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Abstract

The safe operation of physical systems typically
relies on high-quality models. Since a continuous
stream of data is generated during run-time, such
models are often obtained through the application
of Gaussian process regression because it
provides guarantees on the prediction error. Due
to its high computational complexity, Gaussian
process regression must be used offline on batches
of data, which prevents applications, where a fast
adaptation through online learning is necessary
to ensure safety. In order to overcome this issue,
we propose the LoG-GP. It achieves a logarithmic
update and prediction complexity in the number
of training points through the aggregation of
locally active Gaussian process models. Under
weak assumptions on the aggregation scheme, it
inherits safety guarantees from exact Gaussian
process regression. These theoretical advantages
are exemplarily exploited in the design of a safe
and data-efficient, online-learning control policy.
The efficiency and performance of the proposed
real-time learning approach is demonstrated in
a comparison to state-of-the-art methods.

1. Introduction

Recent technological trends enable an increasing autonomy
of physical systems, often operating in uncertain and dy-
namically changing environments. In order to ensure safety
and high performance of these systems, they need the ability
to quickly adapt to new situations by inferring mathematical
models from observed data. Especially in control applica-
tions, predictions and model updates must typically be per-
formed in real-time due to the fast evolution of many phys-
ical processes. These applications include the control of au-
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tonomous cars (Kendall et al., 2019), unmanned aerial vehi-
cles (Andersson et al., 2017), robotic manipulators (Nguyen-
Tuong & Peters, 2010), combustion engines (Lee et al.,
2017), and many others, where update rates in the magni-
tude of 102 Hz to 10* Hz are required. In case of predictive
control schemes, where possible future trajectories are in-
ferred and evaluated, multiple predictions are made for a
single control command, requiring prediction rates, which
are orders of magnitudes higher (Kong et al., 2015).

A common supervised machine learning technique in safety
critical applications are Gaussian processes (GPs), which
provide a high expressive power, and guarantee probabilis-
tically bounded prediction errors (Rasmussen & Williams,
20006). Since the computational complexity of updates and
predictions grows strongly with the number of training
points, many approximations have been developed to enable
the employment in real-time applications. Deterministic
training conditional approximations (Nguyen-Tuong &
Peters, 2010; Schreiter et al., 2016) and inducing point meth-
ods (Huber, 2014; Bijl et al., 2017) can speed up predictions,
while variational inference approaches for streaming data
(Bui et al., 2017) allow fast model updates and exhibit
a beneficial performance-complexity trade-off compared
to stochastic variational inference (Hensman et al., 2013).
However, error bounds from exact GP inference as derived
by, e.g., Srinivas et al. (2012); Lederer et al. (2019a), do not
extend to these methods, which prevents the usage in safety
critical applications. Even though finite feature approxima-
tions of kernels (Gijsberts & Metta, 2013) are advantageous
in this regard and yield constant update and prediction com-
plexities, safety guarantees require an impractically high
number of features (Mutny & Krause, 2018). Therefore,
there is a clear lack of methods which allow updates and
predictions in real-time for safety critical applications.

The main contribution of this paper is a novel, computation-
ally efficient, GP-based method for real-time predictions
and model updates in safety critical applications, called
locally growing random tree of GPs (LoG-GP). Based on
distributed Gaussian processes (Deisenroth & Ng, 2015), we
propose an iterative random division of individual models,
which results in a random tree as computation graph and
guarantees logarithmic complexity of model updates. In
order to reduce the complexity of predictions, the number of
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necessary individual GP evaluations is limited through the
application of locally active models. We prove that uniform
error bounds from exact GP inference directly carry over
to the proposed method, such that it can be used in safety
critical applications. This is demonstrated through the ap-
plication of LoG-GPs in a data-efficient, online-learning
control scheme, where we prove a bounded control error. In
a comparison on real-world data sets and a control simula-
tion, the superior computational efficiency is demonstrated
while providing comparable regression performance to state-
of-the-art methods.

The remainder of this paper is structured as follows: In
Section 2, distributed GPs are briefly introduced and the con-
sidered problem is stated. Section 3 presents the proposed
LoG-GP method, which is used in Section 4 to design a safe,
real-time learning control policy. The proposed methods
are compared to state-of-the-art techniques in Section 5.

2. Problem Set-up and Objective

We consider a real-time regression problem y = f(x)+€ €
R, where z € R? and € ~ N(0,02), 02 € R,. The
objective is to iterate between updating a model f () of
the unknown function f(-) based on sequentially arriving
training pairs (2, y(?),i = 1,..., 0o and evaluating f(-)
at arbitrary test points . When no parametric structure of
f(+) is known, Gaussian processes are a suitable choice for
non-parametric probabilistic regression.

