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Abstract
Our supplementary material aims to help readers
better understand the main draft. It answers to a
wide range of potential questions from motivation
of research to experimental details. It not only
consists of the theoretical proofs and empirical
supports for our lemmas and findings, but also
presents additional result panels that are missing
from the main paper due to space limit. We hope
our readers find complementary guidance from
reading this material.

1. Motivations and Contributions
Q1: What are the major problems of using co-occur-
rence information?
A1: When data consists of collections of discrete objects,
using co-occurrence provides statistical semantics to indi-
vidual objects (e.g., words, products, items) based on their
relations with other objects through the data. As a result,
co-occurrence statistics has been widely used for various
unsupervised learning, but there are two major drawbacks:

• Individual objects naturally exhibit different burstiness.
Frequent objects that too often co-occurs with many other
objects would not provide meaningful semantics. Typical
examples in textual data are stop words whose functions
are limited to building syntax. Rare objects are noisy
and unstable because these objects barely appear in the
data, making co-occurrences with them prone to poor
estimation. But they often provide exclusive markers (like
topics) in underlying geometry of the data. Proper tuning
of frequency imbalance is the key to successful learning,
but it relies mostly on manual elaboration and domain-
specific knowledge without any principled approach.

• Co-occurrence provides a great scalability by summariz-
ing millions and billions of examples (e.g., documents,

1Anonymous Institution, Anonymous City, Anonymous Region,
Anonymous Country. Correspondence to: Anonymous Author
<anon.email@domain.com>.

Preliminary work. Under review by the International Conference
on Machine Learning (ICML). Do not distribute.

purchases, playlists). However, even the lightest format:
co-occurrence matrix between pairs of objects, grows
quadratically in the size of vocabulary. Tensor-based
models often require co-occurrence between triples of ob-
jects, quickly exceeding normal computational budget as
the size of vocabulary grows. Improving time and space
complexities are crucial for usability of spectral posterior
inference for latent variable models.

Q2: Why large vocabulary matters?
A2: Capability to process large vocabulary is the main
challenge of the field in the following two reasons:

• Users in representation learning are often required to
learn proper data representations for all or majority of
their objects. Products in online shopping or items like
movies and songs in streaming services form long-tail
markets. Thus learning low-dimensional representations
only for the frequently appearing objects is not adequate
for their profit structures.

• Topic modeling based on co-occurrence often associates
each topic with an anchor word, which dedicates only to
the topic without (or weakly) contributing to the other
topics. Using large vocabulary allows users to find better
anchor words. In other words, most topic models with
large vocabularies are proven to satisfy separability as-
sumption (Ding et al., 2015). Our submission shows that
topic quality improves both quantitatively and qualita-
tively as we increase the size of vocabulary.

• Using a large vocabulary improves less subjective in-
terpretation of topics. Our model is capable of finding
more specific characteristic words (i.e., relatively rare
but associated tightly to each topic), which provide com-
plementary information for interpreting individual topics
aligning with their prominent words (i.e., mostly frequent
words that are easy to understand).

Q3: Why matrix factorization? What makes rectifica-
tion interesting?
A3: Matrix/Tensor factorization is a general notion to repre-
sent a variety of machine learning problems. Once writing
the target inference problem as a factorization form, one



055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107
108
109

On-the-Fly Rectification for Robust Large-Vocabulary Topic Inference (Supplementary Material)

can identify some necessary geometries with clarity. For
example, low-rankness is often an universal assumption
for unsupervised learning of finding a compact underlying
geometry.

• When we have a full generative model of the input data,
we can construct co-occurrence as an unbiased moment
estimator of the generative process. For instance, if the
data exactly follows popular probabilistic processes of
topic modeling, the co-occurrence matrix of words must
be entry-wise non-negative (NN ), normalized to sum
to one (NOR), and positive semi-definite (PSD) in ad-
dition to be low-rank (Lee et al., 2015). However, an
empirical co-occurrence cannot jointly satisfy these struc-
tures due to statistical noises from the finite samples.
Rectification provides a principled treatment to fix statis-
tical unstability by projecting the empirical co-occurrence
(constructed from the data) onto a manifold consistent
with these necessary geometries, providing an innovative
way to improve posterior inference.

