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Abstract
In this work, we study algorithms for learning
in infinite-horizon undiscounted Markov decision
processes (MDPs) with function approximation.
We first show that the regret analysis of the PO-
LITEX algorithm (a version of regularized pol-
icy iteration) can be sharpened from O(T 3/4)
to O(

√
T ) under nearly identical assumptions,

and instantiate the bound with linear function ap-
proximation. Our result provides the first high-
probability O(

√
T ) regret bound for a computa-

tionally efficient algorithm in this setting. The
exact implementation of POLITEX with neural
network function approximation is inefficient in
terms of memory and computation. Since our
analysis suggests that we need to approximate
the average of the action-value functions of past
policies well, we propose a simple efficient imple-
mentation where we train a single Q-function on
a replay buffer with past data. We show that this
often leads to superior performance over other
implementation choices, especially in terms of
wall-clock time. Our work also provides a novel
theoretical justification for using experience re-
play within policy iteration algorithms.

1. Introduction
Model-free reinforcement learning (RL) algorithms com-
bined with powerful function approximation have achieved
impressive performance in a variety of application domains
over the last decade. Unfortunately, the theoretical under-
standing of such methods is still quite limited. In this work,
we study single-trajectory learning in infinite-horizon undis-
counted Markov decision processes (MDPs), also known as
average-reward MDPs, which capture tasks such as routing
and the control of physical systems.

One line of works with performance guarantees for the
average-reward setting follows the “online MDP” approach
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proposed by Even-Dar et al. (2009), where the agent se-
lects policies by running an online learning algorithm in
each state, typically mirror descent. The resulting algo-
rithm is a version of approximate policy iteration (API),
which alternates between (1) estimating the state-action
value function (or Q-function) of the current policy and
(2) setting the next policy to be optimal w.r.t. the sum of
all previous Q-functions plus a regularizer. Note that, by
contrast, standard API sets the next policy only based on
the most recent Q-function. The policy update can also be
written as maximizing the most recent Q-function minus
KL-divergence to the previous policy, which is somewhat
similar to recently popular versions of API (Schulman et al.,
2015; 2017; Achiam et al., 2017; Abdolmaleki et al., 2018;
Song et al., 2019a).

The original work of Even-Dar et al. (2009) studied this
scheme with known dynamics, tabular representation, and
adversarial reward functions. More recent works (Abbasi-
Yadkori et al., 2019; Hao et al., 2020; Wei et al., 2020a)
have adapted the approach to the case of unknown dynamics,
stochastic rewards, and value function approximation. With
linear value functions, the POLITEX algorithm of Abbasi-
Yadkori et al. (2019) achieves O(T 3/4) high-probability
regret in ergodic MDPs, and the results only scale in the
number of features rather than states. Wei et al. (2020a)
later show anO(

√
T ) bound on expected regret for a similar

algorithm named MDP-EXP2. In this work, we revisit the
analysis of POLITEX and show that it can be sharpened to
O(
√
T ) under nearly identical assumptions, resulting in the

first O(
√
T ) high-probability regret bound for a computa-

tionally efficient algorithm in this setting.

In addition to improved analysis, our work also addresses
practical implementation of POLITEX with neural networks.
The policies produced by POLITEX in each iteration require
access to the sum of all previous Q-function estimates. With
neural network function approximation, exact implemen-
tation requires us to keep all past networks in memory and
evaluate them at each step, which is inefficient in terms of
memory and computation. Some practical implementation
choices include subsampling Q-functions and/or optimizing
a KL-divergence regularized objective w.r.t. a parametric
policy at each iteration. We propose an alternative approach,
where we approximate the average of all past Q-functions
by training a single network on a replay buffer with past
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data. We demonstrate that this choice often outperforms
other approximate implementations, especially in terms of
run-time. When available memory is constrained, we pro-
pose to subsample transitions using the notion of coresets
(Bachem et al., 2017).

Our work also provides a novel perspective on the benefits
of experience replay. Experience replay is a standard tool
for stabilizing learning in modern deep RL, and typically
used in off-policy methods like Deep Q-Networks (Mnih
et al., 2013), as well as “value gradient” methods such as
DDPG (Lillicrap et al., 2016) and SVG (Heess et al., 2015).
A different line of on-policy methods typically does not
rely on experience replay; instead, learning is stabilized by
constraining consecutive policies to be close in terms of
KL divergence (Schulman et al., 2015; Song et al., 2019a;
Degrave et al., 2019). We observe that both experience
replay and KL-divergence regularization can be viewed
as approximate implementations of POLITEX. Thus, we
provide a theoretical justification for using experience replay
in API, as an approximate implementation of online learning
in each state. Note that this online-learning view differs
from the commonly used justifications for experience replay,
namely that it “breaks temporal correlations” (Schaul et al.,
2016; Mnih et al., 2013). Our analysis also suggests a new
objective for subsampling or priority-sampling transitions in
the replay buffer, which differs priority-sampling objectives
of previous work (Schaul et al., 2016).