A Gaussian process GP is the generalization of a Gaussian
distribution, and bases on the assumption that any finite col-
lection of random variables y() € R follows a joint Gaus-
sian distribution. This distribution is defined by the prior
mean, which is commonly set to 0, and a covariance func-
tion k : R? x R? — R (Rasmussen & Williams, 2006). We
concatenate input training samples (*) and outputs y(*), i =
1,...,N,into a matrix! X and a vector y, which represent
the training data set . Furthermore, we define the elements
of the kernel matrix K as K;; =k(z), (7)) and define the
elements of the kernel vector k(X , x) accordingly. Based
on these definitions, we can represent the GP model as

L = cholesky(K +02I), a=L"\(L\y), (1)

where "\" denotes the forward and backward substitution,
respectively, such that O(N?) and O(N?) operations are
required for the computation of L and o (Rasmussen &
Williams, 2006), respectively. Moreover, when samples are
added online to the training set, i.e., X i1 =[Xn a:(NH)],
yna =yk y(N“)]T, L n1 can be directly obtained from
L y using rank-one updates in O(N?) operations. The pos-
terior GP distribution pgp (f(z)|x, D) = N (u(x), 0% (x))

'We generally omit the indication of the number of samples
in the notation, but when necessary for clarity, an index N is used.

at a test point & can finally be computed using

u(@)=k(z, X)a @)

o?(x)=k(z,z)—vTv, v=L\k(X,z), (3)
which requires O(N) and O(N?) calculations for the
posterior mean and variance, respectively.

Although GP inference allows incremental updates, the
streaming data quickly accumulates to large data sets in
real-time learning problems, slowing down the computation
of updates and predictions significantly, such that the total
number of training samples for straightforward inference
is roughly limited to 10* training samples in practice on
today’s machines (Deisenroth & Ng, 2015). A common
approach to deal with the problems arising from large data
sets lies in dividing the data into several sets and training in-
dividual models GP; with means j;(+) and variances o2 ()
defined through (2) and (3), respectively. For aggregating
the individual predictions, several different methods exist,
whose structure can be generalized to

/1(37) = ¢u (Z meu(um(w)vagn(x))> 4)

meM

5 (x) = ¢o <Z szpa(ﬂ?ﬂ(‘”)v”%z(“’))) N E))

meM

where w,, are weighting factors, which should be chosen
such that ) wp, = 1, M denotes the index set of the
individual models and ¢,,, ¢, : R — R and 1, ¢, : R? —
R are nonlinear functions. For example, a mixture of GP
experts approach (Tresp, 2001) corresponds to

i) = 3 i (@) ©)

5% () = Y wilon (@) + 5 (2) = i(2), (O

meM

which is often used in the form of a mixture of explicitly
localized experts (Masoudnia & Ebrahimpour, 2014), see,
e.g., Nguyen-Tuong et al. (2009b); Liu et al. (2016). Simi-
larly, the generalized product of GP experts approach (Cao
& Fleet, 2014) can be obtained by choosing

- 5°(x)
@)= wm g hm (@) (8)
S om(®@)
P )= ©
> winom’ (x)

meM

While these aggregation approaches allow to regress large
data sets and exhibit many advantages compared to inducing
point methods (Deisenroth & Ng, 2015), they do not deal
with the specific difficulties of applying GPs to real-time
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learning problems. The complexity of computing predic-
tions still grows linearly with the number of individual
models, and the assignment of streaming data to individual
models is often not investigated (Deisenroth & Ng, 2015),
or becomes inefficient for large data sets and requires
further approximations (Nguyen-Tuong et al., 2009b).
Moreover, the existence of probabilistic error bounds for
these methods is unclear, such that their usage in real-time
learning for safety-critical applications remains a challenge.

3. Locally Growing Random Trees with
Gaussian Process Models

In order to address these issues of GP aggregation methods,
we develop an efficient alternative for an iterative data
distribution to individual models such that predictions are
computed based on local data, allowing both updates and
predictions with logarithmic complexity. Starting from a
single, global model, local models are iteratively generated
by dividing existing models. This is efficiently performed
by sampling the model, to which each training sample is
assigned, from localizing random distributions. Thereby, we
locally grow a random tree of GP models. We explain this
iterative tree construction using random data assignment
in detail in Section 3.1. In Section 3.2, we demonstrate how
the LoG-GP approach naturally extends existing distributed
GP approaches to real-time problems. We derive complexity
guarantees for LoG-GPs in Section 3.3, and provide uniform
error bounds for the LoG-GP regression in Section 3.4.

