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Abstract

We study the stochastic Multi-Armed Ban-
dit (MAB) problem with random delays in the
feedback received by the algorithm. We consider
two settings: the reward-dependent delay setting,
where realized delays may depend on the stochas-
tic rewards, and the reward-independent delay
setting. Our main contribution is algorithms that
achieve near-optimal regret in each of the settings,
with an additional additive dependence on the
quantiles of the delay distribution. Our results
do not make any assumptions on the delay dis-
tributions: in particular, we do not assume they
come from any parametric family of distributions
and allow for unbounded support and expecta-
tion; we further allow for infinite delays where
the algorithm might occasionally not observe any
feedback.

1 Introduction

Stochastic Multi-armed Bandit problem (MAB) is a theo-
retical framework for studying sequential decision making.
Most of the literature on MAB assumes that the agent ob-
serves feedback immediately after taking an action. How-
ever, in many real world applications, the feedback might
be available only after a period of time. For instance, in clin-
ical trials, the observed effect of a medical treatment often
comes in delay, that may vary between different treatments.
Another example is in targeted advertising on the web: when
a user clicks a display ad the feedback is immediate, but if
a user decides not to click, then the algorithm will become
aware to that only when the user left the website or enough
time has elapsed.

In this paper, we study the stochastic MAB problem with
randomized delays (Joulani et al., 2013). The reward of
the chosen action at time ¢ is sampled from some distribu-
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tion, like in the classic stochastic MAB problem. However,
the reward is observed only at time ¢t + d;, where d; is a
random variable denoting the delay at step t. This prob-
lem has been studied extensively in the literature (Joulani
et al., 2013; Vernade et al., 2017; Pike-Burke et al., 2018;
Gael et al., 2020) under an implicit assumption that the de-
lays are reward-independent: namely, that d; is sampled
from an unknown delay distribution and may depend on the
chosen arm, but not on the stochastic rewards on the same
round. For example, Joulani et al. (2013); Pike-Burke et al.
(2018) show a regret bound of the form O(R}** + KE[D]).
Here R} denotes the optimal instance-dependent 7'-round
regret bound for standard (non-delayed) MAB: Ry =
YA, >0108(T)/Aj, where A; is the sub-optimality gap for
arm 7. In the second term, K is the number of arms and
E[D] is the expected delay.

A significantly more challenging setting, that to the best of
our knowledge was not explicitly addressed previously in
the literature,' is that of reward-dependent delays. In this
setting, the random delay at each round may also depend on
the reward received on the same round (in other words, they
are drawn together from a joint distribution over rewards and
delays). This scenario is motivated by both of the examples
mentioned earlier: e.g., in targeted advertisement the delay
associated with a certain user is strongly correlated with the
reward she generates (i.e., click or no click); and in clinical
trials, the delay often depends on the effect of the applied
treatment as some side-effects take longer than others to
surface.

In contrast to the reward-independent case, with reward-
dependent delays the observed feedback might give a biased
impression of the true rewards. Namely, the expectation of
the observed reward can be very different than the actual
expected reward. For example, consider Bernoulli rewards.
If the delays given reward 0 are shorter than the delays given
reward 1, then the observed reward will be biased towards 0.
Even worse, the direction of the bias can be opposite be-
tween different arms. Hence, as long as the fraction of
unobserved feedback is significant, the expected observed
reward of the optimal arm can be smaller than expected

'Some of the results of Vernade et al. (2017); Gael et al. (2020)
can be viewed as having a specific form of reward-dependent
delays; we discuss this in more detail in the related work section.
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observed reward of a sub-optimal arm, which makes the
learning task substantially more challenging.

1.1 Our contributions

We consider both the reward-independent and reward-
dependent versions of stochastic MAB with delays. In the
reward-independent case we give new algorithms whose re-
gret bounds significantly improve upon the state-of-the-art,
and also give instance-dependent lower bounds demonstrat-
ing that our algorithms are nearly-optimal. In the reward-
dependent setting, we give the first algorithm to handle such
delay structure and the potential bias in the observed feed-
back that it induces. We provide both an upper bound on
the regret and a nearly matching general lower bound.

Reward-independent delays: We first consider the easier
reward-independent case. In this case, we provide an al-
gorithm where the second term scales with a quantile of
the delay distribution rather the expectation, and the regret
is bounded by O(min,{R¥"”/q + d(q)}), where d(q) is
the g-quantile of the delay distribution. Specifically, when
choosing the median (i.e., ¢ = 1/2), we obtain regret
bound of O(R¥*” 4+ d(1/2)). We thus improve over the
O(RY¥** + KE[D]) regret bound of Joulani et al. (2013);
Pike-Burke et al. (2018), as the median is always smaller
than the expected delay, up to factor of two. Moreover, the
increase in regret due to delays in our bound does not scale
with number of arms, so the improvement is significant even
with fixed delays (Dudik et al., 2011; Joulani et al., 2013).
Our bound is achieved using a remarkably simple algorithm,
based on variant of Successive Elimination (Even-Dar et al.,
2006). For this algorithm, we also prove a more delicate
regret bound for arm-dependent delays that allows for choos-
ing different quantiles g; for different arms ¢ (rather than a
single quantile ¢ for all arms simultaneously).