In summary, our main contributions are (1) an improved
analysis of POLITEX, showing an O(

√
T ) regret bound

under the same assumptions as the original work, and (2) an
efficient implementation that also offers a new perspective
on the benefits of experience replay.

2. Setting and Notation
We consider learning in infinite-horizon undiscounted er-
godic MDPs (X ,A, r, P ), where X is the state space, A is
a finite action space, r : X × A → [0, 1] is an unknown
reward function, and P : X × A → ∆X is the unknown
probability transition function. A policy π : X → ∆A is
a mapping from a state to a distribution over actions. Let
{(xπt , aπt )}∞t=1 denote the state-action sequence obtained by
following policy π. The expected average reward of policy
π is defined as

Jπ := lim
T→∞

E

[
1

T

T∑
t=1

r(xπt , a
π
t )

]
. (2.1)

Let µπ denote the stationary state distribution of a policy
π, satisfying µπ = Ex∼µπ,a∼π[P (·|x, a)]. We will some-
times write µπ as a vector, and use νπ = µπ ⊗ π to denote
the stationary state-action distribution. In ergodic MDPs,
Jπ and µπ are well-defined and independent of the initial
state. The optimal policy π∗ is a policy that maximizes the

expected average reward. We will denote by J∗ and µ∗ the
expected average reward and stationary state distribution of
π∗, respectively.

The value function of a policy π is defined as:

Vπ(x) := E

[ ∞∑
t=1

(r(xπt , a
π
t )− Jπ)|xπ1 = x

]
. (2.2)

The state-action value function Qπ(x, a) is defined as

Qπ(x, a) := r(x, a)− Jπ +
∑
x′

P (x′|x, a)Vπ(x′). (2.3)

Notice that

Vπ(x) =
∑
a

π(a|x)Qπ(x, a). (2.4)

Equations (2.3) and (2.4) are known as the Bellman equa-
tion. If we do not use the definition of Vπ(x) in Eq. (2.2)
and instead solve for Vπ(x) and Qπ(x, a) using the Bell-
man equation, we can see that the solutions are unique
up to an additive constant. Therefore, in the following,
we may use Vπ(x) and Qπ(x, a) to denote the same func-
tion up to a constant. We will use the shorthand notation
Qπ(x, π′) = Ea∼π′(·|x)[Qπ(x, a)]; note that Qπ(x, π) =
Vπ(x). The advantage function of a policy π is defined as
Aπ(x, a) = Qπ(x, a)− Vπ(x).

The agent interacts with the environment as follows: at each
round t, the agent observes a state xt ∈ X , chooses an
action at ∼ πt(·|xt), and receives a reward rt := r(xt, at).
The environment then transitions to the next state xt+1 with
probability P (xt+1|xt, at). Recall that π∗ is the optimal
policy and J∗ is its expected average reward. The regret of
an algorithm with respect to this fixed policy is defined as

RT :=

T∑
t=1

(
J∗ − r(xt, at)

)
. (2.5)

The learning goal is to find an algorithm that minimizes the
long-term regret RT .

Our analysis will require the following assumption on the
mixing rate of policies.

Assumption 2.1 (Uniform mixing). Let Hπ be the state-
action transition matrix of a policy π. Let γ(Hπ) be the
corresponding ergodicity coefficient (Seneta, 1979), defined
as γ(Hπ) := maxz:z>1=0,‖z‖1=1 ‖z>Hπ‖1. We assume
that there exists a scalar γ < 1 such that for any policy π,
γ(Hπ) ≤ γ < 1.

Assumption 2.1 implies that for any pair of distributions
ν, ν′, ‖(ν − ν′)>Hπ‖1 ≤ γ‖ν − ν′‖1; see Lemma A.1 in
Appendix A for a proof.
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3. Related Work
Regret bounds for average-reward MDPs. Most no-
regret algorithms for infinite-horizon undiscounted MDPs
are only applicable to tabular representations and model-
based (Bartlett, 2009; Jaksch et al., 2010; Ouyang et al.,
2017; Fruit et al., 2018; Jian et al., 2019; Talebi & Maillard,
2018). For weakly-communicating MDPs with diameter D,
these algorithms nearly achieve the minimax lower bound
Ω(
√
D|X ||A|T ) (Jaksch et al., 2010) with high probability.

