgq nmgq nmq
n—1, m—1 , qg—1 ,
- (H 2 (H H
+ " qJZJ( )+ " qgls( )+nmq012( )
¥*(H)
“nAmAq’

with 22(H) = 0*(H) + 0f(H) + 03(H) + 05(H) + 033(H) + 0{3(H) + 0,(H), and with a notation abuse 07, =

Var(H, i;(X,Y, Z)), with H; ;;;(X1, X, X5) = E[H (X1, X2, X3) | X,] or E[H(X1, X2, X3) | X;, X;] respectively.

From this second example we can extrapolate the mechanism that generates the variance of the U-statistic. Coming back
to Equation (16), we have to compute a certain number of covariance terms. The important thing that distinguishes the
different covariances is the number of variables shared between H(X,;,Y;, Zy) and H(X;/, Y}/, Z}). Depending on this
number, and on which variable(s) is (are) shared, one of the 0’ - variances appears. This variance is multiplied by the
number of times a suitable combination arise. For a shared varlable, this is n (respectively, m or g, i.e. the size of the
associated sample). For non-shared variables, this is n(n — 1). As at least one variable is shared (otherwise the two terms
are independent, and the expectation is then equal to §%(H), that cancels with the last term of Equation (16)), we end up
with variance terms, multiplied by 1/7,;, at most (because of the 1/(n?m?q?) factor). This reasoning validates the O(1/n)
condition discussed earlier, and is applicable to an arbitrary number of samples. Notice finally that it can be shown that all
partial variance terms are smaller than o (H) = Var(H (X, ..., X,)), so that a simple condition for all the variance terms
to be finite is 0% (H) < +o0c. The same analysis also applies to arbitrary numbers of samples and degrees. Combining it to
the variance computation of appendix C.2, it is direct to show that the O(1/n) remains valid in this setting.

The second important step is the generalization of Hoeffding’s inequality when the essential supremum is bounded. There is
no particular difficulty here, since Hoeffding’s inequality for U-statistics of arbitrary degrees can be used, possibly combined
with the condition trick introduced in the previous section when several samples are considered.
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C.6. Proof of Theorem 1

Using the fact that gniou minimizes MoUsg, (¢,) over G, one gets:

R(gmov) = R(9%) < R(gmov) — MoUs, (€gy) + MoUs, (£4+) — R(g7),

< 2sup |MoUs, (£,) — R(g)
geg

< 2sup|MoUs, (¢4) —E[¢,]| .
geg

)

For a fixed g € G, Proposition 3 and Assumption 6 gives that for all & € (0, exp(—4na(e))], we have with probability larger
than 1 — §:

MoUs, (¢;) ~ Elt,]] < a2 T(e) /B2

By virtue of Sauer’s lemma, Assumption 5 altogether with the union bound then gives that for all § € (0, exp(—4AZ%(g)no)],
it holds with probability at least 1 — §:

\/Vcdim(g)(l + log(n)) + log(1/6)

sup |[MoUs,, (£4) — E[¢,]| < 4V2M T(e) n

9€g

C.7. Generalization Bound via Entropic Complexity

In this section, we highlight the versatility of the concentration bounds established in Section 2 by deriving generalization
guarantees through another complexity assumption than that used in Theorem 1. Namely, we use the following entropic
characterization.

Assumption 7. The collection of functions Lg = {{4: g € G} is a uniform Donsker class (relative to || - ||oo) with
polynomial uniform covering numbers, i.e. there exist constants Cg > 0 and r > 1 such that: ¥ > 0,

N(¢, Lg, Lo(Q)) < Cg(1/Q)",
where N'(C, Lg, || - ||so) denotes the number of || - ||eo-balls of radius { > 0 needed to cover class Lg.
Now, let ¢ > 0, and £1,...,lx(¢c,2g,)-|) De a (-coverage of Lg with respect to || - ||oc. From now on, we use N' =

N (¢, Lg, || - || ) for notation simplicity. Let £, be an arbitrary element of Lg. By definition, there exists ¢ < N such that
1€y — ¢;|loc < ¢.Itholds then:

[MoUs, (¢4) = E[(,]| < |MoUs, (¢4) — MoUs, ()| + |MoUs, (¢;) = E[6:;] | + [E [¢;] — E [¢,] |,
< 2¢+ [MoUs, (£:;) —E[4]|. (17)