The intuition why the increase in regret due to delays should
scale with a certain quantile is fairly straightforward: con-
sider for instance the median of the delay, d,;. For simplic-
ity, assume that the delay value is known when we take the
action. One can simulate a black box algorithm for delays
that are bounded by dj; on the rounds in which delay is
smaller than dj; (approximately half of the rounds), and in
the rest of the rounds, imitate the last action of the black-box
algorithm. Since rewards are stochastic, and independent of
time and the delay, the regret on rounds with delay larger
than dj, is similar to the regret of the black-box algorithm
on the rest of the rounds, resulting with total regret of twice
the regret of the black-box algorithm. For example, when
using the algorithm of (Joulani et al., 2013), this would give
us O(R¥*? + Kdpr). We stress that unlike this reduction,
our algorithm does not need to know the value of the delay
at any time, nor the median or any other quantile. In addi-
tion, our bound is much stronger and does not depend on K
on the second term.

Table 1. Regret bounds comparison of this and previous works.
The bounds in this table omit constant and log(K) factors.
Previous work This paper
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Reward-dependent delays: We then proceed to consider
the more challenging reward-dependent setting. In this set-
ting, the feedback reveals much less information on the true
rewards due to the selection bias in the observed rewards
(in other words, the distributions of the observed feedback
and the unobserved feedback might be very different). In
order to deal with this uncertainty, we present another al-
gorithm, also inspired by Successive Elimination. The al-
gorithm widens the confidence bounds in order to handle
the potential bias. We achieve a regret bound of the form
O(RY¥** +log(K)d(1—Ayyin/4)), where A, is the min-
imal sub-optimality gap, and d(-) is the quantile function of
the marginal delay distribution. We show that this bound
is optimal, by presenting a matching lower bound, up to a
factor of A in the second term (and log (K) factors).

Summary and comparison of bounds: Our main results,
along with a concise comparison to previous work, are pre-
sented in Table 1. G7.; denotes the maximal number of
unobserved feedback from arm 4. The results show that our
algorithm works well even under heavy-tailed distributions
and some distributions with infinite expected value. For ex-
ample, the arm-dependent delay distributions used by Gael
et al. (2020) are all bounded by an «-pareto distribution
(in terms of the delay distributions CDFs). Hence, their
median is bounded by 21/, Our algorithm suffer at most an
additional O(2'/%) to the classical regret for MAB without
delays (see bounds for the a-Pareto case in Table 1). In the
“packet loss” setting, the delay is 0 with probability p, and co
(or T') otherwise. If p is a constant (e.g., > 1/4), our regret
bound scales as the optimal regret bound for MAB without
delays, up to constant factors. Previous work Joulani et al.
(2013) show a regret bound which scales with the number
of missing samples, and thus is linear. A Pareto distribution
that will bound such delay would require a very small pa-
rameter o which also result in linear regret bound by the
result of Gael et al. (2020).
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1.2 Related work

To the best of our knowledge, Dudik et al. (2011) were
the first to consider delays in stochastic MAB. They exam-
ine contextual bandit with fixed delay d, and obtain regret
bound of O(\/K log(NT)(d + v/T)), where N is number
of possible policies. Joulani et al. (2013) use a reduction
to non-delayed MAB. For their explicit bound they assume
that expected value of the delay is bounded (see Table 1 for
their implicit bound). Pike-Burke et al. (2018) consider a
more challenging setting in which the learner observe the
sum of rewards that arrive at the same round. They assume
that the expected delay is known, and obtain similar bound
as Joulani et al. (2013).

Vernade et al. (2017) study partially observed feedback
where the learner cannot distinguish between reward of 0
and a feedback that have not returned yet, which is a special
form of reward-dependent delay. However, they assume
bounded expected delay and full knowledge on the delay
distribution. Gael et al. (2020) also consider partially ob-
served feedback, and aim to relax the bounded expected
delay assumption. They consider delay distributions that
their CDF are bounded from below by the CDF of an a-
Pareto distribution, which might have infinite expected delay
for a < 1. However, this assumption still limits the distribu-
tion, e.g., the commonly examined fixed delay falls outside
their setting. Moreover, they assume that the parameter o
is known to the learner. Other extensions include Gaussian
Process Bandit Optimization (Desautels et al., 2014) and
linear contextual bandits (Zhou et al., 2019). As opposed to
most of these works, we place no assumptions on the delay
distribution, and the learner has no prior knowledge on it.

