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Abstract

In this paper, we revisit the classic CountSketch
method, which is a sparse, random projection that
transforms a (high-dimensional) Euclidean vec-
tor v to a vector of dimension (2t − 1)s, where
t, s > 0 are integer parameters. It is known that
a CountSketch allows estimating coordinates of
v with variance bounded by ‖v‖22/s. For t > 1,
the estimator takes the median of 2t − 1 inde-
pendent estimates, and the probability that the
estimate is off by more than 2‖v‖2/

√
s is expo-

nentially small in t. This suggests choosing t to
be logarithmic in a desired inverse failure proba-
bility. However, implementations of CountSketch
often use a small, constant t. Previous work only
predicts a constant factor improvement in this set-
ting. Our main contribution is a new analysis of
CountSketch, showing an improvement in vari-
ance to O(min{‖v‖21/s2, ‖v‖22/s}) when t > 1.
That is, the variance decreases proportionally to
s−2, asymptotically for large enough s.

1. Introduction
CountSketch (Charikar et al., 2004) is a classic low-memory
algorithm for processing a data stream in one pass. It sup-
ports estimating the number of occurrences of different data
items in the stream, and can also be used for fast inner
product estimation, or as a building block for finding heavy
hitters (see e.g. (Woodruff, 2016)). Since its introduction,
CountSketch has proved to be a strong primitive for approx-
imate computation on high-dimensional vectors. Applica-
tions in machine learning include feature selection (Aghaz-
adeh et al., 2018), neural network compression (Chen et al.,
2015), random feature mappings (Pham & Pagh, 2013),
compressed gradient optimizers (Spring et al., 2019), and
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multitask learning (Weinberger et al., 2009) — see sec-
tion 1.5 for more details.

1.1. Sketch description

CountSketch works in the turnstile streaming model, where
one is to maintain a sketch of a vector v ∈ Rd under updates
to the entries. Concretely, the vector v is given in a stream-
ing fashion as a sequence of updates (i1,∆1), (i2,∆2), . . . ,
where an update (i,∆) has the effect of setting vi ← vi+ ∆
for some ∆ ∈ R.

The sketch can be stored as a matrix A with 2t − 1 rows
and s columns — alternatively viewed as a vector of di-
mension (2t − 1)s. Updates to the sketch are defined by
hash functions h1, . . . , h2t−1 and g1, . . . , g2t−1. To ini-
tialize an empty CountSketch, we pick a 2-wise indepen-
dent hash function hi : [d] → [s] mapping entries in v
to columns of A, and a 2-wise independent hash function
gi : [d] → {−1, 1} mapping entries in v to a random sign,
each for row i ∈ [2t − 1].1. To process the update (j,∆)
the update algorithm sets Ai,hi(j) ← Ai,hi(j) + gi(j)∆ for
i = 1, . . . , 2t− 1. Thus entry k of the ith row of A contains
the sum of all coordinates vj such that hi(j) = k, with each
such coordinate vj multiplied by a random sign gi(j).

1.2. Frequency estimation

A frequency estimation query (a.k.a. point query) asks to re-
turn an estimate of an entry vj . CountSketch supports such
queries by returning the median of {gi(j)Ai,hi(j)}2t−1i=1 . The
classic analysis of CountSketch shows that for each row i of
A and entry vj , the estimate v̂ij = gi(j)Ai,hi(j) has expecta-
tion vj and variance at most ‖v‖22/s. Using Chebyshev’s in-
equality, this implies that Pr[|v̂ij−vj | ≥ 2‖v‖2/

√
s] ≤ 1/4.

This is often boosted to a high probability bound by taking
the median v̂j of the 2t − 1 row estimates v̂1j , . . . , v̂

2t−1
j

and using a Chernoff bound to conclude that Pr[|v̂j − vj | ≥
2‖v‖2/

√
s] ≤ exp(−Ω(t)). A similar, but less common,

analysis based on Markov’s inequality can also be used to
give a bound based on the `1 norm of v. More concretely,
it can be shown that E[|v̂ij − vj |] ≤ ‖v‖1/s. This can
again be combined with the Chernoff bound to conclude

1A k-wise independent hash function has independent and
uniform random hash values when restricted to any set of up to k
keys.
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that Pr[|v̂j − vj | ≥ 4‖v‖1/s] ≤ exp(−Ω(t)). This latter
bound has a better dependency on the number of columns
(and hence space usage) but potentially a worse dependency
on v as ‖v‖1 ≥ ‖v‖2 for all v (‖v‖1 and ‖v‖2 are close
when v consists of a few large non-zero entries).