3.1. Iterative Random Tree Construction

Since we consider the problem of real-time regression, we
have to deal with streaming data, i.e., sequentially arriving
data samples. Therefore, we iteratively construct a model,
starting with a single data set D; = (. This data set con-
stitutes the root node 1 of a rooted tree 7', as depicted in
Fig. 1. Incoming training data is added to the data set D1,
and each new data point can be efficiently included into the
single GP model (1) using rank one updates, which exhibit
quadratic complexity (Nguyen-Tuong et al., 2009a). When
the number of training samples reaches a prescribed thresh-
old N, we extend the tree 7" by growing leafnodes 1, . .., K,
K € N, with data sets Do, ..., D4 as children of the
root node 1, as shown in the center of Fig. 1. In order to
distribute the data efficiently to the sets Do, ..., Dx 41, we
define a function p' : R? — [0, 115, "5 pl(z) = 1
for all £ € RY, which returns the probability of an assign-
ment of a point € R4 to the sets Dit1, k=1,..., K,
ie., P(x € Dy41) = pj(z). We determine the probabili-
ties p!(z) for each data pair (z,y) in Dy, and sample the
child nodes n from the corresponding discrete probability
distributions. After the data set division, we compute the
local GP models (1) for all data sets, which generally has a
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Figure 1. Iterative model tree construction and corresponding lay-
out of the input space for K = 2: active regions and training
samples belonging to the same node are depicted in the same color.

Algorithm 1 Updating of a LoG-GP
UPDATE(K -ary tree T, training input x, target )
n < T .ROOT()
while —T.ISLEAF(n) do
n < n.GETCHILD(RANDOMDRAW (p™()))
end while
if [D,,| = N then
n.GENERATECHILDREN(K)
for each (',y') € D,, do
m < n.GETCHILD(RANDOMDRAW(p™ (x')))
m.ADDTODATASET(x', y')
m.UPDATELOCALGP()
end for
n ¢ n.GETCHILD(RANDOMDRAW(p™ (x')))
: end if
: n.ADDTODATASET(z, y)
: n.UPDATELOCALGP()
: return T

—_
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complexity of O(N3) (Rasmussen & Williams, 2006).

After the initial data set division, we continue to assign
the streaming data pairs (x,y) to the sets Do, ..., Dx g
by sampling from the discrete distributions with pa-
rameters p'(x). When either of the sets Dy,...,Dx g
reaches its data capacity limit N, we define a new
function p**1(:), & = 1,..., K, such that it induces
the conditional probabilities given the parent node, e.g.,
P(x € Dg 12| € Dy) = p?(x). Based on this conditional
probability, we repeat the division process as explained for
the root node. Therefore, we add another level to the random
tree as shown on the right-hand side of Fig. 1. For further
training data assignment, it is necessary to iteratively deter-
mine a branch of the tree using random transitions based on
the discrete distributions with probability parameters p” ()
until a leaf node is reached, as outlined in Algorithm 1.

Note that the nodes n, which are not leaves, contain neither
data nor a local GP model after the data set division, but
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instead encode the structure of the data distribution to
individual data sets using the discrete distributions p"(-).
Therefore, p"(-) are crucial design choices of the LoG-GP
approach. Intuitively, they should be chosen such that the
data is distributed equally to all children in order to generate
a balanced tree, and this condition indeed guarantees a
logarithmic growth in complexity for the random tree
construction as shown in Section 3.3. A trivial example
for a probability distribution satisfying this requirement is
the discrete uniform distribution, i.e., p}(x) = 1/K, which
can be seen as the sequential version of the commonly used
random assignment in batch aggregation methods (Cao &
Fleet, 2014; Deisenroth & Ng, 2015).