Delays were also studied in the context of the non-stochastic
MARB problem (Auer et al., 2002b). Generally, when reward
are chosen in an adversarial fashion, the regret increases
by a multiplicative factor of the delay. Under full informa-
tion, Weinberger & Ordentlich (2002) show regret bound of
O(VdT), with fixed delay d. This was extended to bandit
feedback by (Cesa-Bianchi et al., 2019), with near-optimal
regret bound of O (/T (K + d)). Several works have stud-
ied the effect of adversarial delays, in which the regret
scales with O(v/T + /D), where D is the sum of delays
(Thune et al., 2019; Bistritz et al., 2019; Zimmert & Seldin,
2020; Gyorgy & Joulani, 2020). For last, Cesa-Bianchi et al.
(2018) consider a similar setting to Pike-Burke et al. (2018),
in which the learner observe only the sum of rewards. The
increase in the regret is by a multiplicative factor of v/d.

2 Problem Setup and Background

We consider a variant of the classical stochastic Multi-armed
Bandit (MAB) problem. In eachround ¢t = 1,2,...,7, an
agent chooses an arm a; € [K| and gets reward r;(a¢),
where 7;(-) € [0,1]¥ is a random vector. Unlike the stan-

Protocol 1 MAB with stochastic delays

fort € [T]) do
Agent picks an action a; € [K].
Environment samples a pair, (7:(-), d¢(+)), from a joint
distribution.
Agent get a reward 7¢(a;) and observes feedback

{(as,rs(as)) : t = s+ ds(as)}.

dard MAB setting, the agent does not immediately observe
r¢(a¢) at the end of round ¢; rather, only after d;(a;) rounds
(namely, at the end of round ¢+ d;(a;)) the tuple (a;, 7 (at))
is received as feedback. We stress that neither the delay
dy(at) nor the round number ¢ are observed as part of the
feedback (so that the delay cannot be deduced directly from
the feedback). The delay is supported in N U {co}. In
particular, we allow d;(a;) to be infinite, in which case the
associated reward is never observed. The pairs of vectors
{(r¢(-), ds(-)) }1_, are sampled i.i.d from a joint distribution.
Throughout the paper we sometimes abuse notation and de-
note r¢(a;) and d(a;) simply by r; and d;, respectively.
This protocol is summarized in Protocol 1.

We discuss two forms of stochastic delays: (i) reward-
independent delays, where the vectors r4(-) and d;(-) are
independent from each other, and (ii) reward-dependent
delays, where there is no restriction on the joint distribution.

The performance of the agent is measured as usual by the
the difference between the algorithm’s cumulative expected
reward and the best possible total expected reward of any
fixed arm. This is known as the expected pseudo regret,
formally defined by

Rr =maxE

Z rt(at)]

t=1

> A

t=1

Z Tt(’6>‘| — E
t=1 .
> ta,

where ; is the mean reward of arm ¢, ¢* denotes the optimal
arm and A; = p;» — p; foralli € [K].

b

For a fixed algorithm for the agent (the relevant algorithm
will always be clear from the context), we denote by m ()
the number of times it choose arm ¢ by the end of round ¢ —1.
Similarly n(¢) denotes the number of observed feedback
from arm ¢, by the end of round ¢ — 1. The two might
differ as some of the feedback is delayed. Let /i;(¢) be the
observed empirical average of arm ¢, defined as:

(i) = 7,1 Z Has =i}rs,

nt(z) v s:s+ds<t

where a Vb = max{a, b} and I{r} is the indicator function
of predicate 7.
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We denote d;(q) to be the quantile function for arm 4’s delay
distribution; formally, if D; is the delay of arm i then the
quantile function is defined as

di(q) = min {y € N| Pr[D; <] > ¢}.

3 Reward-independent Delays

We first consider the case where delays are independent of
the realized stochastic rewards. We begin with an analysis
of two classic algorithms: UCB (Auer et al., 2002a) and
Successive Elimination (SE) (Even-Dar et al., 2006), ad-
justed to handle delayed feedback in a straightforward naive
way (see Procedure 2).

3.1 Suboptimality of UCB with delays

UCB (Auer et al., 2002a) is based on the basic principle of
“optimism under uncertainty.” It maintains for each arm an
upper confidence bound (UCB): a value that upper bounds
the true mean with high probability. In each round it simply
pulls the arm with the highest UCB. The exact description
appears in Algorithm 3.