Both of the above bounds suggest using a value of t that
is logarithmic in the desired failure probability. However,
practitioners rarely use more than a small constant number
of rows, such as 3 or 5 (t = 2, 3) rows. Based on the clas-
sic analysis of CountSketch, this only changes the failure
probability by a constant factor and has no asymptotic ben-
efits. Nonetheless, we show in experiments (in Section 4)
that already 3 rows seems to have a profound impact on the
variance of the estimates. The result of one experiment is
seen in Figure 1. Here the ratio between the variance with 1
and 3 rows is more than 200 when using s = 512 columns.

We explain these observations through new theoretical in-
sights about CountSketch. Concretely, we prove:
Theorem 1. CountSketch with t = 2 (3 rows) satisfies
E[(v̂j − vj)2] ≤ min{3‖v‖21/s2, 98‖v‖22/s}.

The constant 9
8 can in fact be replaced by 1 (Private commu-

nication, Ahle & Beretta) but we give a significantly simpler
proof with the slightly worse constant.

The second term in the min is a standard bound when not
using median (t = 1). We prove that using the median
trick does not worsen this bound significantly. However,
the main contribution of Theorem 1 is the bound in terms
of ‖v‖1. Quite interestingly, the bound in terms of ‖v‖1 is
not true if using just a single row. To see this, consider any
vector v with a single non-zero entry vi. The estimate for
any other entry vj then equals 0 with probability 1 − 1/s
(h(i) 6= h(j)) and it equals vig(i)g(j) with probability 1/s.
One therefore has E[(v̂j − vj)2] = v2i /s = ‖v‖21/s. This
shows that using just three rows instead of a single row
effectively reduces the variance of CountSketch by a factor
s in terms of ‖v‖1. We find this new insight into one of the
most fundamental sketching techniques surprising. We also
show that taking the median of three asymptotically reduces
the fourth moment of the error in terms of ‖v‖2:
Theorem 2. CountSketch with t = 2 (3 rows) satisfies
E[(v̂j − vj)4] ≤ 3‖v‖42/s2.

If we consider the same example as above with a vector
v with just a single non-zero entry vi, we again see that
when estimating any vj with j 6= i we have E[(v̂j−vj)4] =
v4i /s = ‖v‖42/s. Thus using t = 2 (3 rows) rather than t = 1
(1 row) reduces the fourth moment by a factor s in terms
of ‖v‖2. We find it quite remarkable that a constant factor
increase in the number of rows increases the utilization of
the number of columns by a linear factor both in terms of
the variance as a function of ‖v‖1 and the fourth moment
as a function of ‖v‖2. Combined with our experiments, this

strongly suggest that one should always use at least 3 rows
in practice. We extend our results to any t and show:

Theorem 3. CountSketch with median of 2t− 1 rows sat-
isfies E[|v̂j − vj |t] ≤ 22t−1‖v‖t1/st and E[(v̂j − vj)2t] ≤
22t−1‖v‖2t2 /st.

Thus we can bound the tth moment optimally (up to the
22t−1 factor) in terms of ‖v‖1 and similarly for the 2t’th
moment in terms of ‖v‖2.

1.3. Inner product estimation

Another use case of CountSketch is in fast inner product
estimation. Concretely, given two vectors v, w ∈ Rd, if
one builds a CountSketch on both vectors using the same
random hash functions h1, . . . , h2t−1 and g1, . . . , g2t−1 (i.e.
the same seeds), then one can quickly estimate 〈v, w〉 from
the two sketches. More precisely, let Av and Aw denote
the matrices constructed for v and w, respectively. For any
row i, the inner product 〈Avi , Awi 〉 =

∑s
j=1A

v
i,jA

w
i,j is an

unbiased estimator of 〈v, w〉. Moreover, one can show that
E[(〈Avi , Awi 〉 − 〈v, w〉)2] ≤ 2‖v‖22‖w‖22/s if we replace
g by a 4-wise independent hash function (rather than just
2-wise). Combining this with Chebyshev’s inequality yields

Pr[|〈Avi , Awi 〉 − 〈v, w〉| > (2
√

2)‖v‖2‖w‖2/
√
s] < 1/4.

Finally, as with frequency estimation (point queries), one
can take the median over the 2t− 1 row estimates and apply
a Chernoff bound to guarantee that the final estimate, denote
it X , satisfies

Pr[|X − 〈v, w〉| > (2
√

2)‖v‖2‖w‖2/
√
s] < exp(−Ω(t)).

