Fair Selective Classification Via Sufficiency

A. Proof of Theorem 2

We first show that the accuracy A (7) of a binary selective
classification task is an increasing function if the confidence

k is constructed from a calibrated score function R = s(z).

And the monotonicity of the precision PPVg(7) can be
proved similarly.

The following lemma from (Jones et al., 2020) characterizes
the condition for monotonicity of selective accuracy.

Lemma 4. Ap(7) is monotone increasing in 7 if and only

if
S (T)
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1—F1u(7')
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2n
forall T > 0.

Our proof also relies on the following lemma.

Lemma 5. Suppose the score function R is calibrated by
group, andY = arg max,e o1} P(Y = y|R = ). Denote
the maximum a posteriori probability S = max{R,1 — R},
then

P(Y=Y|S=sD=d) =s, (22)

foralld € D.

Proof. Since R is calibrated by group, then Va,b € D,
PY=1R=rD=a)=PY =1R=r,D=b) =r,
where r € [0, 1]. Thus, for any s € [0.5,1] and d € D, we
have
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where (a) follows from the fact that Y = 1iff R > 0.5,
and Y = 0iff R < 0.5, and (b) is due to the calibration by
group assumption P(Y =0|R=1—-s,D=d)=s. O

By Lemma 5, the accuracy P(Y = Y|S = 5,D = d) is
independent of the group D given S and we can drop the
conditioning of the group in the following proof.

In the selective classification problem, we convert the max-
imum a posteriori probability s into confidence x using

1
n(s)—2log(1is>, (23)

which maps [0.5, 1] to [0, oo]. So for any sample with confi-
dence z € RT,

PY =Y|k = 2) i P_(zf( :) Y|S =r71(2)) 24)

where x~1(+) is the inverse function of (). We use f, ()
to denote the pdf of the confidence score « for z € R, then
the pdf of the margin f;(¢) can be written as,

P(Y =Y |k = t)f(t), fort > 0

0 ={ by 2 Vim0 —t), fort <0,

or equivalently,

K1) fo(), fort >0
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It can be verified that K~1(2) is a increasing function for
z€RF, and k~1(0) = % Thus,
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We can conclude that the cdf of the margin F),(t) satisfies

fu(z)
fr(=2)

0
Far(0) = / Far(t)de < 3, @7)

which implies that A (0) > 0.5.

To show that Ar(7) is monotonically increasing with the
threshold 7, we need to verify the condition in Lemma 4.
Note that

L—Fy(r) [ fau(t)dt
Fu(=7) [T fa(t)dt
TR fe)dt
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which completes the proof for the selective accuracy.




Fair Selective Classification Via Sufficiency

By replacing the margin distribution f;(¢) with the mar-
gin distribution condition on Y = 1,ie., fM\Y/:l(t)’ the
monotonicity of the precision PPVg(7) can be obtained
following similar steps.

Note that the condition for monotonicity of the precision is
given by

Fagpy=1(7) 1= Fyy—(7)
, 28
FugaCn) = By

and Lemma 5 is replaced by the following simple fact due
to calibration by group

P(Y =1y =1,8 = 5)
=P(Y =1|R=5) (29)

= S.

In our proof, it only requires that the confidence function
k is a increasing function that maps [0.5, 1] to [0, co], so
that £~ () is a increasing function and £~*(0) = 3. Thus,
Theorem 2 also holds for confidence functions satisfying
these conditions, which is not limited to the function in (3).

B. Additional Experimental Results
B.1. Varying )\ on Adult Dataset

To illustrate the relative insensitivity of our choice in A (the
regularizer weight for the conditional mutual information
penalty term), we plot the area under the accuracy-coverage
curve and (b) area between the precision-coverage curves
against the value of A\ for the Adult dataset in Figure 8,
with 95% confidence intervals calculated from five trials per
value of \.

We see that for a wide range of A, the performance of our
method remains very stable, with the performance falling
off only as A grows close to zero.

B.2. Additional Baselines for Adult Dataset

In addition to the previous methods, we also implement
three additional baselines on the Adult dataset. The first is
the Chi-squared fairness regularizer of (Mary et al., 2019),
which is designed for enforcing Equality of Opportunity
in the full-coverage case, similarly to DRO. The second is
logistic regression, which has been shown previously to pro-
vide well-calibrated scores at the cost of poorer performance
on the dataset itself (Liu et al., 2019).

The final baseline is an oracle baseline whereby we use Platt
Scaling (Platt et al., 1999) on each group individually to
produce two different calibrated classifiers, then assume
that we have the group label in the test set and apply the
appropriate classifier. While this does represent a different
setup than the other methods (which do not require the

Table 3. Area under curve results for all datasets.

Dataset Method Area under Area between
accuracy precision
curve curves

Adult Baseline 0.931 0.220

DRO 0911 0.116
Chi-Sq.  0.920 0.140
LogReg  0.620 0.231
Ours 0.887 0.021
Oracle 0.880 0.007

group label at test time), it does give us a good bound for the
possible performance that might be expected. The precision-
coverage curves can be found in 9, and the area under curve
results can be found in Table 3.

We can see that our method provides a lower area between
precision curves than the Chi-squared regularizer, and that
while logistic regression provides very low disparities across
all coverages, it does so at the cost of incredibly poor aver-
age overall performance across all coverages.

B.3. CelebA and Civil Comments Datasets

Figures 10 and 11 show the group-specific precision-
coverage curves for the CelebA and Civil Comments
datasets, with the margin distributions in Figures 12 and
13.

For the CelebA dataset, we note that while all methods
converge towards perfect precision, the baseline has a signif-
icant period in which there is a large difference in precision
between the two groups. This period is much smaller in the
case of DRO and our sufficiency-based method, and ours
ultimately converges the fastest.

The baseline method in the Civil Comments dataset shows
the magnified disparities phenomenon in the precisions as
coverage decreases, which is mitigated in the case of both
DRO and our method. Our method also shows faster con-
vergence of the two precision-coverage curves.
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Figure 8. (a) Area under the accuracy-coverage curve and (b) area

between the precision-coverage curves for different values of A on

the Adult dataset using our method. Figure 9. Group-specific precision-coverage curves for Adult
dataset for additional methods.
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Figure 10. Group-specific precision-coverage curves for CelebA
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Figure 11. Group-specific precision-coverage curves for Civil
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Comments dataset for the three methods.
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Figure 12. Margin distributions for CelebA dataset for the three

methods.
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Figure 13. Margin distributions for Civil Comments dataset for the

three methods.
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