Procedure 2 Update-Parameters
fori € [K]do
# number of observed feedback
(i) = D gipa, <t Has = i}
# observed empirical mean
fe (i) W Zs:s+ds<t {as = i}rs

LOBy(i) < fu(i) = \/ 2501
UCBy(i) « ju(i) + /) 255

Algorithm 3 UCB with Delays

Input: number of rounds 7', number of arms K

Initialization: ¢ < 1

# begin with sampling each arm once

Pull each arm ¢ € [K] once

Observe any incoming feedback

Sett +—t+ K

while ¢ < T do
Call Update-Parameters (Procedure 2)
Pull arm a; € arg max; UC By (7)
# With deterministic tie breaking rule i.e. by index
Observe feedback {(as,7s) : s + ds = t}
Sett «—t+1

In the standard non-delayed setting, UCB is known to be
optimal. However, with delays this is no longer the case.
Consider the simpler case where all arms suffers from a
constant fixed delay d. Joulani et al. (2013) show that the
regret of UCB with delay is bounded by O(R¥}*"+Kd). We
show that the increase in the regret is necessary for UCB,

and the additional regret due to the delay can in general
scale as (K d). The reason is due to the nature of UCB:
it always samples the currently most promising arm, and it
might take as much as d rounds to update the latter. This
is formalized in the following theorem (proof is deferred
to the full version of the paper (Lancewicki et al., 2021).)

Theorem 1. Under fixed delay d > K, there exist a problem
instance such that UC B suffers regret of Q(Kd).

3.2 Successive Elimination with delays

Successive Elimination (SE) maintains a set of active arms,
where initially all arms are active. It pulls all arms equally
and whenever there is a high-confidence that an arm is sub-
optimal, it eliminates it from the set of active arms. The
exact description appears in Algorithm 4.

Algorithm 4 Successive Elimination with Delays
Input: number of rounds 7', number of arms K
Initialization: S < [K],t + 1
while t < T do

Pull eacharm i € S

Observe any incoming feedback

Sett < t+ |S|

Call Update-Parameters (Procedure 2)

# Elimination Step

Remove from S all arms 4 such that exists j with
UCB:(i) < LCB(j)

Unlike UCB, SE continues to sample all arms equally, and
not just the most promising arm. In fact, the number of
rounds that SE runs before it observes m samples for K
arms is approximately K'm + d, whereas UCB might require
K (m+d) rounds in certain cases. More generally, we prove:

Theorem 2. For reward-independent delay distributions,
the expected pseudo-regret of Algorithm 4 is bounded by

40logT [ 1 1

Rr < min o8 ( + )
qe(0,1]% iz A; 4 i

+ log (K) max {(di(@:) + di= (g ) Ai }.

(D

Additionally, if instead we minimize over a single quantile
q € (0, 1], the expected pseudo-regret becomes

251 T
Ry < min S 52210g(7)

" qe(0,1] iz qA;

4 di(q). (2
+g%(q) (2)

Particularly, Theorem 2 implies that for fixed delay d, we
have Ry = O(RY*” + d). Note that the bounds in Egs. (1)
and (2) are incomparable: Eq. (1) allows choosing a dif-
ferent quantile for each arm, while Eq. (2) gives a slightly
better dependence on K.
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We now turn to show the main ideas of the proof of The-
orem 2, deferring the full proof to the full version of the
paper (Lancewicki et al., 2021).

Proof of Theorem 2 (sketch). Here we sketch the proof
of Eq. (1); proving Eq. (2) is similar, but requires a more
delicate argument in order to eliminate the K dependency
in the second term.

Fix some vector ¢ € (0,1]% and let dpoe =
max;;+ d;(g;). First, with high probability all the true
means of the reward remain within the confidence in-
terval (i.e., V&, i : p; € [LCBi(i),UCB(i)]). Under
this condition, the optimal arm is never eliminated. If
a sub-optimal arm ¢ was not eliminated by time ¢ then,
LCB:(i*) < UCB4(t). which implies with high probabil-

ity,
A= i — i <2 210g(T) 4o 210g.(T).
(i) ny(i*)

Now, using a concentration bound, we show that the amount
of observed feedback from arm j at time ¢, is approximately
a fraction ¢; of the number of pulls at time ¢ — d;(g;). We
use that to bound n,(¢) and n.(¢*) from below and obtaln

logT (1 1
O( A7 (qi+qi*>>.