CountSketch with just a single row, t = 1, is in fact identical
to the popular feature hashing scheme (Weinberger et al.,
2009). Previous work has not shown any asymptotic benefits
of taking the median of a small constant number of rows,
using e.g. t = 2 or t = 3. Our contribution is new bounds
on the variance of such inner product estimates:

Theorem 4. For two vectors v, w ∈ Rd, let Av and Aw

denote the two matrices representing a CountSketch of the
two vectors when using the same random hash functions,
where the gi are 4-wise independent. Let X denote the
median of 〈Avi , Awi 〉 over rows i = 1, . . . , 2t − 1. Then
CountSketch with t = 2 satisfies

E[(X−〈v, w〉)2] ≤ min{3‖v‖21‖w‖21/s2,
9

4
‖v‖22‖w‖22/s},

and for t > 2:

E[|X − 〈v, w〉|t] ≤ 22t−1‖v‖t1‖w‖t1/st, and

E[(X − 〈v, w〉)2t] ≤ 42t−1‖v‖2t2 ‖w‖2t2 /st .
Similarly to CountSketch, the constant 9

4 can be improved
to 2.
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Figure 1: Variance plot of frequency estimation (point queries) for CountSketch with t = 1 and t = 2, run on a one-hot
vector v with a single nonzero coordinate vi = 1. The x-axis shows the total space usage of (2t− 1)s as s is increased. The
first figure shows that the variances behave linearly on a log-log plot, suggesting that the variances decrease polynomially
with the number of columns s. The second plot shows variance multiplied by (2t− 1)s. CountSketch with t = 1 becomes
near-constant, suggesting that its variance grows as 1/s (as t is fixed). The third plot shows variance multiplied by
((2t− 1)s)2 and suggests that the variance for t = 2 grows roughly as 1/s2.

We note that the bounds in terms of ‖v‖21 and ‖w‖21 can
be shown only assuming 2-wise independence of the gi.
As with frequency estimation queries, a simple example
demonstrates that the variance bound in terms of ‖v‖21‖w‖21
is false for t = 1. Concretely, let v have a single coordinate
vi that is non-zero and let w have a single coordinate wj
with j 6= i that is non-zero. Then 〈v, w〉 = 0, yet the
probability that vi and wj hash to the same entry is 1/s. In
that case, the estimate is either viwj = ‖v‖1‖w‖1 or−viwj .
This implies that E[(X − 〈v, w〉)2] = ‖v‖21‖w‖21/s, i.e. a
factor s worse than the guarantees with three rows.

We have also performed experiments estimating the variance
on real-world data sets, see Section 4. When s is large
enough (so that ‖v‖21‖w‖21/s2 becomes the smallest term),
these experiments support our theoretical findings as with
the frequency estimation queries.

Discussion. Similarly to the frequency estimation queries,
our new theoretical bounds and supporting experiments
strongly advocates taking the median of at least 3 rows when
using CountSketch for inner product estimation. Equiva-
lently, when using feature hashing for inner product estima-
tion, one should take the median of at least 3 independent
instantiations. This reduces the variance by a linear factor
in the number of columns/coordinates of the sketch. We
remark that taking the median might not be allowed in all
applications. For instance, when using CountSketch/feature
hashing as preprocessing for Support Vector Machines, us-
ing one row corresponds to a kernel function, while this is
not the case when taking the median of multiple row esti-
mates. The median of three can thus not be directly used in
this setting.

1.4. New bounds on moments of the median

We prove our new variance and moment bounds for CountS-
ketch by showing general theorems relating moments of the

median of i.i.d. random variables to smaller moments of the
individual random variables. These new bounds are very
natural and should have applications besides in CountSketch.
Moreover, we show that they are asymptotically optimal.

Theorem 5. LetX1, · · · , X2t−1 be 2t−1 i.i.d. real-valued
random variables and let Y denote their median. For all
positive integers q it holds that

E[|Y − E[X1]|tq] ≤
(
2t−1
t

)
· E[|X1 − E[X1]|q]t .

In particular, E[|Y −E[X1]|tq] ≤ 22t−1 ·E[|X1−E[X1]|q]t.

In many data science applications, theXi would be unbiased
estimators of some desirable function of a data set, such as
e.g. the coordinate vi in a vector v. Theorem 5 thus gives
a bound on the tq’th moment of the estimation error of
the median Y in terms of just the q’th moment of a single
variable. We remark that the median of 2t − 1 unbiased
estimators is not necessarily itself an unbiased estimator,
thus the bound on E[(Y −E[X1])tq] is much more desirable
than a bound on e.g. E[(Y − E[Y ])tq] as the mean of Y
might be tricky to prove an exact bound for. However, one
can, in fact, derive a bound on the variance of Y itself (on
E[(Y − E[Y ])2) directly from Theorem 5:

Corollary 1. Let X1, X2, X3 be i.i.d. real-valued random
variables and let Y denote their median. Then

Var(Y ) ≤ E[(Y − E[X1])2] ≤ 3 · E[|X1 − E[X1]|]2 .

Proof. From Theorem 5 with q = 1 we have

E[(Y − E[X1])2] ≤ 3 · E[|X1 − E[X1]|]2.