Wei et al. (2020b) provide model-free algorithms with regret
bounds in the tabular setting. In the model-free setting with
function approximation, the POLITEX algorithm (Abbasi-
Yadkori et al., 2019) achieve O(d1/2T 3/4) regret in uni-
formly ergodic MDPs, where d is the size of the compressed
state-action space. Hao et al. (2020) improve these results
to O(T 2/3). More recently, Wei et al. (2020a) present three
algorithms for average-reward MDPs with linear function
approximation. Among these, FOPO achieves O(

√
T ) re-

gret but is computationally inefficient, and OLSVI.FH is
efficient but obtains O(T 3/4) regret. The MDP-EXP2 al-
gorithm is computationally efficient, and under similar as-
sumptions as in Abbasi-Yadkori et al. (2019) it obtains a
O(
√
T ) bound on expected regret (a weaker guarantee than

the high-probability bounds in other works). Our analysis
shows a high-probability O(

√
T ) regret bound under the

same assumptions.

KL-regularized approximate policy iteration. Our work
is also related to approximate policy iteration algorithms
which constrain each policy to be close to the previous
policy in the sense of KL divergence. This approach was
popularized by TRPO (Schulman et al., 2015), where it was
motivated as an approximate implementation of conserva-
tive policy iteration (Kakade & Langford, 2002). Some of
the related subsequent works include PPO (Schulman et al.,
2017), MPO (Abdolmaleki et al., 2018), V-MPO (Song
et al., 2019a), and CPO (Achiam et al., 2017). While these
algorithms place a constraint on consecutive policies and are
mostly heuristic, another line of research shows that using
KL divergence as a regularizer has a theoretical justifica-
tion in terms of either regret guarantees (Abbasi-Yadkori
et al., 2019; Hao et al., 2020; Wei et al., 2020b;a) or error
propagation (Vieillard et al., 2020a;b).

Experience replay. Experience replay (Lin, 1992) is one
of the central tools for achieving good performance in deep
reinforcement learning. While it is mostly used in off-policy
methods such as deep Q-learning (Mnih et al., 2013; 2015),
it has also shown benefits in value-gradient methods (Heess
et al., 2015; Lillicrap et al., 2016), and has been used in
some variants of KL-regularized policy iteration (Abdol-
maleki et al., 2018; Tomar et al., 2020). Its success has been
attributed to removing some temporal correlations from
data fed to standard gradient-based optimization algorithms.

Schaul et al. (2016) have shown that non-uniform replay
sampling based on the Bellman error can improve perfor-
mance. Unlike these works, we motivate experience replay
from the perspective of online learning in MDPs (Even-Dar
et al., 2009) with the goal of approximating the average of
past value functions well.

Continual learning. Continual learning (CL) is the
paradigm of learning a classifier or regressor that performs
well on a set of tasks, where each task corresponds to a
different data distribution. The tasks are observed sequen-
tially, and the learning goal is to avoid forgetting past tasks
without storing all the data in memory. This is quite similar
to our goal of approximating the average of sequentially-
observed Q-functions, where the data for approximating
each Q-function has different distribution. In general, ap-
proaches to CL can be categorized as regularization-based
(Kirkpatrick et al., 2017; Zenke et al., 2017; Farajtabar et al.,
2020; Yin et al., 2020), expansion-based (Rusu et al., 2016),
and replay-based (Lopez-Paz & Ranzato, 2017; Chaudhry
et al., 2018; Borsos et al., 2020), with the approaches based
on experience replay typically having superior performance
over other methods.

4. Algorithm
Our algorithm is similar to the POLITEX schema (Abbasi-
Yadkori et al., 2019). In each phase k, POLITEX obtains
an estimate Q̂πk of the action-value function Qπk of the
current policy πk, and then sets the next policy using the
mirror descent update rule:

πk+1(·|x) = argmax
π

Q̂πk(x, π)− η−1DKL(π ‖ πk(·|x))

= argmax
π

k∑
i=1

Q̂πi(x, π) + η−1H(π)

∝ exp

(
η

k∑
i=1

Q̂πi(x, ·)
)
, (4.1)

where H(·) is the entropy function. When the functions
{Q̂πi}ki=1 are tabular or linear, the above update can be
implemented efficiently by simply summing all the table
entries or weight vectors. However, with neural network
function approximation, we need to keep all networks in
memory and evaluate them at each step, which quickly
becomes inefficient in terms of storage and computation.
Some of the efficient implementations proposed in litera-
ture include keeping a subset of the action-value functions
(Abbasi-Yadkori et al., 2019), and using a parametric pol-
icy and optimizing the KL-regularized objective w.r.t. the
parameters over the available data (Tomar et al., 2020).

Our proposed method, presented in Algorithm 1, attempts to
directly approximate the average of all previous action-value
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Algorithm 1 Schema for policy iteration with replay
1: Input: phase length τ , num. phases K, parameter η
2: Initialize: π1(a|x) = 1/|A|, empty replay bufferR
3: for k = 1, . . . ,K do
4: Execute πk for τ time steps and collect data Dk
5: Compute Q̂k, an estimate of Qk = 1

k

∑k
i=1Qπi ,

from data Dk and replayR
6: Set πk+1(a|x) ∝ exp

(
ηkQ̂k(x, a)

)
7: Update replayR with Dk
8: end for
9: Output: πK+1

functions

Qk(x, a) :=
1

k

k∑
i=1

Qπi(x, a).