3.2. Predicting using Localizing Probability Functions

Although the random tree construction in Algorithm 1 re-
duces the complexity of updates, it barely affects the com-
plexity of predictions, since the direct evaluation of (4) and
(5) with M denoting the set of leaf nodes still exhibits a
linear complexity in the number of training samples. In
order to achieve a low complexity of predictions as well,
we propose to enforce a small number of active models
at each input using the remaining design parameters wy,.
Since a typical condition for these parameters requires their
sum to equal one, a straightforward choice is to set them
equal to the marginal probabilities P(x € D,,,) of the leaf
nodes, i.e., w,, = P(x € Dy;,). The marginal probabilities
of a leaf m with depth A™ can be determined by multi-
plying the conditional probabilities on the branch B,, =
{(sT01), ..., (87, b7 )}, Where sT =1, 00" =1,..., K
denotes the child index of the subsequent node and s}* de-
notes the sequence of nodes before reaching leaf m. There-
fore, we can express the marginal probability of a leaf as

™

Wy, = Hp;;(ac) (10)
i=1

It is straightforward to see that the computation of a marginal
probability requires only local information of nodes along
the branch, but is independent of other branches. This inde-
pendence of the branches is the keystone for a reduction of
the computational complexity of predictions: a conditional

probability pZ:; (x) = 0 allows to omit determining the
following conditional probabilities pzjm (x), j > 1, since
wm, = 0 holds regardless of their values. Together with the
structure (4), (5), this allows to spare the computation of in-
dividual GP predictions with a zero conditional probability
on the branch, which can be efficiently exploited through
recursive tree search algorithms as depicted in Algorithm 2.

Due to this property, the conditional probabilities p™(x)
effectively control the computational complexity of predic-
tions: when only few children of every node can have a

Algorithm 2 Predicting with a LoG-GP
1: PREDICT(binary tree 7, test input &, node n)
2: if T.ISLEAF(n) then
3:  return pu,(x), o%(z), 1
4: else
5 p+[l,o? < [],w<+ ]
6: forallje{i=1,...,K:pl'(z)>0}do
7.
8
9

f1,62,& +PREDICT(T, &, n.GETCHILD(j))

pelu flo?e o 6 welw pi)ol

: end for
10:  if =T.1ISROOT(n) then
11: return g, o2, w
12:  else
13: return ji(x), 2(x) based on (4), (5)
14:  end if
15: end if

positive conditional probability p} (x) > 0, the recursion
can often stop early and only few individual GP predictions
have to be performed. Thus, the maximum number of ac-
tive children with p}(z) > 0 should be kept small in each
node n in order to achieve a low computational complexity.
This in turn induces a notion of proximity of points z, in
which two points x, «’ can be considered close to each other
if pf () > 0 and p}(x’) > 0. Hence, the conditional proba-
bilities can be considered as localizing probability functions.

A simple class of conditional probabilities p™ () inducing
spatial locality are saturating linear functions

. n 02'
0 B lijg <S8 — 5
n _ ) %P Sk 1 e.m  Of ) n, %
(@)=q = +35 ifsp—F<ap<sp+ 1D

. ol
1 if sy + % <y,

where ;7' defines a splitting dimension, s;; denotes the posi-
tion of the splitting hyperplane, and o}’ is the overlapping
ratio, which determines the size of the region in which two
individual models have a non-zero probability. The interpre-
tation of these parameters is illustrated in Fig. 1. Based on
(11), the conditional probabilities can be defined as

@) T (-g@) k<K
pr(x) =1 o, T (12)
(1) =K.

This parameterization allows straightforward heuristics for
choosing the parameters j;, si, o} of the saturating linear
functions &£} (-), such that the goal of equal division of exist-
ing training sets during the updating step as motivated in Sec-
tion 3.1 can be approximately achieved, too. For example,
one option to choose j;! is the maximum spread of the in-
puts @ in the individual sets ID,,, a simple choice for s}, is the
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mean in the dimensions j;!, and the overlapping ratio o}, can
be designed as a constant fraction of the spread. Moreover,
a PCA based definition of the parameters is straightforward
as well (Terry & Choe, 2020). Therefore, it is easily pos-
sible to achieve the goal of a balanced tree and the desired
limitation of the active number of children in each node.

Remark 3.1. While the proposed approach can be used
in combination with other regression techniques as a meta
framework, the improvement in computational efficiency
can be significantly smaller. However, locally growing ran-
dom trees have the potential to improve the performance of
many regression methods in non-stationary problems, where
localization methods have been shown to be useful. Since
this problem is not the focus of this work, we leave the com-
bination of the proposed approach with other regression
methods for future research.

3.3. Complexity Guarantees

In this section, we formalize the intuitive conditions for
achieving low computational complexities discussed in
the previous sections. In order to define the meaning of an
approximately equal splitting of data in nodes, we introduce
the following assumption, which poses a condition on the
relationship between the conditional probabilities p™(-) and
the probability density g(«) of the input training data.