Moreover, the minimizing value µ for the function µ 7→
E[(Y − µ)2] is the mean µ = E[Y ]. Therefore we have
Var(Y ) = E[(Y − E[Y ])2] ≤ E[(Y − E[X1])2] ≤ 3 ·
E[|X1 − E[X1]|]2.
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In this paper, we mainly consider the case t = 2 with 3 rows
— or equivalently 3 i.i.d. random variables.

We also prove a new inequality which we use to give bounds
for the error’s second moment of CountSketch in terms of
‖v‖2. Specifically, we show that having three i.i.d. random
variables X1, X2, X3, taking median increases the second
moment of deviation from E[X1] at most by a factor of 9

8 .
In fact, it can be proven that the second moment does not
decrease at all (Private communication, Ahle & Beretta); we
give a considerably simpler proof showing the factor 9/8.
Specifically, we show that

Theorem 6. Let X1, X2, X3 be i.i.d. random variables.
Let Y be the median of these three random variables. Then
E[(Y − E[X1])2] ≤ 9

8V ar(X1).

1.5. Related work

CountSketch was originally proposed in (Charikar et al.,
2004) as a method for finding heavy hitters (i.e., frequently
occurring elements) in a data stream. Though there are
better methods for finding heavy hitters in insertion-only
data streams, CountSketch has the advantage that it is a
linear sketch, meaning that sketches can be subtracted to
form a sketch of the difference of the two vectors. It is
known to be space-optimal for the problem of finding ap-
proximate Lp heavy hitters in the turnstile streaming model,
where both positive and negative frequency updates are pos-
sible (Jowhari et al., 2011).

Analysis by Minton and Price. An improved analysis of
the error distribution of CountSketch was given in (Minton
& Price, 2014), building on the work of (Jowhari et al.,
2011). The analysis gives non-trivial bounds only when t is
a sufficiently large (unspecified) constant, and the exposition
focuses on the case t = Θ(log n), where n is the dimension
of the vector v. Their stated error bounds are incomparable
to ours, since they are expressed in terms of (residual) L2

norm of v.

The reader may wonder if it is possible to derive our re-
sults from the analysis in (Minton & Price, 2014). Their
error bound for CountSketch is based on ‖v[k]‖2, where
‖v[k]‖2 is v with the largest k entries set to 0. More
concretely, it is shown that for a single row of CountS-
ketch, it holds that Pr[(v̂ij − vj)2 > c0‖v[c1s]‖22/s] < 1/4
for some constants c0, c1. The crucial observation is that
all entries of v[c1s] are bounded by ‖v‖1/(c1s) and there-
fore one has ‖v[c1s]‖22 = O(‖v‖1‖v‖1/s). Inserting this
gives Pr[(v̂ij − vj)

2 > c2‖v‖21/s2] < 1/4 and this may
be combined with Chernoff bounds to give high proba-
bility bounds for the median of multiple rows in terms
of ‖v‖1. Already with one row, this looks similar to our
bound on the variance of the median of 3 rows (Theorem 1)
which stated that E[(v̂j − vj)

2] ≤ 3‖v‖21/s2. However,

as our counterexample above suggests, there is no way of
extending the ideas of (Minton & Price, 2014) to prove
E[(v̂ij − vj)2] = O(‖v‖21/s2) as it is simply false for t = 1.
Indeed the way (Minton & Price, 2014) proves their bound
is by analysing the c1s largest entries separately from the
remaining entries, bounding E[(v̂ij−vj)2] only for the small
entries in v[c1s]. Thus our new variance bounds do not fol-
low from their work.

The experiments in (Minton & Price, 2014) focus on the
setting where t is relatively large, with 20 or 50 rows, i.e.,
about an order of magnitude larger space usage than we
have for t = 2.

Dimension reduction. CountSketch can be used as a
dimensionality reduction technique that is simpler and
more computationally efficient than the classical Johnson-
Lindenstrauss embedding (Johnson & Lindenstrauss, 1984).
In this setting there is no estimator, the sketch vector is
simply considered a vector in (2t− 1)s dimensions. Gen-
eralized versions of CountSketch have been shown to yield
a time-accuracy trade-off (Dasgupta et al., 2010; Kane &
Nelson, 2014).

In machine learning, a variant of CountSketch, now known
as feature hashing, was independently introduced in (Wein-
berger et al., 2009), focusing on applications in multitask
learning. Feature hashing reduces variance in a slightly
different way than CountSketch, by initially increasing the
dimension of the input vector by a factor t in a way that
preserves L2 distances exactly but reduces the L∞ norm
of vectors by a factor

√
t. In (Chen et al., 2015), CountS-

ketch/feature hashing was wired into the architecture of a
neural network in order to reduce the number of model pa-
rameters (without the use of medians). CountSketch has
also been used in the construction of random feature map-
pings (Pham & Pagh, 2013; Ahle et al., 2020), which can
be seen as dimension-reduced versions of explicit feature
maps.

