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Abstract

For the past century, the anatomy of a neuron
has been considered one of its defining features:
The shape of a neuron’s dendrites and axon fun-
damentally determines what other neurons it can
connect to. These neurites have been described
using mathematical tools e.g. in the context of cell
type classification, but generative models of these
structures have only rarely been proposed and are
often computationally inefficient. Here we pro-
pose MORPHVAE, a sequence-to-sequence varia-
tional autoencoder with spherical latent space as
a generative model for neural morphologies. The
model operates on walks within the tree structure
of a neuron and can incorporate expert annota-
tions on a subset of the data using semi-supervised
learning. We develop our model on artificially
generated toy data and evaluate its performance
on dendrites of excitatory cells and axons of in-
hibitory cells of mouse motor cortex (M1) and
dendrites of retinal ganglion cells. We show that
the learned latent feature space allows for bet-
ter cell type discrimination than other commonly
used features. By sampling new walks from the
latent space we can easily construct new mor-
phologies with a specified degree of similarity
to their reference neuron, providing an efficient
generative model for neural morphologies.

1. Introduction

The anatomy of a neuron has fascinated scientists ever since
the pioneering work of Cajal (Ramoén y Cajal, 1911). The
dendritic and axonal processes of a neuron naturally decide
what other neurons it can connect to, and thus which in-
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puts it receives and where the computed outputs are sent
to (Hill et al., 2012). The anatomical shape of a neuron
— its morphology — plays therefore an important role for
its function in the circuit. In particular, different types of
neurons, and thus different building blocks of the circuit,
have fundamentally different morphologies (Markram et al.,
2004; DeFelipe et al., 2013).

This variability of neural shapes has been quantified using
sets of expert-determined features (Scorcioni et al., 2008;
Armananzas & Ascoli, 2015; Wang et al., 2018; Kanari et al.,
2019). While this approach allows classifying neurons into
distinct morphological types (m-types), it does not yield a
generative model for new neurons in a straightforward man-
ner. Algorithms for generating neurons have been suggested
which either start with simple neuron shapes and assume
a distinct set of biologically motivated growth rules (van
Pelt & Schierwagen, 2004; Eberhard et al., 2006; Bingham
et al., 2020; Kassraian-Fard et al., 2020) or manipulate these
shapes to iteratively match a set of properties from observed
data (Cuntz et al., 2011; Serene, 2013; Farhoodi & Kording,
2018).

However, a unified, efficient framework for modeling the
cell type diversity of large sets of neuron morphologies and
generating new morphologies has been missing. Here we
propose MORPHVAE, a sequence-to-sequence (seq2seq)
variational autoencoder with spherical latent space (David-
son et al., 2018; Xu & Durrett, 2018) working on 3D-walks
along a neuron’s morphology. The generated morphologies
match key characteristics of their biological counterparts
even though no biological constraints are incorporated in the
model. Furthermore, MORPHVAE yields a feature represen-
tation which is at least as good or better than state-of-the-art
morphology representations.

2. Methods

Our goal is (1) to build a generative model of a diverse set of
realistic looking neural morphologies and at the same time
(2) to learn a latent representation of neuron morphologies
revealing cell type related differences. Our model is trained
on a set of neural morphologies represented by their tree
graph T', possibly with assigned cell type label cr. For
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Figure 1. From a given morphological tree graph 1" (left) we sample walks w; from the soma to the tips. These walks are used to train a
variational seq2seq-autoencoder with a multivariate von-Mises Fisher distributed latent space with fixed variance x. Each walk encodes a
mean direction y; in the latent space that is used to sample a latent variable z; ~ vMF(u;, k) (middle). A subsequent decoder decodes z;
trying to match the input walk. The decoded walks w; are then clustered to construct a new tree graph T' (right). The black lines show the
reconstruction while the reference neuron is shown in grey. A logistic regression classifier that pools over the latent samples z; of all
walks w; within one neuron can be used to inform the model about labels.

each individual reference neuron, the model operates on
3D-walks along the neurites (Fig. 1).

In the following section, we first describe how the 3D-walks
are obtained (Section 2.1) and why they are advantageous
to using a neuron’s tree graph directly. Second, we present
a generative model (Section 2.2) that will generate a set of
new 3D-walks for a given reference neuron. Additionally,
we explain how we use the encoded walks in the latent
space to obtain a feature representation for a neuron that can
incorporate expert annotations in a semi-supervised fashion
(Section 2.3). Finally, in Section 2.4 we describe how we
construct a new tree graph T from the generated set of walks
with minimal biological constraints.

