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A. Data
A.1. Data generation

Cell type Names from Count
Bae et al. (2018)

clus1 1wt sOFFα 121
clus2 2an F-mini OFF 29
clus3 27 – 11
clus4 37c ON-OFF 17
clus5 4i/4on mini tOFFα 44
clus6 4ow tOFFα 91
clus7 5to – 20
clus8 5si HD1/HD2 37
clus9 63 F-mini ON 19
clus10 6sn – 36
clus11 6sw tONα 21
clus12 6t F-midi ON 30
clus13 8w sONα 44
clus14 8n/9n – 30
-1 1ni OFF Step 4
-2 2o G5bc 1
-3 25 – 4
-4 28 – 5
-5 3i – 3
-6 3o – 1
-7 51 W3B 4
-8 72 – 1
-9 73 OND 4
-10 81i – 2
-11 82n – 5
-12 82wi vOS 1
-13 85 – 3
-14 9w M2 1
-15 91 – 3
-16 915 – 3
-17 Fbistrat F-bistratified 4

Table 1. Cluster names and their cell numbers for the retinal
ganglion cell dendrites. All clusters with negative cluster number
were used for training the autoencoder but not for classification
as their numbers were too small.

We generated a set of toy neurons where each neuron itera-
tively grows an arbors into one of the four cardinal directions
(up, down, left, right). Here, we will describe the procedure
for the right arbor, other arbors are generated equivalently.
For each neuron we started with one active node at the soma.
For each active node vj we sampled the number of outgoing
branch segments boj ∼ max(1, Poisson(λi)) from a quasi
Poisson distribution. For each outgoing segment we sam-
pled its direction as an angle γj to the Cartesian basis vector
b = (1, 0, 0) with γj ∼ U(αi, βi) being drawn from a uni-
form distribution over the minimal and maximal path angle αi

and βi respectively. The sampled directed segments were then
appended to the coordinate of the active node with a segment
length of 1, their end points become new active nodes and
the former active node vj becomes inactive. This process
was repeated for all active nodes until the arbor contained a
specified number of segments.

A.1.1. ARTIFICIAL DATASET

Following this procedure we generated N = 1200 artifi-
cial neurons with |V | = 200 nodes that belonged to one
of three different populations Pi of equal size (NPi

= 400).
Each population grew into the horizontal direction (having
a right and a left arbor, with 99 segments each) and had its
unique set of parameters {λP1

= 1, αP1
= −50, βP1

= 50},
{λP2 = 2, αP2 = −50, βP2 = 50}, and {λP3 = 3, αP3 =
−100, βP3 = 80}.

A.1.2. ARTIFICIAL DATASET FOR PRE-TRAINING

We also generated N = 1500 artificial neurons with |V | =
400 nodes that belonged to one of five different populations Pi

of equal size (NPi
= 300). Each populations had its unique

set of parameters {dirP1 = [left, right], λP1 = 1, αP1 =
−50, βP1 = 50}, {dirP2 = [left, right], λP2 = 2, αP2 =
−80, βP2

= 80}, {dirP3 = [left, right, up, down], λP3
=

2, αP3
= −80, βP3

= 80}, {dirP4 = [up, down], λP4
=

1, αP4
= −50, βP4

= 50}, and {dirP5 = [up, down], λP5
=

2, αP5
= −80, βP5

= 80}. This dataset was used for pre-
training the models as it better matched the walk lengths and
the walk directions that were encountered in the real datasets.

A.2. Pyramidal neurons from motor cortex

We downloaded 275 dendritic reconstructions of excitatory neurons1 that had been recorded in a large scale multi-modal
study describing cell types in adult mouse M1 (Scala et al., 2020). The morphological cell type (m-type) of these excitatory
neurons was manually assigned to one of tufted, untufted or other based on visual inspection of the apical dendrites. ‘Tufted’
neurons showed a small or big apical tuft with at least three tips reaching towards the direction of layer 1. ‘Untufted’ neurons
showed a single apical dendrite with no tuft. All other neurons like star-shaped stellate cells, or neurons with inverted or

1https://download.brainimagelibrary.org/3a/88/3a88a7687ab66069/excitatory/

https://download.brainimagelibrary.org/3a/88/3a88a7687ab66069/excitatory/
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horizontal dendrites were labelled as ‘others’. This yielded a total of nt = 135 tufted, nu = 107 untufted, and no = 33
other neurons.