To do so, we only use a single network, and continually
train it to approximate Qk. At each iteration k, we obtain
a dataset of tuples Dk = {(xt, at, Rt)}, where Rt is the
empirical return from the state-action pair (xt, at). We ini-
tialize Q̂k to Q̂k−1 and update it by minimizing the squared
error over the union of Dk and the replay bufferR. We then
update the replay buffer with all or a subset of data in Dk.

In the sequel, in Section 5, we first show that by focusing
on estimating the average Q-function, we can improve the
regret bound of POLITEX under nearly identical assumption;
in Section 6, we instantiate this bound for linear value func-
tions, where we can estimate the average Q-function simply
by weight averaging; in Section 7, we focus on practical
implementations, in particular, we discuss the limitations of
weight averaging, and provide details on how to leverage
replay data when using non-linear function approximation;
in Section 8 we present our experimental results; and in
Section 9 we make final remarks.

5. Regret Analysis of POLITEX

In this section, we revisit the regret analysis of POLITEX
(Abbasi-Yadkori et al., 2019) in ergodic average-reward
MDPs, and show that it can be improved from O(T 3/4) to
O(
√
T ) under similar assumptions. Our analysis relies in

part on a simple modification of the regret decomposition.
Namely, instead of including the estimation error of each
value-functionQπk in the regret, we consider the error in the
running average Qk. When this error scales as O(1/

√
k)

in a particular weighted norm, the regret of POLITEX is
O(
√
T ). As we show in the following section, this bound

can be instantiated for linear value functions under the same
assumptions as Abbasi-Yadkori et al. (2019).

Assumption 5.1 (Boundedness). Let Q̂πk := kQ̂k − (k −
1)Q̂k−1. We assume that there exists a constant Qmax such

that for all k = 1, ...,K and for all x ∈ X ,

max
a

Q̂πk(x, a)−min
a
Q̂πk(x, a) ≤ Qmax.

For the purpose of our algorithm, functions Q̂πk are unique
up to a constant. Thus we can equivalently assume that
‖Q̂πk(x, ·)‖∞ ≤ Qmax for all x.

Define V̂πk(x) := Q̂πk(x, πk). Let Vk := 1
k

∑k
i=1 Vπi(x)

and V̂k(x) :=
∑k
i=1 V̂πi(x) be the average of the state-value

functions and its estimate. We will require the estimation
error of the running average to scale as in the following
assumption.

Assumption 5.2 (Estimation error). Let µ∗ be the station-
ary state distribution of the optimal policy π∗. With prob-
ability at least 1− δ, for a problem-dependent constant C,
the errors in Q̂K and V̂K are bounded as

Ex∼µ∗ [V̂K(x)− VK(x)] ≤ C
√

log(1/δ)/K

Ex∼µ∗ [QK(x, π∗)− Q̂K(x, π∗)] ≤ C
√

log(1/δ)/K .

Define Sδ(|A|, µ∗) as in Abbasi-Yadkori et al. (2019):

Sδ(|A|, µ∗) :=

√
log |A|

2
+
〈
µ∗,

√
1

2
log

1

δµ∗

〉
.

We bound the regret of POLITEX in the following theorem.
Here, recall that τ is the length of each phase, and γ and η
are defined in Assumption 2.1 and Eq. (4.1), respectively.

Theorem 5.3 (Regret of POLITEX). Let Assumptions 2.1,

5.2, and 5.1 hold. For τ ≥ log T
2 log(1/γ) and η =

√
8 log |A|

Qmax

√
K

,
for a constant C1, with probability at least 1− 4δ, the regret
of POLITEX in ergodic average-reward MDPs is bounded as

RT ≤
C1(1 +Qmax)Sδ(|A|, µ∗)

√
τ

(1− γ)2

√
T .

Proof. We start by decomposing the cumulative regret, fol-
lowing similar steps as Abbasi-Yadkori et al. (2019):

RT =

K∑
k=1

kτ∑
t=(k−1)τ+1

(J∗ − Jπk) + (Jπk − rt). (5.1)

The second term VT =
∑K
k=1

∑kτ
t=(k−1)τ+1(Jπk−rt) cap-

tures the sum of differences between observed rewards and
their long term averages. In previous work, this term was
shown to scale as O(K

√
τ). We show that the analysis can

in fact be tightened to O(
√
T ) using improved concentra-

tion bounds and the slow-changing nature of the policies.
See Lemma B.1 in Appendix B for precise details.

The first term, which is also called pseudo-regret in litera-
ture, measures the difference between the expected reward
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of the reference policy and the policies produced by the al-
gorithm. Applying the performance difference lemma (Cao,
1999), we can write each pseudo-regret term as

J∗ − Jπk = Ex∼µ∗ [Qπk(x, π∗)−Qπk(x, πk)] .