2.1. Sampling 3D-walks along neurites

A neural morphology is represented as a directed tree graph
defined as a tuple T = (V, E). The first entry V is the
set of nodes, V = {vz}f\il , where v; € R? represent
coordinates in 3D space and v; = (0,0,0) denotes the
neuron’s soma which is the root of the tree. The second
entry E = {e;; = (v;,v;)|v;,v; € V'} is the set of directed
edges which connects two nodes in V. The leaf nodes
which have no outgoing edge are called tips and denote
as T = {t;}7. We define w = (v1,v;,, iy, ..., I1,) as @
finite 3D-walk from soma v; to tip 5 where each pair of
consecutive nodes (v;;,v;, ) is connected via an edge ¢, ;, .
Given a morphology graph T, we can represent it as the set
Wr = {(v1,..,t)|Vtx € T} which contains all existing
walks from soma to tip.

A key advantage of this representation is that it describes
a neuron’s geometry and its topology at the same time in
such a way that allows us to leverage seq2seq models. The
succession of two coordinates within one walk implies a
connecting edge in that direction. Because all walks start at
the soma and progress outwards to the tips the underlying

morphology can be reconstructed given enough walks have
been sampled.

Note that the number of nodes and the number of walks
and their length varies from neuron to neuron. To speed up
model fitting, we fix the length [ of each walk and randomly
sample n,, = 256 walks with replacement from each Wr to
obtain a matrix My € R3*!Xnw. longer walks are truncated
and shorter walks are padded with zeros and packed using
the pack_padded_sequence utility of PyTorch (Paszke
et al., 2019). We use the set of N pairs {(Mr,cr)i}¥,
consisting of a walk representation and a cell type label, to
train the MORPHVAE model.

2.2. Generative model

To model the distribution over walks from soma to tip within
a neuron, we employ a seq2seq variational autoencoder
with spherical latent space (Sutskever et al., 2014; Xu &
Durrett, 2018; Davidson et al., 2018), a model that has
been originally developed in the context of natural language
processing which we modify here to predict continuous
variables. Our goal is to find an encoder fy(z|w) for the
walk w with z € R¥, k € N*, and a decoder g4(w|2) such

that g¢(f9(w)) ~ Ww.

Here, fyp(z|w) = vMF(u,k = ¢) is a von-Mises Fisher
(VMF) distribution with fixed variance x whose mean p is
modelled by a two-layered unidirectional Long Short-Term
Memory (LSTM) unit (Hochreiter & Schmidhuber, 1997)
with linear input and output layer. A LSTM is a recurrent
neural network that can keep track of already seen input via
two internal states, its hidden state h, and its cell state c.

In the encoder fy(z|w = (v1,...,v,)), each coordinate v;
is first projected into a higher dimensional space via a linear
transformation z; = Wj,, -v; with W,, € R™*3, The x; are
then consecutively fed through a unidirectional two-layered
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LSTM, whose internal states have been initialized to 0™,
until we obtain (hy,, ¢,) = LSTM(zy,, hy—1,¢n—1). The
last hidden and cell state of both layers is then concate-
nated (denoted by (h; cy,)) and linearly projected onto k
dimensions using Wyo; € RF*2:(m+m) “the transformation
matrix converting from LSTM states to the latent space, to
obtain the mean of our vMF distribution for the sampling
of z. Finally, z is taken as the average over five samples of
z; ~ VMF(u, ¢) which are sampled via rejection sampling
(Xu & Durrett, 2018; Davidson et al., 2018).

In summary:
;= Wip - v5, hg =co =0 (1)
hi, ci = LSTM(24, hi—1,¢i-1) 2
p=Wsa - (hy cn) (3)
1 ns=>
zi ~ VMF(u, k = ¢), =z ; 2 “4)

The decoder g4(w|z) decodes the coordinates ¥; in w step
by step from z and ;1 using a second unidirectional two-
layered LSTM. First, the LSTM is initialized with the initial
states (h§~c)) = Wiy, - 2, where W, € R (m+m)xk
transforms z back into LSTM state space, and a linear
projection of the first coordinate y; = W/, - v1 with
W! € R™*3. Then, the LSTM subsequently predicts ;1
from its internal states and the previous y;. Finally, each

y; is passed through a linear transformation W,,,; € R3x™

to predict the output sequence w = (01, d2,...,0,). In
summary:

(ho o) = Wine - 2, y1 = Wi, 01 &)

Yit1s by, ¢ = LSTM(yi, hi_y, ¢1) ©)

Vit1 = Wout * Yit1 (7

W= (01,02,...,0n) (8)

We jointly optimize the parameters {6, ¢} of the en- and
decoder by maximizing the evidence lower bound (ELBO)

£(6‘7 (ba w) :Ezwfg(zhv) [log 9¢ (w|2)]

CKLGl)lfez)] O

using a uniform vMF prior fy(2) = vMF(-,0) on the latent
space. The vMF prior prevents the KL collapse typically
observed in Gaussian VAE settings (Bowman et al., 2015).
In fact, the KL term in our loss term is constant and only
depends on the chosen variance « (Xu & Durrett, 2018).
Thus, we can simplify Eq. 9 to

£(9a Qb, w) = Ezwfg(z\w) [lOg g¢(w|z)] (10)

which we estimate by the summed mean-squared error be-
tween w and w.