Now, if t is the last time we pulled arm ¢, then we can write
the total regret from arm ¢ as,

mi (1) Ai = Mi—dy, (DA + (M (i) = M —d 0, () Ai
<0 (MEE (2 o)) ) = 0

The difference my(i) — my_gq,, . (7) is number of times
we pull ¢ between time ¢t — d,,q, and t. This is trivially
bounded by d,,4., but since we round-robin over active
arms, we can divide it by the number of active arms. At the
first elimination there are K active arms, in second there
K — 1 active arms, and so on. When summing the regret of
all arms we get,

Mty (1) =

logT (1 1
Rr = O Z Al (% + 7 ) + log(K)dmaw
it

logT (1 1
-0 ZA(%+ ) —s—log(K)miaXdi(qz‘)»

. e
iz i qi

where we have used the fact that 1/K + 1/(K — 1) + ... +
1/2 <log(K). This proves the bound in Eq. (1). O

3.3 Phased Successive Elimination

Next, we introduce a phased version of successive elimina-
tion, we call Phased Successive Elimination (PSE). Inspired
by phased versions of the commonly used algorithms (Auer
& Ortner, 2010), the algorithm works in phases. Unlike
SE, it does not round-robin naively, instead it attempts to
maintains a balanced number of observed feedback at the
end of each phase. As a result, PSE does not depend on
the delay of the optimal arm. Surprisingly, the dependence
on the delay of the sub-optimal arms remain similar, up to
log-factors.

On each phase ¢ of PSE, we sample arms that were not
eliminated in previous phase in a round-robin fashion. When
we observe at least 161og(7)/272¢ samples for an active
arm, we stop sampling it, but keep sampling the rest of
active arms. Once we reach enough samples from all active
arms, we perform elimination the same way we do on SE,
and advance to the next phase ¢ 4 1. The full description of
the algorithm is found in Algorithm 5.

Algorithm 5 Phased Successive Elimination (PSE)
Input: number of rounds 7', number of arms K
Initialization: S < [K], (<0, t <1
while t < T do
Set £ < ¢ + 1 (phase counter)
Set Sy« S
while S, # () do
Pull each arm 7 € .Sy, observe incoming feedback
Set ¢ < t + |S¢]
Call Update-Parameters (Procedure 2)
Remove from Sy all arms that where observed at
least 161og(T") /272 times.
Remove from S all arms ¢ such that exists ;7 with
UCB.(i) < LCB(j)

Theorem 3. For reward-independent delay distributions,
the expected pseudo-regret of Algorithm 5 (PSE) satisfies

290log T

bt TAY 3)

+ log(T) log(K) max di(qi) A

The proof of Theorem 3 appears in the full version of the
paper (Lancewicki et al., 2021). Similarly to the proof
Theorem 2, both SE and PSE eliminate arm ¢ approximately

whenever
\/ log T log T

In a sense, PSE aims to shrink both terms in the left-hand
side at a similar rate, which avoid the dependence on 1/g;-
in the first term of Eq. (3). The down side is in the second
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term: SE keeps sampling all active arms at the same rate,
which gives rise to the log(X) dependence in the second
term. Under PSE this is no longer the case: naively, one
could show a linear dependence on K, but a more careful
analysis that uses round-robin sampling within phases gives
alog(T) log(K) dependence in the second term of Eq. (3).

One important example in which PSE dominates SE is the
arm-dependent packet loss setting, where we get the feed-
back of arm ¢ immediately (i.e., zero delay) with probability
pi, and infinite delay otherwise. The regret of SE in this set-
ting is O(D_;4;- log(T')/Ai - (1/p; +1/pi~)). On the other
hand, PSE’s regret is bounded by O(3_,_,;. log T'/(Aip;)).
The difference in the regret is substantial when p;« is very
small. In fact, small amount of feedbacks from the optimal
arm only benefits PSE, as it would keep sampling it until it
gets enough feedbacks.

3.4 Lower Bound

We conclude this section with showing an instance-
dependent lower bound (an instance is defined by the set of
sub-optimality gaps A;).

Theorem 4. Let ALGY!Y be an algorithm that guaran-
tees a regret bound of T® over any instance. For any sub-
optimality gaps set Sa = {A; : A; € [0, 1]} of cardinality
K, a quantile q € (0, 1], and d < T, there exists an instance
with an order on Sa, and delay distributions with d;(q) = d
for any i, such that ALG'%Y°s regret on that instance is

1
RTZ@ Z

:SADA; >0

+ —A max d;(q)
“4)
for sufficiently large T, where A = % Zie[K] A;.

The lower bound is proved using delay distribution which
is homogeneous across all arms: at time ¢, the delay is d
with probability ¢ and oo otherwise. The upper bound of SE
and PSE involves a minimization over ¢;. In this case, it is
solved by ¢; = g for all ¢. Therefore, the best comparison is
to Eq. (2) in Theorem 2, where a single quantile is chosen.
Theorem 4 shows that SE is near optimal in this case. The
first term in Eq. (2) is aligned with Eq. (4), up to constant
factors. The difference between the two is on the second
term, where there is a A factor in the lower bound.