Now, notice that POLITEX is running exact mirror descent
for loss functions Q̂πk . We bridge the pseudo-regret by the
Q̂πk terms:

RT1a = τ

K∑
k=1

Ex∼µ∗
[
Qπk(x, π∗)− Q̂πk(x, π∗)

]
(5.2)

RT1b = τ

K∑
k=1

Ex∼µ∗
[
Q̂πk(x, πk)−Qπk(x, πk)

]
(5.3)

RT2 = τ

K∑
k=1

Ex∼µ∗
[
Q̂πk(x, π∗)− Q̂πk(x, πk)

]
. (5.4)

RT2 can be bounded using the regret of mirror descent as
in previous work (Abbasi-Yadkori et al., 2019). Setting

η =

√
log |A|

Qmaxτ
√

2K
, and using a union bound over all states,

with probability at least 1− δ, RT2 is bounded as

RT2 ≤ τQmaxSδ(|A|, µ∗)
√
K .

Bounding regret due to estimation error. We now focus
on bounding RT1 = RT1a +RT1b under Assumption 5.2.
We have the following:

RT1a = τ

K∑
k=1

Ex∼µ∗
[
Qπk(x, π∗)− Q̂πk(x, π∗)

]
= (τK)Ex∼µ∗,a∼π∗

[
QK(x, a)− Q̂K(x, a)

]
≤ Cτ

√
K log(1/δ).

RT1b = τ
K∑
k=1

Ex∼µ∗
[
V̂πk(x)− Vπk(x)

]
= τKEx∼µ∗

[
V̂K(x)− VK(x)

]
≤ Cτ

√
K log(1/δ).

We can then obtain the final result by combining the bounds
onRT1a,RT1b,RT2, VT from Appendix B, and using union
bound as well as the fact that K = T/τ .

6. Linear Value Functions
In this section, we show that the estimation error condition
in Assumption 5.2 (and thusO(

√
T ) regret) can be achieved

under similar assumptions as in Abbasi-Yadkori et al. (2019)
and Wei et al. (2020a), which we state next.

Assumption 6.1 (Linear value functions). The action-
value function Qπ of any policy π is linear: Qπ(x, a) =
w>π φ(x, a), where φ : S × A → Rd is a known feature
function such that maxx,a ‖φ(x, a)‖ ≤ CΦ.

Assumption 6.2 (Feature excitation). There ex-
ists a constant σ2 such that for any policy π,
λmin

(
E(x,a)∼µπ⊗π[φ(x, a)φ(x, a)>]

)
≥ σ2 > 0.

We now describe a simple procedure for estimating the
average action-value functions Qk(x, a) = φ(x, a)>wk,
where wk = 1

k

∑k
i=1 wπi , such that the conditions of As-

sumption 5.2 are satisfied. Essentially, we estimate each
Qπi using least-squares Monte Carlo and then average the
weights. We will use the shorthand notation φt = φ(xt, at).
LetHi and Ti be subsets of time indices in phase i (defined
later). We estimate Qπi as follows:

ŵπi =

( ∑
t∈Hi

φtφ
>
t + αI

)−1 ∑
t∈Hi

φtRt (6.1)

where Rt are the empirical b-step returns (b is specified
later), computed as

Rt =

t+b∑
j=t

(rt − Ĵπi), Ĵπi =
1

|Ti|
∑
t∈Ti

rt. (6.2)

We then estimate wk as ŵk = 1
k

∑k
i=1 ŵπi . Note that

for this special case of linear value functions, we do not
need to use the replay buffer in Algorithm 1. For analysis
purposes, we divide each phase of length τ into 2m blocks
of size b and letHi (Ti) be the starting indices of odd (even)
blocks in phase i. Due to the gaps between indices and fast
mixing, this makes the data almost independent (we make
this precise in Appendix C) and the error easier to analyze.
In practice, one may simply want to use all data.

For a distribution µ, let ‖x‖µ denote the distribution-
weighted norm such that ‖x‖2µ =

∑
i µix

2
i . Using Jensen’s

inequality, we have that (Ex∼µ[q(x)])2 ≤ Ex∼µ[q(x)2].
Thus, it suffices to bound the Q-function error in the
distribution-weighted norm, ‖QK − Q̂K‖µ∗⊗π∗ . Further-
more, given bounded features,

‖Q̂K −QK‖µ∗⊗π∗ ≤ CΦ‖ŵK − wK‖2 ,

so it suffices to bound the error in the weights. We bound
this error in the following Lemma, proven in Appendix C.

Lemma 6.3 (Estimation error for linear functions). Sup-
pose that Assumptions 2.1, 6.1 and 6.2 hold and that true
action-value weights are bounded as ‖wπi‖2 ≤ Cw for all
i = 1, . . .K. Then for any policy π, for α =

√
τ/K, m ≥

72C4
Φσ
−2(1 − γ)−2 log(d/δ), and b ≥ log(Tδ−1(1−γ)−1)

log(1/γ) ,
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there exists an absolute constant c such that with probability
at least 1− δ,

‖ŵK − wK‖2 ≤ cσ−2(Cw + CΦ)b

√
log(2d/δ)

Km
.