2.3. Learning a semi-supervised neuron representation

From the learned latent space over 3D-walks we additionally
derive a feature representation r7 for each neuron 7'. For
this, we pool over the n,, = 256 walks in M7, now encoded
and sampled from the latent space Zr = (le . ) €
R™w*k_ Thus,

rr = Pool(Zr) € R¥, (11)

where Pool denotes a pooling operation over all walks, like
max-pooling or averaging, that is insensitive to the order of
the walks in Z7. We explored different pooling operations
during training (for details, see Appendix).

To incorporate information from potentially available cell
type labels, we added a classification head that predicts the
cell type label c¢r of r1 using logistic regression (Fig. 1).
The classifier is tied to the autoencoder via the latent sample
2T of each walk in T and is jointly trained to minimize the
unweighted cross-entropy loss. This allows us to incorporate
knowledge about cell type labels when learning the represen-
tations for the walks, p;, and for the neurons, r7. Notably,
this approach allows to integrate any label information that is
relevant to the researcher. For our experiments, we vary the
fraction of cells with labels provided to train the model, in-
terpolating between an unsupervised, a semi-supervised and
a fully supervised setting. All parts of the model were imple-
mented in PyTorch (Paszke et al., 2019), all code is available
athttps://github.com/berenslab/morphvae.

2.4. Sampling of morphologies

For a given reference morphology 7" we want to construct a
new morphology T that resembles 7' with respect to type-
defining morphological properties. To this end, we pass the
walks w; in the matrix Mr through our model as described
in Section 2.2 to obtain a matrix

Mr = go(fo(Mr)).

MT is a noisy version of Mr, however, from which we
cannot reconstruct a new morphology directly.

First, we need to estimate the proper walk length of walks
that are shorter than /. We cannot use an end-of-sentence
token due to the continuous nature of our setup, and we
employed zero-padding, thus shorter walks jump back to
(0,0,0). Here, we trimmed each walk @ whenever its path
angle, the angle between two consecutive segments, ex-
ceeded 75 degree.

Second, we reduced the number of nodes by aggregating
nodes before constructing a new neuron tree as, otherwise,
we would over-estimate the number of nodes |V| in T and
thus overestimate the number of dendrites. To this end, we
clustered each column 7i2; € R™» >3 j € [1,--- 1], in My


https://github.com/berenslab/morphvae

MorphVAE: Generating Neural Morphologies from 3D-Walks

separately from last to first step using a fixed distance thresh-
old d (dtoy = .5, dmlemc = .4, dmlinh = .3, drgc = 25)
For clustering, we used agglomerative clustering as imple-
mented in scikit—-learn (Pedregosa et al., 2011) with
a Ward linkage criterion (Ward Jr, 1963) and a Euclidean
distance metric. In some cases, this will result in walks that
have been merged in step ¢ to be split again in step ¢ — 1. If
this happens, we merge the involved clusters at step ¢ — 1 to
avoid illegal paths. Now, we replace each coordinate in Mr
with its respective cluster mean to obtain a clustered matrix
M,

lus ®

Finally, we construct a new tree T = (V,E) by ‘reverse
engineering’ the walks in M,

lus:
V = {m ;i ; € Mr,,,.}

E = {(ij, i j41)}
forie[l,--- ,nylandj € [L,--- 1]

2.5. Datasets

We trained and evaluated the MORPHVAE model on four
different datasets: artificially generated toy data, excita-
tory pyramidal cell dendrites in M1 (Scala et al., 2020),
inhibitory cell axons in M1 (Scala et al., 2020), and retinal
ganglion cell dendrites (Reinhard et al., 2019), where all
data was recorded from adult mice (Fig. 2).

Dataset | Np resampledat Nirain  Noar  Niest
Toy 3 - 750 250 200
M1 EXC 3 50 um 160 55 60
M1 INH 4 40 pm 248 62 62
RGC 14 30 um 400 99 100

Table 1. Number of classes /N p, resampling distance, and sizes of
stratified training, validation, and test sets for each dataset.