The second term in Eq. (4) is due to the fact that the al-
gorithm does not get any feedback for the first d = d;(q)
rounds. Thus, any order on A is statistically indistinguish-
able from the others for the first rounds. Therefore, the
learner suffers A regret on average, over the first d rounds,
under at least one of the instances. The first term is achieved
using a reduction from instance-depended lower bound for
MAB without delays (Kleinberg et al., 2010; see also Lat-
timore & Szepesvdri, 2020). The regret is bounded from

below by this term, even if the instance [ is known to the
learner (the regret guarantee over the other instances ensures
that the algorithm does not specialized particularly for that
instance). A more detailed lower bound and its full proof is
provided in the full version of the paper (Lancewicki et al.,
2021).

4 Reward-dependent Delays

We next consider the more challenging case where we let
the reward and the delays to be probabilistically dependent.
Namely, there is no restriction on the reward-delay joint
distribution.

The main challenge in this setting is that the observed empir-
ical mean is no longer an unbiased estimator of the expected
reward; e.g., if the delay given a reward of 0 is shorter than
the delay given that the reward is 1, then the observed em-
pirical mean would be biased towards 0. Therefore, the anal-
ysis from the previous section does not hold anymore. To
tackle the problem, we present a new variant of successive
elimination, Optimistic-Pessimistic Successive Elimination
(OPSE), described in Algorithm 6. When calculating UCB
the agent is optimistic regarding the unobserved samples,
by assuming all missing samples have the maximal reward
(one). When calculating LCB the agent assumes all missing
samples have the minimal reward (zero). We emphasize
that unlike the previous section, here the estimators take
into account all samples, including the unobserved ones.
The above implies that the confidence interval computed by
OPSE contains the confidence interval computed by non-
delayed SE.

Algorithm 6 Optimistic-Pessimistic Successive Elimination

Input: number of rounds 7', number of arms K
Initialization: S < [K], ¢t < 1
while ¢ < T do
Pull each arm ¢ € S
Observe any incoming feedback
Sett < t+ |S|
fori € Sdo
# the number of pulls and observations
mai) & 3o Has =}
nt(l) — Zs:s+d5<t H{as = Z}
# pessimistic and optimistic estimators for ;
:at_ (Z) A #(1) Zs:s+ds<t ]I{Cls = Z.}TS
it (1) 205 + i ()
LOBy(i) « fi (i) — /525
UCB(i)  fif (i) + \/ 5%
Remove from S all arms ¢ such that exists ;7 with
UCB.(i) < LCB(j)
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For OPSE we prove the following regret guarantee.

Theorem 5. For reward-dependent delay distributions, the
expected pseudo-regret of Algorithm 6 is bounded by

1166 log T’
Rr < Z v
i 5)

+4log (K) (maxdi(g) + di- (0.

where ¢;» = 1 — min;z;» A;/4 and ¢; = 1 — A;/4 for
i i*.

Theorem 5 is analogous to Theorem 2 in the reward-
independent setting. We show a variant of SE, rather than
PSE, because the algorithm relies on the entire feedback,
rather than just the observed feedback. In addition, the
dependence in 1/g; was the main motivation to introduce
PSE in the previous section, here it is bounded by a con-
stant. In the reward-dependent setting we have much less
information on the unobserved feedback, thus it would be
unrealistic to expect similar regret bounds. The main differ-
ence between the two bounds is that here we are restricted
to specific choice of quantiles ¢; and g;~, while the bound
in Theorem 2 hold for any vector ¢. A second difference
between the theorems is in the additive penalty due to the
delay, here it is not multiplied by the sub-optimality gap, A;.
This factor A; also appears in the lower bound in Theorem 6,
which we discuss later on.

Proof of Theorem 5 (sketch). Consider time ¢ in which arm

1 is still active. Define \; (i) = \/21og(T")/m.(3). Let fis(7)

be the empirical mean of arm ¢ that is based on all m, ()
samples. Formally, /i, (i) = .-y 2o, Has = i}rs.

This is the estimator that we would use to compute the
confidence interval in non-delayed setting, but since not all

observations are available at time ¢, we cannot compute it
directly. Note that by definition,

Vi g (1) < (i) < i (). (6)

With high probability, using concentration bound on fi; and
Eq. (6) we can show that,

Ay = Hix — [y
< AN0) + i (1) = i () + A G) = i ()
gy 4 e = ne(i) | me(it) — me(i)

B 4)\t( ) i mt(i) mt(i*) .

Let dax = max;x;+ d;(1 — A;/4). Using Hoeffding’s in-
equality, with high probability, we have that,

(i) = (1= Aq/4) Mt —dmay (1) = Ae(8) e (0).