Applying the second claim of Proposition 3 to every ;, the union bound gives that for all § € (0, e~*"*(®)], choosing
K = [a(e)n], it holds with probability at least 1 — §:
log(N/9)

sup [MoUs, [¢;] — E[£;]| < 4V2MT(e)y ) ——1=.
i<N n

Taking the supremum in both sides of Equation (17), it holds with probability at least 1 — §:

sup [MoUs, [£;] ~ E[£y] | < 2 + 4v2MT () %
ge

Choosing ¢ ~ 1/4/n, it holds with probability at least 1 — §:

n

sup [MoUs, [¢] — E [(,]] < ln + 4\/§M1“(5)\/ (r/2)log(n) + log(Cg /)

Y \F

We recover the bound of Theorem 1 up to a log(n) factor.
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C.8. Proof of Theorem 2

First, we detail the assumptions needed to derive Theorem 2, that were not explicited in the core text due to space constraints.
They are adaptations of the assumptions used to derive Theorem 3 in Lecué et al. (2018). They state as follows.

s forany v € R? and 2,2’ € 22, itholds: ||V, l(gu,z,2)|| < L,

« for any sample S,,, there exists a unique minimum wyj, = argmin, cg, Epar [MoUs, (¢4) | Sy], where the expectation
is taken with respect to all possible ways of partitioning of sample S,,,

o Y2 =+oo, and Y0, 7 < +oo,
» for any sample S,,, model u € R?, and € > 0, it holds: inf,_, |>e(u — umm)TIEpan [V.MoUs, (¢4) | Sn] <0,

e for any sample S,, and model u € RP, there exists an open convex set 4 containing u such that for any equipartition of
{1,..., N} into K blocks By, ..., By there exists kpeq < K such that for all v € %, By, , is the median block. Note
that this condition must hold almost surely (in S,,) and almost everywhere (in w).

‘med

Under these five assumptions, a direct adaptation of Theorem 3 in Lecué et al. (2018) then gives the almost sure convergence
of the output of Algorithm 1 towards umy;,. We have now to study the excess risk of gag = gu.,,;,- Jensen’s inequality gives:

R(gats) = RAg") < 250 [Epan [MoUs, (€)] = R(9)] < 2 Epn [su;g) [MoUs, (£,) — Elt,]]|.
S g€

Applying Theorem 1 then allows to upper bound the right-hand side with high probability, and to conclude. O

D. Numerical Experiments

In this section, we present numerical experiments highlighting the remarkable robustness-to-outliers of MoM-based
estimators. In particular, we present mean and (multisample) U -statistics estimation experiments under Assumption 3, that
emphasize the superiority of MoM/MoU/MoU, compared to standard alternatives (see Appendix D.1). We also provide
implementations of Algorithm 1 on both ranking and metric learning problems (Appendix D.2). They illustrate the good
behavior of the MoU Gradient Descent (MoU-GD) when the training dataset is contaminated.

D.1. Estimation Experiments

For all our experiments, we set no = /1, so that Assumption 3 is fulfilled with Co = 1, ap = 1/2. We next specify
particular instances of Assumption 2, i.e. a distribution for Z (or for X and Y'), and a distribution for the outliers, such
that standard estimators are dramatically damaged, while the MoM-based versions studied in the present article are barely
impacted, corroborating the theoretical guarantees established in Propositions 2, 3 and 5. We have selected K according to
the Harmonic upper bound, so that Assumption 4 is fulfilled as well.

Ruining the mean. In this first example, the sane data is drawn according to a standard Gaussian distribution (hence § = 0,
and the sub-Gaussian assumption is satisfied with p = 1), and outliers follow a Dirac §,,1,2. The expected value of the

empirical mean estimator 6, is then given by: Eg, [0y, = (1 —¢) - 0+ ¢ - /n = 1, always missing the true value. In
contrast, MoM’s performance improves with n, showing almost no perturbation due to the outliers, see Figure 10a.

Ruining the median. The Median-of-Means can be seen as an interpolation between the empirical mean (achieved for
K = 1) and the empirical median (K = n). If the first one is known to be very sensitive to abnormal observations, the
second is however very robust. Yet, there are some cases where the median fails and MoM succeeds. Of course, MoM is
a mean estimator while the empirical median estimates the 1/2 quantile ¢, /o. Hence, we need to consider a case where
both coincide to ensure a fair comparison. In our second example, sane data follow a Bernoulli of parameter § = 1/2, and
outliers a Dirac d;. When applying blindly the median, one is actually estimating q; /2. = 1. The results are reported in
Figure 10b. This phenomenon highlights the importance of correctly choosing «, a too rough approximation such as the
median’s leading to poor results.

Trimmed mean. We have also benchmarked the results obtained by the Trimmed Mean (TM, Lugosi and Mendelson
(2019b)), which provides similar performances for the mean estimation, see Figure 10a.
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Figure 10: Performances of MoM-based estimators in presence of outliers.