2.5.1. ARTIFICIAL DATASET

We generated a set of N = 1200 artificial neurons using
very simple growth and branching rules (for details, see
Appendix). The resulting toy neurons were not “real” in the
sense that they mimicked actual neurons accurately, but they
did resemble the overall shape and branching patterns of
real neural populations. Each neuron contained |V'| = 200
nodes and belonged to one of three different populations P;
of equal size (Np, = 400) where each population had its
unique set of generating parameters (Fig. 2a). These were
chosen such that the neuron populations were not trivial to
separate e.g. by PCA on density maps. For the MORPHVAE
model, we set the walk length to [ = 16 when generating
the walk matrices My, and split the data into Nyyq4n = 750,
Nval = 250, and Ntest = 200.

2.5.2. REAL NEURON DATASETS

We downloaded 275 dendritic reconstructions of excitatory
neurons and 372 axonal reconstructions of inhibitory neu-
rons' that had been recorded in a large scale multi-modal
study describing cell types in adult mouse M1 (Scala et al.,
2020). We manually assigned the m-type of the excitatory
neurons to one of tufted, untufted or other based on visual
inspection of the apical dendrites (for details, see Appendix).
For the inhibitory neurons we used the assigned RNA fam-
ily labels (t-type) as cell type labels but grouped Sncg to
Vip as it contained only 6 cells. We also downloaded 599
reconstructions of retinal ganglion cell dendrites from neu-
romorpho (Ascoli et al., 2007) that were originally collected
by Reinhard et al. (2019). Here, we used the cell type la-
bels assigned by the authors which were based on the cells’
stratification pattern within the inner plexiform layer.
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Figure 2. A random subset of two morphologies for each popula-
tion within each dataset. a) Artificially generated data (brown: P1,
antique pink: P2, beige: P3, inset: xz view). b) Excitatory cell
dendrites from mouse M1 (green: Tufted, dark blue: Untufted,
light blue: Others, inset: xy view). ¢) Inhibitory cells from mouse
MI1. Axons are in color, dendrites are in grey (yellow: Sst, pink:
Pvalb, purple: Vip, rose: Lamp5, inset: xy view). d) One example
for eight out of 14 populations of retinal ganglion cell dendrites
(inset: xz view). Somata are indicated by a black square.

All real reconstructions were soma centered and resam-
pled to reduce the number of nodes within each reconstruc-
tion (sampling distance see Table 1). The 3D coordinates

'https://download.brainimagelibrary.org/
3a/88/3a88a7687ab66069/
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were rescaled by a factor of 100 to allow transfer learn-
ing from the MORPHVAE trained on artificial data. We
set the walk length to [ = 32 when generating the walk
matrices M, and split the data into a stratified training,
validation, and test set of the sizes reported in Table 1. Due
to the imbalance in class sizes we report balanced accuracy
(accpaq = w, with TPR = T—; and TNR = %)
for the analyses in Section 3.2. For a more detailed account
of each data set, see the Appendix.

2.6. Training

On the artificial dataset we fit the entire model over 150
epochs using the Adam optimizer (Kingma & Ba, 2014)
with a batch size of 128 and an initial learning rate of 0.01
that we half at every 50 epochs. Additionally, we employed
teacher forcing (Lamb et al., 2016) at a rate of 50% to train
the decoder and we regularized the model using dropout
(Srivastava et al., 2014) in the input layers of the encoder,
the decoder and the classification head, and in both LSTMs.
To find the optimal values for the network dimensions and
pooling operations we performed a grid search and took the
model with the best average validation performance over
three Glorot initializations (Glorot & Bengio, 2010) (for
details, see Appendix). The best performing model used a
hidden and a latent dimension of m = k = 32, a variance
of k = 500 and max-pooling. On the M1 data, fitting the
model from scratch was unsuccessful, probably due to the
low sample size. Thus, we first fit the model as described
above but on an artificial dataset that included more diverse
neurons (for details, see Appendix) and employed random
scaling as that improved the quality of the reconstructions.
We then fine-tuned this model for another 200 epochs (with-
out random scaling) on each of the M1 datasets. The model
sucessfully trained on the RGC data without pre-training,
but pre-training led to better results. We therefore report the
results of the pre-trained models throughout.

2.7. Embeddings, classification and density maps

To visualize the encoded representation of walks, u;, in
two dimensions we used openTSNE (Policar et al., 2019),
an open and fast implementation of t-distributed stochastic
neighbor embedding (t-SNE) (Van der Maaten & Hinton,
2008), with PCA-initialization, cosine distance and a per-
plexity of 200 (Kobak & Berens, 2019). For the embedding
of the neuron representations r7, we used a perplexity of 30.
We show the embeddings on test data for the model with the
best performance in each condition unless stated otherwise.