Further machine learning applications. CountSketch,
with the median estimator, has been used in several machine
learning applications. In (Aghazadeh et al., 2018), CountS-
ketch was used with t = 2 (3 rows) for large-scale feature
selection. In (Spring et al., 2019), CountSketch was used for
compressing gradient optimizers in stochastic gradient de-
scent. The related count-min sketch (Cormode & Muthukr-
ishnan, 2005), which is the special case of CountSketch
where we fix g(x) = 1, is a popular choice in applications
where vectors have non-negative entries. The count-min
estimator takes advantage of non-negativity by taking the
minimum of t estimates, and the error distribution can be
analyzed in terms of the L1 norm of v. We note that a
count-min sketch with a fully random hash function can be
used to simulate a CountSketch with s/2 entries computing
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the pairwise difference of entries whose index differ in the
last bit (effectively using the least significant bit as the hash
function g).

2. Moments of the Median
In this section, we prove our new inequalities for moments
of the median. We first state and prove an integral inequality
which the proof of the theorem relies on.

Lemma 1. Let f : R+ → R+ be a non-increasing function
and let t be a positive integer. Then∫ ∞

0

f( t
√
x)tdx ≤

(∫ ∞
0

f(x)dx
)t

.

Proof. Since the function is non-increasing, it is measurable.
Moreover, since it is non-negative, the integrals are defined
(possibly equal to +∞). We have:(∫ ∞

0

f(x)dx
)t

=

∫ ∞
0

· · ·
∫ ∞
0

t∏
i=1

f(xi)dx1 . . . dxt

= t!

∫ ∞
0

∫ xt

0

· · ·
∫ x2

0

t∏
i=1

f(xi)dx1 . . . dxt (1)

≥ t!
∫ ∞
0

∫ xt

0

· · ·
∫ x2

0

f(xt)
tdx1 . . . dxt (2)

= t!

∫ ∞
0

f(xt)
t

∫ xt

0

· · ·
∫ x2

0

1dx1 . . . dxt

= t!

∫ ∞
0

f(xt)
t xt−1t

(t− 1)!
dxt (3)

=

∫ ∞
0

f(x)ttxt−1dx =

∫ ∞
0

f( t
√
x)tdx .

The integral in (1) is exactly over the set 0 ≤ x1 ≤ x2 ≤
· · · ≤ xt. There are t! such sets, each determined by an
ordering of the variables. Since

∏t
i=1 is a symmetric func-

tion (by commutativity) it integrates to the same value over
each of these sets. Moreover, these sets partition the set
[0,∞)t (up to a set of measure 0 corresponding to when
two variables are equal). Since we have a partition into t!
sets and the integral over each set from the partition is the
same, the integral over each set is a t!-fraction of the integral
over the whole space, and (1) holds. (2) holds because f
is non-increasing and x1 ≤ x2, · · · , xt. (3) holds because
the inner integrals correspond to the volume of the t − 1-
dimensional ordered simplex scaled by a factor of xt and
the volume of t− 1-dimensional ordered simplex is 1

(t−1)!
(this holds by symmetry, and can be argued the same way as
(1)). The final equality holds by substituting x = xt.

Restatement of Theorem 5. Let X1, · · · , X2t−1 be 2t− 1
i.i.d. real-valued random variables and let Y denote their
median. For all positive integers q it holds that

E[|Y − E[X1]|tq] ≤
(
2t−1
t

)
· E[|X1 − E[X1]|q]t .

In particular, E[|Y −E[X1]|tq] ≤ 22t−1 ·E[|X1−E[X1]|q]t.

Proof. Notice that since Y is the median of X1, . . . , X2t−1
and the Xi’s have the same mean, we can only have
|Y − E[X1]|tq ≥ x when at least t variables Xi have
|Xi − E[Xi]|tq ≥ x. There are

(
2t−1
t

)
choices for such

t variables, so by the union bound, independence and identi-
cal distribution of the Xi’s, we have for any x that:

Pr[|Y − E[X1]|tq ≥ x] ≤
(
2t−1
t

)
Pr[|X1 − E[X1]|tq ≥ x]t.