Furthermore, in Appendix D, we show that the error in the
average state-value function satisfies the following:

Eµ∗ [V̂K(x)−VK(x)]≤cCΦ|A|(Cw+CΦ)
b

σ2

√
log(2d/δ)

Km
.

We have demonstrated that Assumption 5.2 can be satisfied
with linear value functions. For Assumption 5.1, it suffices
for the weight estimates {ŵπi} to be bounded. This will be
true, since we assume that the true weights are bounded and
we can bound the error in the weight space. Thus POLITEX
has an O(

√
T ) regret in this setting (though note that we

incur an extra |A| factor coming from the V̂K error bound).

7. Practical Implementation
As mentioned earlier, the key idea in our policy update is to
obtain an estimate Q̂k of the average of all the Q-functions
in previous phases. We have seen that when we use linear
functions to approximate the Q-functions, we can simply
average the weights in order to get an estimate of the average
Q-function. However, in practice, we often need to use non-
linear functions, especially neural networks, to approximate
complex Q-functions. In this section, we discuss how to
efficiently implement our algorithm with non-linear function
approximation.

7.1. Weight Averaging

The simplest idea may be averaging the weights of neural
networks. However, a crucial difference from the linear
setting is that averaging the weights of the neural networks is
not equivalent to averaging the functions that they represent:
the function that a neural network represent is invariant to
the permutation of the hidden units, and thus two networks
with very different weights can represent similar functions.
Therefore, this implementation may only succeed when all
the Q-function approximations are around the same local
region in the weight space. Thus, when we learn the new Q-
function Q̂πk in phase k, we should initialize it with Q̂k−1,
run SGD with new data, and then average with Q̂k−1.

7.2. Experience Replay

Another natural idea is to leverage the data from replay
buffer to obtain an estimate of the average Q-function. We
elaborate the details below. We use simple b-step Monte
Carlo estimate for the Q value of each state-action pair.
For any (i − 1)τ + 1 ≤ t ≤ iτ − b, we can estimate the

state-action value of (xt, at) by b-step cumulative reward1

Rt =

t+b∑
j=t

(rj − Ĵπi), Ĵπi =
1

τ

iτ∑
j=(i−1)τ+1

rj .

In the following, we denote by τ ′ := τ − b the maxi-
mum number of data that we can collect from every phase.
At the end of each phase, we store all or a subset of the
(xt, at, Rt) tuples in our replay bufferR. We extract feature
φ(x, a) ∈ Rd for the state-action pair (x, a) and let F ⊆
{f : Rd 7→ R} be a class of functions that we use to ap-
proximate the Q-functions. For phase i, we propose the fol-
lowing method to estimate Qπi : Q̂πi(x, a) = f̂(φ(x, a)),
where f̂ ∈ arg minf∈F `i(f) and

`i(f) :=
1

τ ′

iτ−b∑
t=(i−1)τ+1

(f(φ(xt, at))−Rt)2. (7.1)

Suppose that we store all the data from the previous phases
in the replay buffer, then in order to estimate the average of
the Q-functions of the first k phases, i.e., Q̂k, we propose to
use the heuristic that minimizes the average of the k squared
loss functions defined in Eq. (7.1), i.e., 1

k

∑k
i=1 `i(f).

Subsampling and coreset. In practice, due to the high
memory cost, it may be hard to store all the data from the
previous phases in the replay buffer. We found that a simple
strategy to resolve this issue is to begin with storing all the
data from every phase, and add a limit on size of the replay
buffer. When the buffer size exceeds the limit, we eliminate
a subset of the data uniformly at random.

Another approach is to sample a subset of size s from the
data collected in each phase. Denote this subset byRi for
phase i. Thus in the k-th phase, we have τ ′ data Dk from
the current phase as well as s(k − 1) data from the replay
bufferR. First, suppose that the s data points are sampled
uniformly at random. We can then minimize the following
objective:

min
f∈F

1

k

(
`i(f) +

k−1∑
i=1

̂̀
i(f)

)
, (7.2)

where ̂̀i(f) := 1
s

∑
(xt,at,Rt)∈Ri(f(φ(xt, at)) − Rt)2 is

an unbiased estimate of `i(f). Further, uniform sampling is
not the only way to construct an unbiased estimate. In fact,
for any discrete distribution, with PMF q = {qt}, over the
τ ′ data in Di, we can sample s data points according to q
and construct

̂̀
i(f) :=

1

τ ′

∑
(xt,at,Rt)∈Ri

1

qt
(f(φ(xt, at))−Rt)2, (7.3)

1This is a practical implementation of Eq. (6.2), i.e., we do not
split the data in each phase into blocks.
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in order to obtain an unbiased estimate of `i(f). As shown
by Bachem et al. (2017), by choosing qt ∝ (f(φ(xt, at))−
Rt)

2, we can minimize the variance of ̂̀i(f) for any fixed
f . In the following, we call the subset of data sampled
according to this distribution a coreset of the data. In the ex-
periments in Section 8, we show that thanks to the variance
reduction effect, sampling a coreset often produces better
performance than sampling a subset uniformly at random,
especially when the rewards are sparse.