To evaluate the neuron representation using a ‘upper bound
on discriminability’, we used a k-nearest neighbor classifier
(k = 5) as implemented in scikit-learn (Pedregosa
etal., 2011). We fit the classifier on the representations 7,
of the training data for each of the three model initialization

and evaluated on the respective encoding of the test data. We
report averages across the three initializations throughout.

We computed density maps and morphometric statistics us-
ing the MorphoPy toolbox (Laturnus et al., 2020b). For the
density maps, we sampled equidistant points with 0.1 pm
(toy data) and 1 ym (all other data) spacing along each neu-
rite of T" and normalized the resulting point cloud to lie
between 0 and 1. We chose the normalization ranges glob-
ally within each dataset to preserve relative sizes between
cells. The normalized point cloud was then projected onto
the cardinal planes or axes (toy data: zy, M1 EXC/M1 INH:
xz, RGC: z), and binned into 20 equidistant bins along each
direction. We smoothed the resulting histograms by con-
volving them with a 11-bin Gaussian kernel with a varying
standard deviation of o € [.5, 1, 2] bins to find the best pro-
jection. We treated the density maps as flattened vectors
and reduced them to as many principal components (PC) as
needed to keep more than 95% of the variance (for details,
see Appendix). We used the morphometric statistics as they
are implemented in the toolbox per default.

2.8. TREES Toolbox

To compare our generative model with existing work, we
generated reconstructions of all test set neurons in each
real dataset using the TREES Toolbox (Cuntz et al., 2011).
For this we generated a 3D image stack of each neuron
(for details, see Appendix), passed them through a custom
MATLAB script, and sampled one new morphology per
stack.

3. Results

3.1. Model performance on the artificial dataset
3.1.1. TRAINING AND ABLATION STUDY

First, we validated the model on the artificial dataset. We
started with a fully supervised setting, where the model at-
tempted to reconstruct the neural morphologies and classify
the neurons correctly based on their latent representation 7.
In this setting, the classification head was fully trained after
100 epochs and its loss plateaued while the autoencoder
still improved its performance. One run over 150 epochs on
the 750 training morphologies took about 2 hours on one
NVIDIA Titan Xp GPU with 12 GB memory.

To investigate if the model can also be trained in a semi- or
unsupervised setting, we systematically changed the amount
of labels provided to the classification head during training
from 100% to 0% of labels, moving from a fully supervised
to a semi-supervised and unsupervised setting (Table. 2). We
noticed that the reconstruction loss changed from 519.4 +
14.5to 575 + 11.7 (mean = standard deviation across three
initializations) when not allowing access to the cell type
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labels, indicating that label information also helped the
generative model to create better walk reconstructions.

We studied the influence of training set size on model per-
formance by reducing the amount of training data in steps of
150 samples. Hereby, the model reconstructed reasonably
well until n = 450 (617.1 & 11.7; mean + SD) and then
deteriorated quickly (Table 2).

We also varied the

walk length [ to Model Rec-Loss Class-Loss
assess its influence Standard 5194 +14.5 19.0 + 1.3
on the model  n=600 586.3+3.8 24441
performance If 1 n=450 617.1+11.7 30.8+4.5
! : n=300 793.5+61.1 3444+1.
is chosen too short, n=150 1268.4 +47.3 64.9+6.1
the structure of Shuffled 557.5 + 4. 291.4 + 2.
each neuron can- No labels 575.4+11.7 71.6 4 2.6
not be accurately =8 3737.8 £295.6 37.1+ 11.

[ 1=32 583.4 6.1 25.7 + 2.8
sampled, if it is

chosen too long

it creates strong Table 2. Reconstruction and classifica-
zero-padding  in tion loss on the test set when ablating
the walk matrix different parameters during training on
M. Both settings the artificial dataset. .\/glues denote the
were harmful to mean i §t.an§1arc.1 deviation across three
the model but model initializations.

choosing it too
short was more severe (Table 2).

3.1.2. LEARNED NEURON REPRESENTATIONS IN
MORPHVAE

We next studied the quality of the learned neural represen-
tation 7. To this end, we created a 2D visualization of all
rr, in the test set using t-SNE (Van der Maaten & Hinton,
2008). This revealed three distinct, well separated clusters
for each population, especially if a high fraction of labels
was used (Fig. 3a). The separability slowly decreased with
decreasing number of cell type labels until the cluster for
population P2 and P3 started to merge (Fig. 3a). Yet, even
a moderate amount of labels yielded very accurate represen-
tations of the three cell types, and also without labels, the
representations of the three types did not overlap.