A.3. Inhibitory neurons from motor cortex

We downloaded 372 axonal reconstructions of inhibitory neurons2 that had been recorded in a large scale multi-modal
study describing cell types in adult mouse M1 (Scala et al., 2020). We used the assigned RNA family labels (Sst, Pvalb,
Vip, Sncg, and Lamp5) as cell type labels but grouped Sncg to Vip as it contained only 6 cells. This yielded a total of
nSst = 108, nPvalb = 145, nV ip = 69, and nLamp5 = 47 neurons. 3 neurons had a mismatch in RNA label. We used their
reconstructions for training the autoencoder but ignored their labels for classification.

A.4. Retinal ganglion cell dendrites

We downloaded 599 reconstructions of retinal ganglion cell dendrites from neuromorpho (Ascoli et al., 2007) that were
originally collected by Reinhard et al. (2019) and reconstructed using the TREES Toolbox (Cuntz et al., 2011) using a
balancing factor of .4. We used the cell type labels assigned by the authors which yielded 550 cells grouping into 14 classes
with at least 11 cells per class. The remaining 49 cells mapped to clusters with lower cell numbers (see Table 1). We used
these reconstructions for training the autoencoder but ignored their labels for classification.

A.5. Generating image stacks

We compared our generative model with the TREES Toolbox (Cuntz et al., 2011). To sample new morphologies, the Toolbox
requires 3D image stacks, however. For this, we sampled points along the neurites of each neuron at a distance of 1 micron
and binned the resulting point cloud into 128 bins in each direction. Hereby, each neuron was normalized locally to increase
the signal in each image stack. The individual voxel sizes were passed to the Toolbox to allow for proper scaling during the
reconstruction. To introduce variation, the image stacks were smoothed using a Gaussian filter with σ = 2 as implemented
in scipy.ndimage.gaussian filter. The image stacks were then uploaded to MATLAB Online and a custom
MATLAB script was run that used the functionality of the TREES Toolbox to sample one new morphology per stack.

B. Representations
B.1. Density maps

Dataset Projection σ nPC > 95% var Ranges

.5 105 x = [−5, 5]
Toy XY 1 26 y = [−5, 5]

2 10 z = [−5, 5]
.5 64 x = [−3, 2]

M1 EXC XZ 1 22 y = [−4, 2]
2 7 z = [−3, 9]
.5 28 x = [−4, 4]

M1 INH XZ 1 9 y = [−3, 2]
2 4 z = [−6, 6]
.5 6 x = [−6, 4]

RGC Z 1 4 y = [−4, 5]
2 3 z = [−1, 1]

Table 2. Summary of the parameters used for density map gen-
eration. It shows the projection axes, the smoothing kernels σ,
the number of principle components that have been kept and the
normalization ranges for each direction.

We generated several density maps to compare our learned
representation to. Table 2 shows the parameters used for
density map generation. The normalization ranges were deter-
mined as the rounded down 5th-percentile and the rounded
up 95th-percentile of all reconstructions’ point coordinates
within each dataset.

B.2. Morphometric features

We computed morphometric statistics using the default func-
tionality of the MorphoPy toolbox (Laturnus et al., 2020).
This yielded a total of 28 single valued morphometric statis-
tics for each dataset. Since we did not model the morpholo-
gies’ thickness, we excluded the four morphometric statistics
that related to that feature in each dataset, namely, average
thickness, maximal thickness, total surface, and total volume.
Additionally, we excluded all statistics that were zero for most
of the cells, namely, log minimal tortuosity and log median
tortuosity. The remaining 22 features are shown for the arti-
ficial data (see Fig. B.2) and the real datasets (see Fig. B.3,
Fig. B.4, and Fig. B.5), their respective samples for different

2https://download.brainimagelibrary.org/3a/88/3a88a7687ab66069/inhibitory/

https://download.brainimagelibrary.org/3a/88/3a88a7687ab66069/inhibitory/
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Figure B.1. T-SNE embedding of the learned neural representation rT and the best performing density map. For labels see Fig. B.3 –
Fig. B.5.