Comparison to Abbasi-Yadkori et al. (2019). Our algo-
rithm can be considered as an efficient implementation of
POLITEX (Abbasi-Yadkori et al., 2019) via experience re-
play. In the original POLITEX algorithm, the Q-functions are
estimated using Eq. (7.1) for each phase, and all the func-
tions are stored in memory. When an agent interacts with
the environment, it needs to evaluate all the Q-functions in
order to obtain the probability of each action. This implies
that the time complexity of computing action probabilities
increases with the number of phases, and as a result the
algorithm is hard to scale to a large number of phases. Al-
though we can choose to evaluate a random subset of the
Q-functions to estimate the action probabilities in POLITEX,
our implementation via experience replay can still be faster
since we only need to evaluate a single function, trained
with replay data, to take actions.

8. Experiments
In this section, we evaluate our implementations empirically.
We make comparisons with several baselines in two control
environments.

Environments. We use two control environments with the
simulators described in Tassa et al. (2018). Both environ-
ments are episodic with episode length 1000. The environ-
ments we evaluate are:

• Cart-pole (Barto et al., 1983): The goal of this envi-
ronment is to balance an unactuated pole by applying
forces to a cart at its base. We discretize the contin-
uous force to 5 values: {−2,−1, 0, 1, 2}. The reward
at each time step is a real number in [0, 1]. We end
episodes early when the pole falls (we use rewards
less than 0.5 an indicator for falling), and assume zero
reward for the remaining steps when reporting results.

• Ball-in-cup: Here, an actuated planar receptacle can
translate in the vertical plane in order to swing and
catch a ball attached to its bottom. This task has a
sparse reward: 1 when the ball is in the cup, and 0 oth-
erwise. We discretize the two-dimensional continuous
action space to a 3× 3 grid, i.e., 9 actions in total.

Algorithms. We compare the following algorithms: our
proposed implementation of POLITEX using experience re-

play, POLITEX using weight averaging, the original PO-
LITEX algorithm, the variant of POLITEX that averages
10 randomly selected Q-functions, the mirror descent pol-
icy optimization (MDPO) algorithm (Tomar et al., 2020),
the constrained policy optimization (CPO) (Achiam et al.,
2017), and the V-MPO algorithm (Song et al., 2019b).

For all the algorithms, we extract Fourier basis fea-
tures (Konidaris et al., 2011) from the raw observations
for both environments: for Cart-pole, we use 4 bases and
for Ball-in-cup we use 2 bases. For variants of POLITEX
we construct the state-action features φ(x, a) by block one-
hot encoding, i.e., we partition the φ(x, a) vector into |A|
blocks, and set the a-th block to be the Fourier features of x
and other blocks to be zero. We approximate Q-functions
using neural networks with one hidden layer and ReLU ac-
tivation: the width of the hidden layer is 50 for Cart-pole
and 250 for Ball-in-cup. For MDPO, CPO and V-MPO, the
algorithms use a policy network whose input and output are
the state feature and action probability, respectively. We
use one hidden layer networks with width 50 for Cart-pole
and 250 for Ball-in-cup. These three algorithms also need a
value network, which takes the state feature as input and out-
puts its value for the current policy. For both environments,
we use one hidden layer network with width 50.

For Cart-pole, we choose phase length τ = 104 and for Ball-
in-cup, we choose τ = 2× 104. Since the environments are
episodic, we have multiple episodes in each phase. For Cart-
pole, since the training usually does not need a large number
of phases, we do not set limit on the size of the replay
buffer, whereas for Ball-in-cup, we set the limit as 2× 106.
For our algorithm and the variants of POLITEX, we choose
parameter η in {5, 10, 20, 40, 80, 160} and report the result
of each algorithm using the value of η that produces the best
average reward. For MDPO, CPO and V-MPO, we note
that according to Eq. (4.1), the KL regularization coefficient
between policies is the reciprocal of the η parameter in
our algorithm, we also run these baseline algorithms in the
same range of η and report the best result. In addition, in
CPO, we set the limit in KL divergence between adjacent
policies 0.001η, which, in our experiments, leads to good
performance. We treat the length of Monte Carlo estimate
b as a hyper parameter, so we choose it in {100, 300} and
report the best performance.