Figure 3. a) T-SNE embeddings of the neural representations rr;
for the artificial data for the best performing models using 90%,
50% or 10% of labels during training. b) Same as in a using the
first 10 PCs of XY density maps as neural representation.

Additionally, we quantified the discriminability of the
learned neural representations training a 5-nearest neigh-
bor classifier on the respective features when using different
amounts of the labels (100%, 90%, 50%, 10%, 0%). The
prediction accuracy on test data was close to perfect when all
labels were used (98% == 0%, mean == SEM across initializa-
tions) and worsened only slightly for the fully unsupervised
case (94% =+ 2%).

We compared our findings to the performance when using
XY density maps as a predictor of cell type label. Density
maps project the neural point cloud onto a plane or an axis
and have been a classical descriptor in cell typing studies
(Jefferis et al., 2007; Stimbiil et al., 2014; Laturnus et al.,
2020a). We found that the MORPHVAE representation
had much better separability both in terms of visualization
(Fig. 3b) and in terms of prediction accuracy (Table 3).

3.1.3. WALK LATENT SPACE ENCODES WALK LENGTH
AND DIRECTION

We also explored the structure of the learned latent space for
3D-walks using 2D visualizations with t-SNE. This space
was highly ordered and contained information about the
walk length and general direction of each walk in terms of
x-, y-, and z-coordinates of its tip (Fig. 4a—d). Also, our cell
type labels changed gradually over the walk representation
(Fig. 4e) which explains the emergence of the separated
neuron representation even in the unsupervised case.
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Figure 4. T-SNE representation of the encoded walks p; for the
artificial data colored by walk length (a), by x-value (b), by y-value
(c) and by z-value (d) of the tip as well as by cell type label (e)
of each neuron that the walk was sampled from. f) Original walk
(black) and five decoded samples (grey) using different variances
during the sampling in the vVMF latent space. A low x induces a
high variance and vice versa.

The reconstruction performance for single 3D-walks was
good, with reconstructed walks being slightly smoothed as
to be expected from MSE loss (Fig. 4f). Additionally, we
were able to control the faithfulness of the reconstruction by
varying the variance « during sampling in the vMF latent
space. For large k, i.e. small variance, the reconstructions
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were close to the input while small x resulted in larger
deviations (Fig. 4f).

3.1.4. SAMPLING MORPHOLOGIES WITH MORPHVAE

Finally, we sampled new morphologies from reference neu-
rons in our dataset using MORPHVAE (Fig. 5a). For this,
we encoded the walk matrix of each reference neuron in the
latent space and sampled new walk matrices as described
in Section 2.4 using three different sampling variances
(x € [100, 300, 500]). The resulting morphologies agreed
well in overall shape and closely matched the observed dis-
tributions for certain morphometric statistics (e.g. maximal
branch orders, mean soma exit angle and tree asymmetry;
Fig. 5b, upper row). However, geometric features like the
width, and the depth or branching angles within the morpho-
logical tree were consistently underestimated, especially in
population P3 (Fig. 5b, lower row), which might be related
to the smoothing properties of MSE. In this dataset there
was no ~ that was clearly superior to the others in terms
of matching the observed morphometrics but, as expected,
higher x yielded narrower distributions (Fig. 5b).

a real sampled real sampled
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Figure 5. a) Ground truth examples and two new samples thereof
(k = 500) for each of the three populations. The underlying un-
clustered 3D-walks are shown in grey. b) Distributions of selected
morphometric statistics for the test neurons in each population
(colored) and the sampled neurons using different values of &
during sampling in the latent space (grey). Lines indicate the
medians.

3.2. MORPHVAE on real data

After we validated our approach on the artificial data, we ap-
plied the MORPHVAE model on three diverse real datasets

Dataset Np  Representation  Accuracy

Toy 3 rr (100%) 98% + 0
rr (0%) 94% + 2
DMy(oc =2) 90%

M1 EXC 3 rr (100%) 70% + 5
rr (0%) 58% £ 7
DM,.(c =1) 60%

M1 INH 4 rr (50%) 56% =+ 8
rr (0%) 52% £ 7
DM,.(c=1) 66%

RGC 14 r7 (90%) 51% + 6
rr (0%) 33% +£5
DM.(oc =1) 53%

Table 3. Balanced classification accuracy on the test set using the
learned neuron representation r7 (mean &= SEM across initializa-
tions) and the best competing density map. The values in brackets
indicate the amount of labels used during training or the width of
the smoothing kernel for density map generation.

of neural reconstructions: excitatory pyramidal cell den-
drites (M1 EXC, Fig. 2b), inhibitory cell axons (M1 INH,
Fig. 2¢), and retinal ganglion cell dendrites (RGC, Fig. 2d).
We employed transfer learning where the model was first
trained on an adjusted artificial dataset with random scaling
and then fine-tuned on the real data. This was necessary as
both M1 datasets were too small to be trained from scratch
but this also improved the reconstruction accuracy for the
RGC data (48.9 £4.13 vs 67.6 = 1.77).