Assumption 3.1. There exists a constant c; € Ry, such
that the conditional assignment probabilities p™ (x) satisfy

A —1
by m
o < / a(@) P’ (w)@( 11 pZ@(w))dw (13)
R¢ i=1

for all leafs m € M with depths h'™ and branches B,,,
where 0 : R — {0, 1} denotes the unit step function.

The right handside of (13) corresponds to the marginal
conditional probability that a training sample is assigned to
leaf m, given the prior assignment to node s}’ . Therefore,
this assumption prevents nodes from never receiving
training data. In practice, this can easily be achieved
through a data-based design of the conditional probabilities
as outlined in Section 3.2. Based on Assumption 3.1,
it is straightforward to prove the following complexity
guarantee for updates of LoG-GPs using the theory of
random split trees (Devroye, 1998).

Theorem 3.1. The update of a LoG-GP with conditional
assignment probabilities p™(-) satisfying Assumption 3.1
requires Op(log(N)) computations.

In order to bound the complexity of predictions using LoG-
GPs as well, an additional assumption on the maximum

2Proofs for all theoretical results can be found in the supple-
mentary material.

number of children with positive conditional probabilities
along a branch is necessary. This is formalized as follows.

Assumption 3.2. There exist constants co,c3 € Ry, such
that the conditional assignment probabilities p"(-) satisfy

ie(l P (@) 0 (nf (@) <log(eah™ +c5)  (14)
=1

for all leaves m € M with depths h™ and branches B,,.

Since this condition can individually be checked for
every branch during the generation of a new layer, it can
directly be included into the specification of the conditional
probabilities p™(-) during the generation of a new layer,
e.g., through the adaptation of the overlapping ratio o,, in
(11). Therefore, this assumption is not restrictive in practice.
In combination with Assumption 3.1, it allows the following
bound on the computational complexity of predictions.

Theorem 3.2. Mean and variance predictions of LoG-
GPs with conditional assignment probabilities p"(-)
satisfying Assumptions 3.1 and 3.2 require O,(log*(N))
computations.

Remark 3.2. Although the maximum number of samples N
has a strong impact on the computation time, it merely
acts as a constant factor on the asymptotic complexities.
Therefore, we drop it for clarity of presentation.

3.4. Regression Error Bound

While a variety of approximations exists to reduce the
complexity of GP updates and predictions, they typically
cannot maintain the uniform error bounds of exact GP
regression. We show that the LoG-GP approach exhibits
the advantage of preserving uniform regression error
bounds from exact GP inference, e.g., (Srinivas et al.,
2012; Chowdhury & Gopalan, 2017; Lederer et al., 2019a;
Maddalena et al., 2020). We focus here on the approach
introduced in (Lederer et al., 2019a) for clarity of exposition,
but other error bounds can be extended analogously as
shown in the supplementary material. For this existing error
bound to hold, the following assumption is introduced.

Assumption 3.3. The unknown function f(-) is a sample
from a Gaussian process GP(0, k(x, ")) and observations
y = f(x) + € are perturbed by zero mean i.i.d Gaussian
noise € with variance o2.

This assumption defines a prior distribution over functions
and implicitly assigns to each function a probability density.
For example, the sample space of squared exponential
kernels is the space of continuous functions on X (van der
Vaart & van Zanten, 2011), and the hyperparameters of the
kernel shape the distribution. A more detailed discussion
of this assumption can be found in (Lederer et al., 2021).
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In addition to the knowledge of a prior distribution, we
require the following essential property of the aggregation
scheme to inherit error bounds from exact GP regression.

Assumption 3.4. The distributed GP mean can be
expressed as fi(x) = Yy Wm(x)pm(x), where
w; @ RT — Ro,+ is a weighting function satisfying
Y omem Wm(x) =1, Ve € R,

It can be trivially checked that both the mixture of experts
(6), (7) and the generalized product of experts approach
(8), (9) in combination with weights w,,, following from
the LoG-GP approach (10) satisfy the condition. Hence,
this assumption does not severely restrict the class of
possible distributed GP approaches, but allows to sum up
the individual uniform error bounds for the mean functions
i (+), which is the core idea in the following theorem.