Hence,

m (i) — na(4)

my (i)

() — My (4)
B my (i)
M4 (1) = Tt day (1)

m (i)

The third term on the right hand side in Eq. (7) is bounded
in a similar fashion, which gives us the following bound:

T —dmax (7’) — Ny (7’)
my (i)

+ A4+ M (7).

+

my(7)

A =0 2 (i) — Mt~y (2) — my—dz . (7) N logr
my (1)

where d,, = max; ;- d;-(1 — A;). Either the last term on
the right hand side is larger than the first two, or vice versa.
By considering both cases and solving them, we yield the
following result:

logT
A; =0
my(7) ( A

- +my (Z) = Mt—dmax (’L)

+ (1) — M-y, (i))

The above holds for the last time we pull arm ¢, 7;. Sum-
ming over the sub-optimal arms gives us a bound on regret.
Similar to the setting of Section 3, Y . m., (i) —m,, —q(i) <
log(K)d. Here, we set d to dy,qq 01 d}f,, accordingly, which

gives us the desired regret bound. O

Optimistic-UCB. The dependency on the delay of the opti-
mal arm comes from the bias of /i, . A similar proof would
hold for a variant of UCB that uses /l;r . In that case, one
can obtain a regret bound of

logT
o) 2 a, +;di(1Ai/4) . (8)

In most cases, this is a weaker bound than the bound of The-
orem 5, as the second term scales linearly with the number
of arms. The advantage of Optimistic-UCB is that it does
not depend on the delay of the optimal arm. It still remains
an open question whether we can enjoy the benefits of both
bounds, and achieve a regret bound that depends only on
max;£« dl(l — Al)

On the other hand, in Theorem 6 we show that the depen-
dence in max;z;- d;(1 — A;) cannot be avoided, which
establishes that our bound is not far from being optimal.
Theorem 6. Let K = 2. Foranyd < T and A € [0,1/2],
there exist reward distributions with sub-optimality gap
A and reward-dependent delay distributions with d;(1 —
2A) = d, such that,

Ry > %A ~di(1 = 2A). 9)
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Moreover, for any algorithm ALG'% that guarantees a
regret bound of T over any instance, the regret is at least,

_ (1 —a)log(T) v
RT—Q(A+A'dZ(1 2A)),

for sufficiently large T..

Note that d; (1 — 2A) < d;(1 — A/4), which complies with
our upper bound. It seems necessary to have the A factor in
Eq. (9), and we conjecture that it should also appear in the
upper bound.

The proof for Theorem 6 is built upon two instances which
are indistinguishable until time d. The reward distributions
are Bernoulli and the index of the optimal arm alternates
in the two instances. The idea is that when arm 2 is opti-
mal, samples with reward 1 are delayed more often than
samples with reward 0. When arm 2 is sub-optimal, the
opposite occurs. The delay distribution is tailored such that
under both instances, (i) the probability to observe feedback
immediately is exactly 1 — 2A; and (ii) the probability for
reward 1 given that the delay is 0, is identical for both arms
under both instances. These two properties guarantee that
the learner cannot distinguish between the two instances
until time d. After that, it is possible to distinguish between
them whenever a sample with delay d is observed. The
full details of the proof appears in the full version of the
paper (Lancewicki et al., 2021).

S Experiments

We conducted a variety of synthetic experiments to support
our theoretical findings. We provide additional experiments
in the full version of the paper (Lancewicki et al., 2021).

Fixed delays. In Fig. 1 we show the effect of different fixed
delays on UCB and SE. We ran both algorithms with a con-
fidence radius A (i) = \/2/n(i), for K = 20 arms, each
with Bernoulli rewards with mean uniform in [0.25, 0.75],
under various fixed delays. Top plots show cumulative regret
until 7' = 2 - 10*. Bottom plot shows regret over increasing
delays for T = 2 - 10°. The results are averaged over 100
runs and intervals in both plots are 4 times the standard
error.

As delay increases, the regret of UCB increases as well,
while SE is quite robust to the delay, and around delay of
200 SE becomes superior. These empirical results coincides
with our theoretical results: As in the proof Theorem 1,
the regret UCB grows linearly in the first K'd rounds. On
the other hand, SE created a pipeline of observations, so it
keeps getting observations from all active arms. While it
cannot avoid from sampling each sub-optimal arm for d/K
times, as long as this does not exceed the minimal amount
of observations required for SE to eliminate a sub-optimal
arm, the effect on the regret is minor.
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Figure 1. Regret of SE and UCB for fixed delays.
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Figure 2. Regret of SE and PatientBandits (PB) for Pareto delays.

a-Pareto delays. We reproduce an experiment done by
Gael et al. (2020) under our reward-independent setting,
in Fig. 2. We compare their algorithm, PatientBandits (PB),
with SE. For T = 3000 rounds and K = 2 arms, we ran
sub-optimality gaps A € [0.04, 0.6]. The expected rewards
are q = 0.4 and ps = 0.4+ A. The delay is sampled from
Pareto distribution with oy = 1 for arm 1 and as = 0.2 for
arm 2. The results are averaged over 300 runs.