Ruining the variance. The empirical variance 62 = 1/(n(n — 1)) >, _ (Zi— Z;)? is a typical example of a (1-sample)
U-statistic of degree 2, with kernel h: (Z,Z') — (Z — Z')? /2. Our third setting is as follows: Z follows a uniform law
on [0, 1] (so that @ = 1/12, and the supremum of h(Z, Z') is finite equal to 1/2), while outliers are drawn according to
the Dirac J,,1/4. Similarly to the mean, one then has Eg, [&%] of the order of 1, no matter the number of observations
considered. In contrast, MoU behaves almost as if the dataset were not contaminated, see Figure 10c.

Estimating the Mann-Whitney statistic. A classical 2-sample U-statistic of degrees (1, 1) is the Mann-Whitney statistic.
Given two random variables X and Y, it aims at estimating P {X < Y'}. From two samples of realizations (X7, ... X,)
and (Y1,...,Y,,) of X and Y, it is computed by: UMY = 1/(nm) Y1, > 1{X; < Yj}. This example is very
interesting as it highlights the importance of the bounded assumption. Indeed, to get the convergence of MoU,, we only
need boundedness of H on the inliers. In particular, examples a) and ¢) above use the unboundedness of the kernel on the
outliers to make the empirical mean (respectively variance) arbitrary far away from the true value. Here, since the kernel
H: (X,Y)— 1{X <Y} is always bounded, the empirical version actually shows more resistance, and the advantage of
MoUs is less important than in other configurations, see Figure 10d.

D.2. Additional Learning Experiments

Learning experiments have been run in order to highlight the good generalization capacity of MoU minimizers, theoretically
established in Theorems 1 and 2. In this section, we consider a ranking problem, on tow benchmark datasets, boston housing
and wine quality. We first corrupted the datasets, in a way described below, before running Algorithm 1.
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In ranking, the observations available to the practitioner are typically composed of feature vectors X € RP describing
different objects, and labels Y € R representing how much the objects are appreciated by some subject. One is then
interested in learning a decision rule g: R? x R? — {—1,1} to predict if object X is preferred over object X’ (i.e.
Y > Y’). We considered the set of decision functions deriving from a scoring function s: R? — [0, 1] such that
g(X,X") = 2-1{s(X) > s(X')} — 1. The scoring functions themselves are indexed by vectors w € R? such that
s(x) = o(w" x), with o the sigmoid function. ERM then consists in minimizing the disagreements among the training pairs,
that writes:

2
in —— ) g, (X, X)(Y -Y")<0
e n(n_l);{gm )Y —Y") <0},

and can be relaxed into: 9
3 !/ !
nin nn=1) ;<j max (071—gw(X7X )(Y—Y)). (18)

We have run Algorithm 1 with criterion (18) on two datasets: boston housing', that gathers 506 houses described by 13
real features (e.g. number of rooms, distance to employment centers), along with a label corresponding to their prices (real,
between 5 and 50), and red wine quality®, that gathers 1,600 wines described by 12 chemical features, along with a label
corresponding to a note between 0 and 10. The datasets have first been normalized, and divided into a train set of size
80%, and a test set of size 20%. The outliers have then been generated as follows. A standard GD is first run on the sane
training dataset, returning an optimal vector wWs,ne. Then, 2% and 5% of outliers (for boston and wine respectively) have
been generated by sampling (Xoyier, Youtier) Uniformly around (—Atgane, A), for some real value \. This way, one has:

Gibgne (X7 Xoutlier)(y - Y;utlier) ~ (O(Ibs—l;neX) - U('ws—gneXoutlier)) (Y - )\)7

= (J(wT X) - 0—(7>‘H’d}sane”2)) (Y — )\)

sane

Making A tend to 400 (respectively —oo), the first term becomes always positive and the second very negative (respectively
always negative and very positive), incurring important losses preventing from converging toward Wsyne. For boston, A was
set to —500, and to 50 for wine. The GD trajectories obtained are very similar to that of the metric learning example, and
are thus not reproduced here. The generalization errors obtained on the test dataset of size 20% are gathered in Table 2.
Again, MoU-GD shows a remarkable resistance to the presence of outliers, and attains almost the same performance as
standard GD on the sane dataset, empirically validating our theoretical findings.

GD MoU-GD

bost, sane 0.354+0.04 0.36 £=0.05
OSION ot 0.99 +0.68  0.36 & 0.05

sane  0.73+0.02 0.74 +£0.02
cont. 0.92+0.11 0.74 £+ 0.02

wine

Table 2: Ranking test losses (avg. 50 runs).

"https:/scikit-learn.org/stable/modules/generated/sklearn.datasets.load_boston.html
Zhttps://archive.ics.uci.edu/ml/datasets/wine+quality
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