We can thus bound E[|Y − E[X1]|tq] as:

E[|Y − E[X1]|tq]

=

∫ ∞
0

Pr[|Y − E[X1]|tq ≥ x]dx

≤
(
2t−1
t

) ∫ ∞
0

Pr[|X1 − E[X1]|tq ≥ x]tdx

=
(
2t−1
t

) ∫ ∞
0

Pr[|X1 − E[X1]|q ≥ t
√
x]tdx

≤
(
2t−1
t

)( ∫ ∞
0

Pr[|X1 − E[X1]|q ≥ x]dx
)t

=
(
2t−1
t

)
· E[|X1 − E[X1]|q]t,

where the first and last equalities hold by a standard identity
for non-negative random variables, and the last inequality
holds by Lemma 1 since Pr[|X1 − E[X1]|q ≥ x] is a non-
increasing non-negative function.

The bound shown in this section can easily be seen to be
asymptotically optimal. Consider Xi’s which take value k
with probability 1/k and are zero otherwise. Then

E[|Y − E[X1]|qt]
=(k − 1)qt Pr[Y = k]

=(k − 1)qt
((2t− 1

t

)
Pr[X1 = k]t +O(Pr[X1 = k]2t)

)
∼
(

2t− 1

t

)
(k − 1)qt

kt

∼
(

2t− 1

t

)
(k − 1)(q−1)t

where the limit in ∼ is taken for k → ∞. The second
equality holds by the inclusion-exclusion principle. On the
other hand, the bound given by our theorem is(

2t− 1

t

)
E[|X1 − E[X1]|q]t
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=

(
2t− 1

t

)
(
1

k
(k − 1)q)t

∼
(

2t− 1

t

)
(k − 1)(q−1)t

We now prove Theorem 6.

Restatement of Theorem 6. Let X1, X2, X3 be i.i.d. ran-
dom variables. Let Y be the median of these three random
variables. Then E[(Y − E[X1])2] ≤ 9

8V ar(X1).

Proof. We can assume without loss of generality that
E[X1] = 0. Then

E[Y 2] =

∫ ∞
0

Pr[Y 2 ≥ x]dx

≤
∫ ∞
0

Pr[|{i, s.t. X2
i ≥ x}| ≥ 2]

Let px = Pr[X2
1 ≥ x]. Then Pr[|{i s.t. X2

i ≥ x}| ≥ 2] ≤
3p2x(1− px) + p3x. It holds for any z ≥ 0 that 3z2(1− z) +
z3 ≤ 9

8z. We can, therefore, bound the integral by

≤
∫ ∞
0

9

8
Pr[X2

1 ≥ x]

=
9

8
E[X2

1 ]

=
9

8
V ar(X1)

3. CountSketch
In this section, we prove our new bounds on the variance
(Theorem 1) and 4th moment (Theorem 2) for CountSketch
with 3 rows (t = 2) as well as our general theorem with the
median of 2t− 1 estimates (Theorem 5).

Frequency estimation. Recall that CountSketch with
three rows computes an estimate v̂ij for each of three rows
i = 1, 2, 3 and returns the median v̂j as its estimate of vj .
From Theorem 5, we see that to obtain variance and 4th mo-
ment bounds for v̂j , we only need to bound E[|v̂1j −E[v̂1j ]|q]
for q = 1, 2. Such a bound follows from existing work, see
e.g. (Cormode & Yi, 2020), Fact 3.4:

Lemma 2. CountSketch satisfies E[v̂1j ] = vj , E[|v̂1j−vj |] ≤
‖v‖1/s and E[(v̂1j − vj)2] ≤ ‖v‖22/s.

Theorem 1 follows by instantiating Theorem 5 with q = 1
and the facts E[v̂1j ] = vj , E[|v̂1j − vj |] ≤ ‖v‖1/s from
Lemma 2. Theorem 2 follows by instantiating Theorem 5
with q = 2 and the facts E[v̂1j ] = vj , E[(v̂1j − vj)

2] ≤
‖v‖22/s from Lemma 2. Finally, Theorem 3 also follows as
an immediate corollary of Theorem 5 and Lemma 2.

Inner product estimation. Similarly to the case of fre-
quency estimation (point queries), we prove our new guar-
antees in Theorem 4 by invoking our general theorems on
moments of the median. All we need is moment bounds for
a single row. The following is more or less standard. We
include the proof in the full version (Larsen et al., 2021).

Lemma 3. For two vectors v, w ∈ Rd, let Av and Aw

denote the two matrices representing a CountSketch of the
two vectors when using the same random hash functions.
Then E[〈Av1, Aw1 〉] = 〈v, w〉 and E[|〈Av1, Aw1 〉 − 〈v, w〉|] ≤
‖v‖1‖w‖1/s. Moreover, if g is 4-wise independent, then we
also have E[(〈Av1, Aw1 〉 − 〈v, w〉)2] ≤ 2‖v‖22‖w‖22/s.

Theorem 4 follows by combining Lemma 3 and Theorem 5.