Theorem 3.3. Consider a distributed GP approach satis-
fying Assumption 3.4 and defined through the continuous
covariance function k : R? x R? — R with Lipschitz
constant Ly, on the compact set X C R%. Furthermore,
consider a continuous unknown function f : X — R with
Lipschitz constant Ly and N € N observations y@ satisfy-
ing Assumption 3.3. Pick 6 € (0,1), 7 € Ry and set

B(1)=2log (dgmax ||:c—w'||go|I\\/JI|>—log (52d7d) (15)
x,x’'eX

~y(1)= Z W () (LMmT-‘r \/ﬁ(T)LUmT) +L;r, (16)

meM

where L, and L, denote the Lipschitz constants of the
GP mean and standard deviation, respectively. Then, it
holds that

P(|f(z) — i(z)| <n(r,z),Ve e X)>1-4, (17)
where

B(r) Y wm(@)om (@) +4(r).  (18)

meM

77(77‘73) =

Lipschitz continuity of the individual GP mean i, ()
and standard deviation o,,(-) immediately follows from
(Lederer et al., 2019a, Theorem 3.1), such that bounded Lip-
schitz constants L, , L, exist. Moreover, the summand
~(7) can be made arbitrarily small through a suitable choice
of 7, such that posterior variance bounds as discussed in
(Lederer et al., 2019b) guarantee arbitrarily small error
bounds under weak conditions on the training data.

4. Safe Event-Triggered Learning Control

Since the structure of the uniform error bound in The-
orem 3.3 is very similar to commonly used bounds in
literature, the LoG-GP approach can directly be used to

substitute exact GPs in many safety critical applications
to enable online-learning. We demonstrate this capability
by applying LoG-GPs to a learning-based control problem,
where data of the system is gathered online during closed-
loop control. The control task and policy are introduced in
Section 4.1, while a data-efficient and safe online learning
scheme using LoG-GPs is derived in Section 4.2.

4.1. Control task

Consider a nonlinear control affine dynamical system

il = T, @2 = I3, :tdz = f(iL’) + u, (19)
with state = [z1 --- 24,]7 € X C R? and control
input v € U C R. We assume that the structure of the
dynamics (19) is known, but the function f(-) itself is not.
While we only consider single input systems for notational
convenience, the approach can directly be extended to mul-
tiple inputs. The task is to track a desired trajectory x,.(t)
with the output z1, aiming to achieve a small tracking er-
rore=ley - -eq] = x—x, withx, = [z, &, - %xT]T
We design a policy 7 : X — U which compensates
the nonlinearity f(-) using the LoG-GP prediction fi(-)
and apply linear control principles to the approximately

linearized system
u=r(@) = —ji(@) +v, (20)

with the linear control law v = 4%z, — k.[AT 1]e, with
gains k. € R, and Hurwitz coefficients A € R~!. Using
this policy, the dynamics of the tracking error are given by

é=Ae+ (f(x) — ji(x))[0 0 1T, where
0 1 0 e 0
0 0 1 oo 0
A= : ) ) . - @D
*Alkc *)\Qk(: *>\3kc e *kc

Since training data is often difficult to obtain safely in
real-world systems, we assume that initially there is no data,
but measurements can be taken as follows.

Assumption 4.1. Noisy measurements y") = f(x(®))+¢®)
can be taken at any instance of time.

Thus, the controller does not only have to decide upon the
control input u, but also on the time of new measurements.

4.2. Safety with Event-triggered Learning

In order to exploit this additional flexibility to safely achieve
a high data-efficiency, we follow the idea in (Umlauft &
Hirche, 2019) that measurements should not be taken peri-
odically at a fixed sample time. Instead, the intuitive idea
is to take a new measurement from the system whenever
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Algorithm 3 Safe event-triggered learning control
1: initialize LoG-GP T
2: while control task is not completed do
while 2[|ps||nn(z,7)<||e]| OR [le]| <2||pulln(r) do
Apply control law (20)
end while
while 2||pg||nn(x,7) > ||| do
Take measurement (V1) ¢(N+1)
T.UPDATE(zV+1) ¢y (N4 N « N +1
9:  end while
10: end while

w

A A

the model uncertainty becomes too high compared to the
desired tracking performance. This is formally expressed us-
ing Lyapunov stability theory (Khalil, 2002), for which we
define a quadratic Lyapunov function V (e) = e’ Pe with
a positive definite matrix P = [p; --- pgq] € R4*? such
that AT P+ PA = —1I,. The existence of P is guaranteed
as A is Hurwitz, and it ensures that the temporal derivative
of the Lyapunov function can be bounded by

V(e) < ~llel* + 2lle]lpallnn (z, 7) (22)

using the uniform error bound in Theorem 3.3. Since a nega-
tive temporal derivative of the Lyapunov function guarantees
convergence to the desired trajectory, an event for taking
new measurements (Nt y(N+1) should be triggered
whenever [le|| < 2||pa||nn(x,T) because the additional
data point reduces the posterior variance of an individual GP
and thereby ny41(x,7) < ny(x,7). The computations
corresponding to the update of the model must be performed
online in real-time, since no decision about further data is
possible until the updated uniform error bound 71 (+) has
been computed. Moreover, high prediction rates, typically
around 1kHz for robotic applications, are necessary for
continuously monitoring the triggering condition. These
requirements emphasize the importance of the fast online
updates and predictions provided by LoG-GPs.