In contrast to the artificial data, the reconstruction loss was
best when using no labels during training (M1 EXC: 66.42+
2.28, mean =+ SD across initializations; M1 INH: 203.94 +
5.22; RGC: 48.9 £ 4.13) but the fully supervised setting
was only slightly worse (M1 EXC: 83.97 4 10.34; M1 INH:
235.83 £ 11.74; RGC: 74.56 + 3.05). Nevertheless, this
might indicate that classification and reconstruction denote
competing tasks on the latent space for real data.

We used a 5-nearest neighbor classifier to predict the cell
type labels on the neural representations learned with dif-
ferent amounts of labelled data and reported the balanced
classification accuracy on the test data for each dataset (Ta-
ble 3). The accuracy was good for the representations of
excitatory neurons (70% =+ 5; mean + SEM) and better
than the best performing density map (60%). For the in-
hibitory neurons and the RGCs, the accuracy was clearly
above chance level but here density maps performed slightly
better. Interestingly, for the inhibitory neurons, the best
performing representation used only 50% of labelled data
(56% = 8) and was just marginally better than the fully un-
supervised representation (52% =+ 7). Nevertheless, using
label information during training improved the structure in
the neuron latent space generally (Fig. 6a, ¢, and e), and
for RGCs in particular where a clear separation emerged
between ON and OFF cells (Fig. 6e).
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Figure 6. a) T-SNE embeddings of the neural representations 7, for the dendrites of excitatory cells in M1 for the best performing models
using 100% and 0% of labels during training. We create the embedding on the training data (no edges) and project the validation data
(squares, black edges) and the test data into it (black edges; k = 5, perplexity=5). b) One ground truth example and one new sample
thereof (x = 500, inset: xy) for each of the three excitatory populations. The underlying un-clustered 3D-walks are shown in grey. ¢)
T-SNE embedding for axons of inhibitory cells in M1 as in a. d) One ground truth example and one new sample thereof (x = 500, inset:
zy) for each of the four inhibitory populations. e) T-SNE embedding as in a) for the retinal ganglion cell dendrites. f) One ground truth
example and one new sample thereof (k = 500, inset: xz) for four example neurons.

Newly sampled morphologies matched their reference neu-
rons well in overall shape for all three datasets, and often
regardless of the cell type label (Fig. 6b, d, f). The model
successfully learned to recreate tufted and untufted exci-
tatory cells, for example, or the prominent bistratification
of ON-OFF direction selective RGCs (Fig. 6 f). Investi-
gating the morphometric statistics of the newly sampled
data revealed that pre-training with random scaling ame-
liorated the underestimation of neural size as width, depth,
and height were now comparable with those of the true
populations (data shown in Appendix). Hereby, x > 100
generally created better results, yet, the model consistently
underestimated the mean branch angles and the median path
angles, and created nodes with an unrealistic high degree
of branching which we believe to be related to the post-hoc
clustering of the sampled walk matrices.

We also created new samples of the same neurons using
the TREES Toolbox (Cuntz et al., 2011) (Section 2.8) and
extracted their morphometric statistics for comparison with
MORPHVAE (data shown in Appendix). While the overall
match was good for TREES, it often generated narrower
distributions for each statistic than what was indicated by
the ground truth data.

Finally, we compared the runtime during morphology sam-
pling for the MORPHVAE model and the TREES Toolbox
in MATLAB Online. Hereby we constrained our system to
the same amount of CPUs as provided by MATLAB (16
CPUs) and disabled GPU processing for a fair comparison
(for details, see Appendix). The runtime was similar for

both models during sampling and tree construction (Ours:
0.53s + 0.03, TREES: 0.64s 4 0.64; mean &+ SD), but dif-
fered considerably during data loading (Ours: 6.77s &= 0.83,
TREES: 16.49s + 1.19). Note, that the TREES Toolbox
needs to load a new image stack for each neuron separately
while MORPHVAE encodes the reference walk matrices
once for each batch which gives it a strong computational
advantage. MORPHVAE additionally allows GPU process-
ing which cut the encoding time in half (Ours: 2.94s+0.01).