4. Experiments
In this section, we empirically support our new theoretical
bounds by estimating the variance of CountSketch with 1
row and 3 rows on different data sets. We implemented
CountSketch in C++ using the multiply-shift hash func-
tion (Dietzfelbinger, 1996) as the 2-wise independent hash
functions h and g. We seeded the hash functions using ran-
dom numbers generated using the built-in Mersenne twister
64-bit pseudorandom generator. Experiments were run both
for frequency estimation (Section 4) and for inner product
estimation (Section 4).

Frequency estimation. We ran experiments on two real-
world data sets and two synthetic data sets. The real-world
data sets come in the form of a stream of items, with the
same item occurring multiple times. Instead of running
numerous (i, 1) updates (vi ← vi + 1), we have simply
computed the number of occurrences ci of each item. We
then normalize the occurrences ci ← ci/

∑
j cj to obtain

unit `1-norm and then run a single update vi ← vi + ci
for each item i at the end. This produces the exact same
CountSketch as when processing the updates one by one
(with normalization). The data sets are described in the
following:

• Kosarak: An anonymized click-stream dataset of a
Hungarian online news portal. 2 It consists of transac-
tions, each of which has several items. We created a
vector with one entry for each item, storing the total
number of occurrences of that item. The vector has
41270 entries, and when normalized to have `1-norm
1, its `2-norm is 0.112 and the largest entry is 0.075.

• Sentiment140: A collection of 1.6M tweets from Twit-
ter (Go et al., 2009). We extracted all words that occur
at least twice, and created a vector with one entry per

2Provided by Ferenc Bodon to the FIMI data set located at
http://fimi.uantwerpen.be/data/.

http://fimi.uantwerpen.be/data/
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word, containing the total number of occurrences of
that word in the tweets. The vector has 147071 entries,
and when normalized to have `1-norm 1, its `2-norm
is 0.0773 and the largest entry is 0.0382.

• Zipfian: The Zipfian distribution with skew α and
n items is a probability distribution where the kth
item has probability k−α/

∑n
j=1 j

α. Such distribu-
tions have been shown to fit a large variety of real-
world data. We created two data sets with n = 1000
items using skews α = 0.8 and α = 1.2, considering
the vector of probabilities. For α = 0.8, the `2-norm is
0.097 and the largest entry is 0.065. For α = 1.2, the
`2-norm is 0.2713 and the largest entry is 0.231. We
include results for α = 0.8 in the full version (Larsen
et al., 2021).

The results of the experiments can be seen in Figures 2-4.
For each experiment, we plot the variance as a function of
the total space usage (2t− 1)s as we increase the number
of columns s. We run experiments with s = 22, 23, . . . , 210

on each data set. For each choice of s, we estimate the
variance by constructing 1000 CountSketches on the input
with new randomness for each. For each CountSketch we
pick 100 random items and compute the estimation error
for each. We sum the squares of all these estimation errors
and divide by 100× 1000 (for small data sets with less than
5000 items, we instead build 106 CountSketches and make
a single estimation on each).

On all four data sets, we make three plots of the data. On
the first, we show a log-log plot and observe that in all ex-
periments, the variances look linear on the plot, supporting
a polynomial dependency on s. Second, we scale the vari-
ances by (2t− 1)s and plot it on a linear scale. In all experi-
ments, the scaled variance for t = 1 looks constant, support-
ing a 1/s dependency on the number of columns s. Third,
we scale the variance by ((2t− 1)s)2 and plot it on a linear
scale. The scaled variance for t = 2 looks almost constant
in all experiments, supporting a 1/s2 dependency on the
number of columns. We remark that our theoretical bound
in Theorem 1 guarantees E[(v̂j − vj)2] ≤ 3‖v‖21/s2. Since
‖v‖1 = 1 in all our data sets, we expect the CountSketches
with t = 2 on the third plots to stay below 3(2t− 1)2 = 27
on the y-axis, which it does in all experiments (it even stays
below 4 on all but the last experiment).

Table 1 shows the variance on the different data sets using
CountSketch with s = 1024 rows. In all cases, that increas-
ing CountSketch parameter t from 1 to 2 clearly provides
major reductions in variance, ranging from a factor of about
28 to 174.

We also perform experiments measuring the 4th moment of
the estimation errors. These can be found in the full version
(Larsen et al., 2021).

Data Set Variance t = 1 Variance t = 2 Ratio
Kosarak 1.25× 10−5 1.42× 10−7 88.0
Sentiment140 5.94× 10−6 2.13× 10−7 27.9
Zipfian α = 0.8 9.56× 10−6 2.09× 10−7 45.7
Zipfian α = 1.2 6.94× 10−5 3.99× 10−7 173.9

Table 1: Variances for different data sets with 2 and 3 rows
(t = 1, 2) of CountSketch. In all experiments, we consider
a CountSketch with s = 1024 columns. The ratio in the last
column of the table gives the relative difference between
using 1 and 3 rows.