Based on the triggering condition, we propose the online-
learning control policy as outlined in Algorithm 3, which
additionally suspends taking measurements during the
satisfaction of a specified performance expressed via
n(7) € R4 in order to avoid excessive triggering in close
proximity to the desired trajectory. Since the posterior
variance of an individual GP model is guaranteed to be
smaller than 02k(0,0)/(k(0,0) + o2) at the position of a
training input (Williams & Vivarelli, 2000), Algorithm 3
allows safe control without any data in advance.

Theorem 4.1. Consider a control affine system (19),
where f(-) satisfies Assumption 3.3 and admits a Lipschitz
constant Ly on X C RY, and measurements are available
according to Assumption 4.1. Let P € R the unique,
positive definite solution to the continuous Lyapunov equa-

tion ATP + PA = —I, with A defined in (21). Then, the
feedback linearizing controller (20) with [i(-) based on a
stationary kernel and event-triggering mechanism given in
Algorithm 3 with

(23)
(24)

n(r) = V/B(r)a +~(7)
o® > 07k(0,0)/(k(0,0) + 07)

guarantees with probability 1 — § that the tracking error e
converges to

T = {x € X||e|l < 2n(7)|pall } - (25)

5. Experimental Evaluation

In order to demonstrate the computational efficiency and
the prediction performance of LoG-GPs?, we compare them
to several state-of-the-art GP approximations for online
learning on real world regression problems in Section 5.1.
Moreover, we illustrate the need for real-time regression
methods with provable uniform error bounds on a control
problem with event-triggered learning in Section 5.2.

5.1. Regression Performance Evaluation

We evaluate the performance of the LoG-GP approach
on three real-world data sets. The SARCOS data set
(Rasmussen & Williams, 2006) contains 44484 samples of
the dynamics of a robotic manipulator (d=21), which is a
widely used data set for comparison of GP approximations.
Moreover, we employ the buzz in social media data set
(Douzal-chouakria et al., 2013), which consists of 583250
samples with d="77 features, and the individual household
electric power consumption data set (Dua & Graff, 2017)
composed of 2048380 measurements with d=11. The data
is preprocessed following (Wilson et al., 2016).

The LoG-GP is evaluated with N = 100 and K = 2
using mixture of experts (MoE), generalized product of
experts (gPoE) and robust Bayesian committee machine
(rBCM) aggregations and conditional probabilities (12).
We compare to incremental sparse spectrum Gaussian
processes (ISSGP) with 200 random features (Gijsberts
& Metta, 2013), local Gaussian processes with N = 100
and model generation threshold 0.9 (Nguyen-Tuong et al.,
2009b), streaming sparse GPs (SSGP) with 100 inducing
points (Bui et al., 2017), and the robust Bayesian committee
machine (Deisenroth & Ng, 2015) with N = 100. All
GPs use an ARD squared exponential kernel and the
hyperparameters are fitted using the first 1000 training
samples for all methods in order to ensure that poor
hyperparameters are excluded throughout all simulations.
The data used for hyperparameter optimization is added

3Matlab code is online available at https://gitlab.lrz.
de/alederer/Log—-GP.
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Figure 2. Plots of the SMSE (top) and MSLL (bottom) on a) SARCOS b) buzz in social media and c) electric data sets. Due the high
computation times, the SSGP could only be applied to the SARCOS, while the rBCM could not be evaluated on the electric data set.
LoG-GP approaches achieve at least a comparable performance to existing methods with slight advantages in high dimensional problems.

Table 1. Average update and prediction times in ms for the SAR-
COS, buzz in social media and electric data sets. LoG-methods
outperform state-of-the art methods for streaming data regarding
the computation time: updates are up to 10 times faster, and they
achieve state-of-the-art prediction rates. SSGP and rBCM are
greyed out as they allow only batch updates.