κ, and the comparison with the TREES Toolbox (Cuntz et al.,
2011). Note, for the inhibitory cell data we also excluded the soma exit angle feature as they only exhibit one axonal neurite.
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Figure B.2. Distributions of all computed morphometric statistics for the test neurons in each population (colored) of the artificial dataset
and the sampled neurons using different values of κ during sampling in the latent space (grey). Lines indicate the medians.
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Figure B.3. Distributions of all computed morphometric statistics for the pyramidal cell dataset. The data is shown for the test neurons in
each population (colored), the sampled neurons using MORPHVAE with different values of κ during sampling in the latent space (grey),
and sampled neurons using the TREES Toolbox (light grey). Lines indicate the medians.
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Figure B.4. Distributions of all computed morphometric statistics for the inhibitory cell dataset. The data is shown for the test neurons in
each population (colored), the sampled neurons using MORPHVAE with different values of κ during sampling in the latent space (greys),
and sampled neurons using the TREES Toolbox (light grey). Lines indicate the medians.
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Figure B.5. Distributions of all computed morphometric statistics for the retinal ganglion cell dataset. The data is shown for the test
neurons in each population (colored), the sampled neurons using MORPHVAE with different values of κ during sampling in the latent
space (greys), and sampled neurons using the TREES Toolbox (light grey). Lines indicate the medians.
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C. Model
C.1. Model architecture

The MORPHVAE model is inspired by previous work in natural language processing (Sutskever et al., 2014; Xu & Durrett,
2018; Davidson et al., 2018) but has been adjusted to predict continuous variables instead of discrete word tokens. Fig. C.1
shows a more detailed account of the model architecture.

v1 ... vil

vij
^

cT
^

vij+1
^

Figure C.1. A detailed depiction of all model components. The encoder and the decoder are both two-layered unidirectional LSTMs.
Each walk w = (v1, · · · , vil) encodes a the mean µ of a von-Mises Fisher distribution which is used to sample a latent representation z.
The latent representation z is then used to initialize the hidden and the cell state, h and c, of the decoder, that will predict the next node
coordinate v̂ij from its internal states and the previous prediction v̂ij . Additionally, a pooling layer aggregates all latent representations zi
that describe the walks within one neuron T and predicts the neuron’s cell type label ĉT .

C.2. Model selection

To find the optimal values for the network dimensions and pooling operations we performed a grid search over m = [16, 32],
k = [8, 16, 32], dropout = [.1, .3, .5], κ = [100, 500] and Pool = [max-pooling, average-pooling]. We took the model with
the best average validation performance over three Glorot initializations (Glorot & Bengio, 2010). The best model used a
hidden and a latent dimension of m = k = 32, dropout of .1, a variance of κ = 500 and max-pooling.

C.3. Runtime analysis
TREES Toolbox MORPHVAE

Loading image stack Sampling points MST Encoding walk matrices Sampling new walks Clustering
Dataset

M1 EXC 16.59s± 1.73 0.38s± 0.08 0.18s± 0.04 6.04s± 0.19 (2.38s± 0.01) 0.65s± 0.03 (0.13s± 0.0) 0.02s± 0
M1 INH 16.19s± 0.75 0.39s± 0.05 0.22s± 0.04 6.34s± 0.89 (2.47s± 0.01) 0.72s± 0.03 (0.12s± 0.0) 0.03s± 0.0
RGC 16.61s± 0.95 0.43s± 0.4 0.28s± 0.54 7.94s± 0.56 (3.96s± 0.0) 0.71s± 0.06 (0.13s± 0.0) 0.05s± 0.0

Table 3. Wall clock runtime in seconds for different operations during morphology generation for the TREES Toolbox and MORPHVAE.
Values in brackets denote the runtime on the GPU.
We compared the runtime during morphology sampling for the MORPHVAE model and the TREES Toolbox (Cuntz et al.,
2011) in MATLAB Online (Table 3). For comparability we restricted our system to the same amount of CPUs and disabled
GPU processing. A more detailed description of each system is given in Table 4. The runtime during sampling and tree
construction was similar for both models (Table 3) but the TREES Toolbox needs to load a new image stack for each neuron
which slows the run time down considerably. In comparison, MORPHVAE encodes the reference walk matrices once for
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each batch and its implementation allows for GPU processing which leads to substantial runtime improvements.
MATLAB Online Our setup

Architecture x86 64 x86 64
CPU op-mode(s) 32-bit, 64-bit

CPU(s) 16 16
Thread(s) per core 2 2
Core(s) per socket 8 10

CPU family 6 6
Model 85 79

Stepping 7 1
CPU MHz 3100.310 1200.036
BogoMIPS 4999.99 4399.83

Virtualization type full VT-x
L1d cache 32K 32K
L1i cache 32K 32K
L2 cache 1024K 256K
L3 cache 36608K 25600K

Table 4. Systems description of MATLAB Online and our setup when executing lscpu.
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