To summarize, we believe our empirical findings support
our new theoretical bounds on the variance and 4th moment.
Moreover, our results strongly suggest that practitioners use
t ≥ 2 with CountSketch as it provides major reductions in
variance at little increase in time and memory efficiency.

Inner product estimation. In the following, we perform
experiments where we use CountSketch for inner product
estimation. We perform experiments on two data sets, a
synthetic and a real-world data set:

• Disjoint 64 non-zeros: A synthetic data set with two
vectors both having 64 non-zero entries each with value
1/64. The two vectors have disjoint supports and thus
inner product 0. The `2-norm of the vectors is 1/8 =
0.125 and the largest entry is 1/64 ≈ 0.0156.

• News20: A collection of newsgroup documents on
different topics 3. Each document is represented by a
tf-idf vector constructed on the words occurring in the
documents. We used the training part of the data set
for our experiments. The data set has 11314 distinct
vectors. For comparison to our theoretical bounds, we
normalize the vector v representing each document
such that it has ‖v‖1 = 1. After normalization, the
average `2-norm of a document vector is 0.1235 and
the average largest entry is 0.0498.

For the Disjoint 64 Non-Zeros data set, for 106 iterations,
we constructed a new CountSketch on the two vectors using
the same random hash functions. We then computed the
squared error of the estimates and averaged over all 106

iterations. For the News20 data set, we run 1000 iterations
where we pick new random hash functions in each iteration.
In an iteration, we pick 100 random pairs of distinct vectors,
build a CountSketch on both vectors in a pair, and compute
the squared estimation error. We finally average over all
100× 1000 pairs. Figure 5 shows the results of experiments
on the Disjoint 64 Non-Zeros data set. As before, these
plots fit our theoretical guarantees in Theorem 4.

Finally, we have run experiments on the News20 data

3http://qwone.com/˜jason/20Newsgroups/

http://qwone.com/~jason/20Newsgroups/
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Figure 2: Variance experiments on the Kosarak data set.

25 27 29 211

s× (2t− 1)

2−21

2−19

2−17

2−15

2−13

2−11

va
ri

an
ce

t=1

t=2

0 500 1000 1500 2000 2500 3000
s× (2t− 1)

0.000

0.005

0.010

0.015
s
×

(2
t
−

1)
×

va
ri

an
ce

t=1

t=2

0 500 1000 1500 2000 2500 3000
s× (2t− 1)

0

1

2

3

4

5

(s
×

(2
t
−

1)
)2
×

va
ri

an
ce

t=1

t=2

Figure 3: Variance experiments on the Sentiment140 data set.
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Figure 4: Variance experiments on Zipfian distribution with skew α = 1.2.
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Figure 5: Variance experiments on the Disjoint 64 Non-Zeros data set.

set. The results are shown in Figure 6. Unlike in previ-
ous experiments, it appears that CountSketch with 3 rows
(t = 2) has a variance decreasing as 1/s, not 1/s2. To
explain this, recall that the guarantee from Theorem 4 is
E[(X −〈v, w〉)2] ≤ min{3‖v‖21‖w‖2q/s2, 2‖v‖22‖w‖22}. In
the News20 data set, the average ‖v‖2 is 0.1235. When this
is raised to the fourth power (it appears in both ‖v‖22 and
‖w‖22) it becomes very small compared to ‖v‖21‖w‖21 = 1,

thus the 1/s2 dependency should only kick in for large val-
ues of s. To confirm this, we have run more experiments,
this time with values of s ranging from 210 to 220. The
results are shown in Figure 7.

With these larger values of s, we see the expected 1/s2 de-
pendency in the variance for t = 2. To conclude on this,
one may need a larger value of s to see the 1/s2 behaviour
in variance when performing inner product estimation com-
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Figure 6: Variance experiments on the News20 data set.
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Figure 7: Variance experiments on the News20 data set and number of columns up to s = 220.

pared to frequency estimation. This is due to the depen-
dency on the product of two vectors of either ‖v‖21‖w‖21 or
‖v‖22‖w‖22 compared to just the single dependency on ‖v‖21
and ‖v‖22 for frequency estimation.

As with frequency estimation, we also experimentally ex-
amine the 4th moments. These results are included in the
full version (Larsen et al., 2021).

5. Conclusion
We have seen that taking the median of 3 estimates can
significantly improve the accuracy of estimates for Count-
Sketch. An interesting direction, that we leave open, is to
take advantage of this in more applications that use Count-
Sketch or feature hashing. A challenge is that a median oper-
ation is not available in some contexts (like neural networks,
or kernel approximation), and may need to be replaced by a
continuously differentiable approximation.
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