Thus, MORPHVAE denotes an efficient generative model
that can be used to sample realistic looking neurons from
a diverse set of examples while yielding informative low-
dimensional embeddings at the same time.

4. Discussion

We presented MORPHVAE, an efficient and unsupervised
generative model of neural morphologies based on 3D-
walks. On multiple diverse datasets MORPHVAE was able
to generate new morphologies from reference neurons with
a controlled degree of variation that matched key charac-
teristics of their biological counterparts without explicitly
incorporating biological constraints. Additionally, MOR-
PHVAE yielded a representation for neuron morphologies
that integrated label information in a semi-supervised fash-
ion and that was at least as good as commonly used density
maps in distinguishing different cell types.



MorphVAE: Generating Neural Morphologies from 3D-Walks

4.1. Related Work

Learning representations from raw morphological data has
only been explored in one further study so far. Zhang et al.
(2021) recently trained LSTMs on morphological recon-
struction files coupled with convolutional networks on den-
sity maps to successfully classify several types of rat neu-
rons. Their model does not allow for the generation of
new data, however. Here, different approaches have been
suggested in the past, which we will briefly review below.

Sampling based methods, for example, start with a simple
morphological shape and make small changes iteratively
using e.g. Markov-Chain Monte-Carlo (MCMC) methods
(Serene, 2013; Farhoodi & Kording, 2018). These methods
are computationally extremely expensive, especially if the
morphologies are large. Similarly, mechanistic growth mod-
els actively grow neurites from the soma outwards using
biologically plausible operations which are triggered accord-
ing to preset rules or by ‘environmental cues’ (van Pelt &
Schierwagen, 2004; Memelli et al., 2013; Torben-Nielsen &
De Schutter, 2014; Kassraian-Fard et al., 2020). These meth-
ods can be reasonably efficient and allow inference about
biological processes, but choosing their parameters is typi-
cally not straightforward if one wants to achieve convincing
neuron shapes.

Hierarchical models grow neuron segments iteratively by
sampling from estimated morphometric priors that deter-
mine e.g. segment length, radius or branch angle. This
process is repeated until the entire neuron matches the origi-
nal neuron or neuron class with respect to a set of selected
statistics. This approach has been successfully employed to
grow cortical pyramidal neurons (Eberhard et al., 2006), and
motor neuron and Purkinje cell dendrites (Palombo et al.,
2019) but, again, it needs careful selection over the morpho-
metric priors. Similarly, Cuntz et al. (2011) sample 2D and
3D point clouds from an averaged density map and subse-
quently connect the sampled points via a modified minimal
spanning tree algorithm that incorporates the optimization
of cytoplasmic volume, space and conduction time. A simi-
lar approach that is based on synaptic target points is taken
by Bingham et al. (2020).

Thus, MORPHVAE provides an efficient alternative for gen-
erating neuron morphologies that can operate on a large set
of possibly diverse neuron morphologies, while learning a
generative model for all of these jointly. Once trained, we
can use MORPHVAE to sample an unlimited number of mor-
phologies from a reference neuron without much additional
computational cost. Moreover, MORPHVAE incorporates
cell type diversity and representation learning directly and
provides an embedding of neuron morphologies, which can
be used for exploratory analysis and visualization.

4.2. Limitations

Although the neurons sampled from the MORPHVAE model
looked realistic even to experts, our model consistently un-
derestimated the average branch angles for all neurons. As
this is introduced by the post-hoc clustering of the sampled
walks, future work will need to explore other aggregation
schemes, and conditional sampling of the walks in Mr.
Furthermore, the learned neuron representations cannot be
uniquely inverted back into their respective walk matrix
which makes meaningful interpolation between different
morphologies difficult. A possible remedy could be the
interpolation between matched walks in the encoded latent
space Z, similar to what has been proposed by Batabyal
et al. (2020).

4.3. Future work

The MORPHVAE model allows to generate diverse sets of
neurons with a controlled amount of variation which will be
valuable for large-scale simulations and network analysis.
It may further generate ground truth data to assess and
improve reconstruction algorithms for light- and electron
microscopy data (Peng et al., 2010; Helmstaedter et al.,
2013; Bria et al., 2016). Finally, through the incorporated
representation learning, MORPHVAE will facilitate further
research into the morphological diversity of cell types in the
brain, which form the building blocks of the neural circuits
underlying perception, decision making, memory and motor
action. As MORPHVAE learns a generative distribution of
plausible and possible walks through neural reconstructions
it might also help to detect morphological anomalies in
development or neurological diseases.
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