PB is a UCB-based algorithm that uses a prior knowledge on
distribution in order to tune confidence radius. Even though
it is designed to work under Pareto distributions, SE’s regret
is strictly smaller for any value of A. For small values of A,
the regret increases with A, as the algorithms are not able to
distinct between the arms. When A becomes large enough
the regret starts to decrease as A increases. This transi-
tion occurs much sooner under SE, which indicates that SE
starts to distinguish between the arms at lower values of A.
We note that PB is designed for partial observation setting,
which is more challenging than the reward-independent set-
ting. However, the work of (Gael et al., 2020) is the only
previous work, as far as know, to present a regret bound for
delay distributions that potentially have infinite expected
value and arm-dependent delays, as in this experiment.
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Figure 3. Regret of SE and PSE for packet loss delays.

Packet-loss. We study the regret of SE and PSE in the
packet loss setting. Specifically to evaluate the difference
when amount of feedback from the best arm is significantly
smaller than the other arms. We ran the algorithms for
T = 2-10* rounds and K = 10 arms with randomized
values of sub-optimality gaps between A € [0.15,0.25].
The probability to observe the best arm is 0.1, and 1 for
the sub-optimal arms. The results are averaged over 300
runs. As seen in Fig. 3, the slope of PSE zeroes in some
regions. This is the part of a phase in which the algorithm
observed enough feedback from all sub-optimal arms and
keeps sampling only the optimal arm. This happens due to
the fact that the feedback of the optimal arm is unobserved
90% of the time. Meanwhile, SE samples each arm equally
and receives less reward. The slope of PSE in other regions,
is similar to the one of SE which indicates that the set of
active arms is similar as well.

Reward-dependent case. We compare between OPSE (Al-
gorithm 6) and UCB. We show that unlike in the reward-
independent case, here an ~off-the-shelf” solution doesn’t
perform very well, thus this case requires a modified algo-
rithm. We set 7' = 6 - 10 and K = 3 arms with random
sub-optimality gaps of A € [0.15, 0.25]. The delay is biased
with fixed delay of 5,000 rounds for reward 1 of the best
arm and reward O of the sub-optimal arms. The results are
averaged over 100 runs. In Fig. 4, OPSE outperforms UCB,
mostly due to UCB’s unawareness that the observed reward
empirical means are biased. Thus, it favors the sub-optimal
arms at the beginning and never recovers from that regret
loss. We remark that in this settings, standard SE eliminates
the best arm and suffers linear regret, so we omitted it.

6 Discussion

We presented algorithms for multi-arm bandits under
two stochastic delayed feedback settings. In the reward-
independent, which was studied previously, we present near-
optimal regret bounds that scale with the delays quantiles.
Those are significantly stronger, in many cases, then pre-
vious results. In addition we show a surprising gap be-
tween two classic algorithms: UCB and SE. While the
former suffers a regret of Q(RY*” 4+ Kd) under fixed de-
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Figure 4. Reward-dependent setting. Regret of OPSE and UCB.

lays, the latter achieves O(R}'” + d) for fixed delays
and O(min, R¥** /q + max; d;(¢)) in the general setting.
We further showed the PSE algorithm, which removes the
dependency on the delay of the best arm. We then pre-
sented the reward-dependent delay setting, which is more
challenging since the observed and the actual rewards dis-
tribute differently. Our novel OPSE algorithm achieves
O(R¥** 4+ log(K)d(1 — A,ip)) by widening the gap of
the confidence bounds to incorporate the potential observed
biases. In both settings we provided almost matching lower
bounds.

Our paper leaves some interesting future lines of research.
The reward-dependent setting is mostly unaddressed in the
literature and we believe there is more to uncover in this
setting. One important question regards the gap between
UCB and SE with fixed delays. In non-delayed multi-arm
bandits, UCB and SE have similar regret bounds (and UCB
even outperforms SE empirically when the delay is zero as
evidence by Fig. 1). This raises the question: Can a variant
of UCB or any other optimistic algorithm achieve similar
regret bounds as a round-robin algorithm in the delayed
settings? Lastly, another interesting direction is to tighten
the regret bounds: In the reward independent case the gap
between the lower and upper bound is either logarithmic
in K (e.g., the bound in Eq. (1)) or missing a A factor
on the delay term (e.g., Eq. (2)). In the reward dependent
case it is still remains open question whether we can enjoy
the benefits of both optimistic-SE and optimistic-UCB and
obtain a regret bound that scales with max;_;- d;(1 = Ay).
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