Results. We run each algorithm in each environment 20
times and report the average results as well as the standard
deviation of the 20 runs (shaded area). We report the average
reward in each phase before training on the data collected
during the phase. The results are presented in Figure 1.
Every run is conducted on a single P100 GPU.

From Fig. 1(a), we can see that the iteration complexity (av-
erage reward vs number of phases) and final performance of
the experience replay implementation using all the data from
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Figure 1. Experiments on the Cart-pole environment (top) and Ball-in-cup (bottom).

past phases (blue curve) are similar to many state-of-the-
art algorithms, such as POLITEX and V-MPO. Meanwhile,
according to Fig. 1(b), the experience replay implemen-
tation achieves strong performance in training speed, i.e.,
best performance at 30 minute in Cart-pole and second best
performance at 200 minute in Ball-in-cup. We note here
that the training time includes both the time for data collec-
tion, i.e., interacting with the environment simulator and the
training of a new policy. The observation that the experi-
ence replay based implementation is faster than the original
POLITEX and the implementation that uses 10 Q-functions
can be explained by the fact that the replay-based algorithm
only uses a single Q-function and thus is faster at data col-
lection, as discussed in Section 7.2. In addition, that the
replay-based algorithm runs faster than MDPO, CPO, and
V-MPO can be explained by its simplicity: in variants of
POLITEX, we only need to approximate the Q-function,
whereas in MDPO, CPO, and V-MPO, we need to train both
the policy and value networks.

The POLITEX weight averaging scheme achieves the best
performance on Ball-in-cup in both iteration complexity and
training speed, but does not converge to a solution that is
sufficiently close to the optimum on Cart-pole. Notice that
for weight averaging, we used the initialization technique
mentioned in Section 7.1. Considering the consistent strong
performance of experience replay in both environments,
we still recommend applying experience replay when using
non-linear function approximation.

In Fig. 1(c), we can see that when we only sample a small
subset (1% or 4%) of the data to store in the replay buffer,

the coreset technique described in Section 7.2 achieves bet-
ter performance due to the variance reduction effect. This
improvement is quite significant in the Ball-in-cup envi-
ronment, which has sparse rewards. Notice that sampling
coreset only adds negligible computational overhead dur-
ing training, and thus we recommend the coreset technique
when there exists a strict memory constraint.

9. Discussion
The main contributions of our work are an improved anal-
ysis and practical implementation of POLITEX. On the
theoretical side, we show that POLITEX obtains an O(

√
T )

high-probability regret bound in uniformly mixing average-
reward MDPs with linear function approximation, which
is the first such bound for a computationally efficient algo-
rithm. The main limitation of these result is that, similarly
to previous works, they hold under somewhat strong as-
sumptions which circumvent the need for exploration. An
interesting future work direction would be to relax these
assumptions and incorporate explicit exploration instead.

On the practical side, we propose an efficient implementa-
tion with neural networks that relies on experience replay,
a standard tool in modern deep RL. Our work shows that
experience replay and KL regularization can both be viewed
as approximately implementing mirror descent policy up-
dates within a policy iteration scheme. This provides an
online-learning justification for using replay buffers in pol-
icy iteration, which is different than the standard explanation
for their success. Our work also suggests a new objective
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for storing and prioritizing replay samples, with the goal
of approximating the average of value functions well. This
goal has some similarities with continual learning, where
experience replay has also lead to empirical successes. One
interesting direction for future work would be to explore
other continual learning techniques in the approximate im-
plementation of mirror descent policy updates.

References
Abbasi-Yadkori, Y., Bartlett, P., Bhatia, K., Lazic, N.,

Szepesvari, C., and Weisz, G. POLITEX: Regret bounds
for policy iteration using expert prediction. In Proceed-
ings of the 36th International Conference on Machine
Learning, volume 97 of Proceedings of Machine Learn-
ing Research, pp. 3692–3702. PMLR, 09–15 Jun 2019.

Abdolmaleki, A., Springenberg, J. T., Tassa, Y., Munos,
R., Heess, N., and Riedmiller, M. Maximum a pos-
teriori policy optimisation. In International Confer-
ence on Learning Representations, 2018. URL https:
//openreview.net/forum?id=S1ANxQW0b.

Achiam, J., Held, D., Tamar, A., and Abbeel, P. Constrained
policy optimization. In International Conference on Ma-
chine Learning, pp. 22–31, 2017.

Bachem, O., Lucic, M., and Krause, A. Practical core-
set constructions for machine learning. arXiv preprint
arXiv:1703.06476, 2017.

Bartlett, P. L. Regal: A regularization based algorithm for
reinforcement learning in weakly communicating mdps.
In In Proceedings of the 25th Annual Conference on Un-
certainty in Artificial Intelligence, 2009.

Barto, A. G., Sutton, R. S., and Anderson, C. W. Neuronlike
adaptive elements that can solve difficult learning control
problems. IEEE Transactions on Systems, Man, and
Cybernetics, (5):834–846, 1983.
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