AVERAGE TIME SARCOS BUZZ ELECTRIC

(ms) tpred tup tpred tup tpred tup
MOE-L0OG-GP 0.12 0.17 0.19 0.18 0.12 0.15
GPOE-LOG-GP 0.12 0.16 0.19 0.18 0.13 0.16
RBCM-LOG-GP 0.12 0.16 0.17 0.17 0.13 0.16
ISSGP 0.17 1.6 0.19 1.7 0.16 1.9
LOCAL GPs 0.94 1.1 1.5 1.9 1.1 091
SSGP 19 16 > 20 > 20 > 20 > 20
RBCM 2.5 4.3 17 10 > 20 > 10

to the GP approximations, before they are evaluated in a
sequential setting, in which we iterate between prediction
for an input () and update of a model using (x(¥, y(*).
Since SSGP and rBCM do not allow sequential updates,
they are updated in batches*. As performance metric we
use the average prediction and update times, as well as the
standardized mean squared error (SMSE) and the mean
standardized log loss (MSLL) (Rasmussen & Williams,
2006) in a sequential interpretation, e.g.,

S (i (@) — k)2

SMSE;, =
k ]{785 )

(26)

where s?/ denotes the empirical variance of the targets 3%
and fij,_1(x®)) the prediction after observing k—1 training
samples.

The resulting computation times averaged over 20 runs are

4 More details on the simulation setup and additional results
can be found in the supplementary material.

depicted in Table 1. It can be clearly seen that LoG-GP
approaches achieve the lowest average computation times in
these simulations, with significant advantages over existing
methods regarding the model updates. While state-of-the-
art real-time learning methods such as ISSGPs can yield
a similar prediction rate, batch methods such as SSGPs or
the rBCM exhibit a quickly growing complexity. This pre-
vents their application in online learning, even though a
small prediction error could be obtained, as illustrated in
Fig. 2. While local GPs provide a poor accuracy for large
data sets, LoG-GP methods and ISSGPs achieve a similar
performance with minor advantages for ISSGPs on the low-
dimensional electric data set and slightly better performance
of LoG-GP methods on the high-dimensional buzz in so-
cial media set. Additionally, LoG-GP approaches result
in the best MSLL values, merely marginally outperformed
by ISSGPs for the first half of the electric data set. This
emphasizes the high reliability of the epistemic uncertainty
estimate provided by LoG-approaches, which is crucial to-
gether with the strong theoretical foundation and the low
computation times for enabling real-time learning in safety
critical applications.

5.2. Application to Event-Triggered Learning Control

For the numerical illustration of the event-triggered learning
control, we consider a modification of a pendulum system
with

0.5
1+ exp(—x2/10)
As reference trajectory, we set an outwards spiral

9
(t)= (H 1+exp(—0.1(t — 100))

f(x) =1—sin(x1) + 27

) sin(0.5¢t). (28)



Gaussian Process-Based Real-Time Learning for Safety Critical Applications

z(t)

=== za(t)

Figure 3. The system (red) properly tracks the desired outwards
spiral trajectory (green) after an initial transient phase.
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Figure 4. The ratio between training/prediction and inter-event
time keeps growing for the vanilla GP (red) and eventually
exceeds 1, while it stagnates after some time for the LoG-
GP (blue) despite a slight growth in the added training sam-
ples (1310 vs. 1741).

For real-time learning, we employ a MoE-LoG-GP with
N =100 and an ARD squared exponential kernel and com-
pare it to a vanilla GP as used in (Umlauft & Hirche, 2019).

The resulting trajectory for ¢ € [0s, 200s] is illustrated in
Fig. 3, and it can be seen that it closely follows the reference
trajectory. While the vanilla GP only requires 1310 events,
the event for learning is triggered 1741 times for the MoE-
LoG-GP. However, this slight reduction in data efficiency
is necessary in order to meet the real-time constraints as
depicted in Fig. 4. In contrast to the vanilla GP, where the
prediction and update times ¢prq and ¢, start to exceed the
inter-event time Atgyent after ~ t=120s, LoG-GPs remain
fast enough to satisfy this condition. Therefore, LoG-GPs
can enable the application of Gaussian processes in safety
critical learning problems with real-time constraints.

6. Conclusion

This paper presents a novel method for real-time learning
based on Gaussian process regression. By iteratively di-
viding individual models according to a localizing random
distribution, the computation graph corresponds to a ran-
dom tree providing logarithmic complexity guarantees for
predictions and model updates. In order to allow the usage

in safety-critical applications, uniform error bounds from
exact Gaussian process regression are extended, which is ex-
ploited in the design of a safe, online-learning control policy.
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