• It turns out that major spectral algorithms for latent vari-
able generative models suffer from the similar issue,
so called model-data mismatch (Kulesza et al., 2014).
Rectification could open a new solution to fix the issue
prevalent in spectral inference of mixed-membership la-
tent variable models. In addition, performance of word-
vector embeddings depends highly on how to correct co-
occurrences with rare and frequent objects (Levy et al.,
2015; Pennington et al., 2014). The models themselves
do not provide any guidance to fix such co-occurrences,
requiring labor-intensive tuning for successful learning
of vectorial representations. As their learning tasks can
also be written as forms of matrix factorization (Levy
& Goldberg, 2014), rectification could be applicable to
low-dimensional embedding learning without any ad-hoc
treatment.

2. Foundations and Comparisons to Previous
Work

Q4: It is not easy to understand connections between
probabilistic and spectral topic modeling.
A4: Our submission tries not to use probability notations.
It helps increasing consistency but decreases readability.
Among many explanations to describe foundations in proba-
bilistic and spectral topic models, we find Section 2 in (Lee
et al., 2020) is particularly insightful. Here we retype it for
your convenience.

We begin this section with a formal introduction to spec-
tral topic modeling. Consider a dataset of M documents
consisting of tokens drawn from a vocabulary of N words.
Topic models assume that K topics are used to generate this

dataset, where each topic is a distribution over the words; we
summarize the latent topics by the column-stochastic matrix
B ∈ RN×K where each column bk ∈∆N−1 represents the
distribution of the topic k. For each document m, choose a
topic composition wm ∈∆K−1 first from a certain prior f;
we collect these hidden compositions into another column-
stochastic matrixW ∈ RK×M . These models assume that
each of the nm tokens in the document m is then generated
independently from the categorical distribution given by the
word-probability vectorBwm ∈ RN .

Different models adopt different f such as f = Dir(α)
for Latent Dirichlet Allocation (LDA) (Blei et al., 2003);
f=LN (µ,Σ) or f=PN (µ,Σ) for Logistic/Probit-Normal
Correlated Topic Models (CTMs) (Blei & Lafferty, 2007;
Yu & Fokoue, 2014). Let H ∈ RN×M be the word-doc-
ument matrix where the m-th column vector hm counts
the occurrences of each word in the document m, and let
H̃ be the column-normalized version of H that specifies
the relative frequencies of each word rather than the raw
counts. Then topic modeling aims to learn latent topicsB
and hidden compositionsW given the observed collections
of words H . Equivalently, we seek a non-negative matrix
factorization H̃ ≈BW but with a prior to make individual
topic compositions {wm} coherent within a corpus.

Joint Stochastic Matrix Factorization (JSMF) The ma-
trix H̃ of word frequencies is sparse, noisy, and often in-
conveniently large. Let us consider instead the word co-
occurrence matrixC∈RN×N , whereCij indicates the joint
probability of observing a pair of words (i, j). Then topic
modeling corresponds to a second-order non-negative ma-
trix factorization: C≈BABᵀ where the column-stochastic
matrixB ∈ RN×K represents the topics as before and the
joint-stochastic matrix A ∈ RK×K represents the topic
correlations. If the true compositions W ∗ that generate
the data are known, we can define the true correlations by
A∗ := 1

MW
∗W ∗ᵀ whereA∗kl is the joint probability for a

pair of latent topics (k, l). By formingC as an unbiased esti-
mator of the underlying generative process, we can identify
B andA close to the true topics and their correlations.1

It is helpful to compare the matrix-based view of JSMF to
the generative view of standard topic models. For each docu-
ment m, the generative view begins with the topic composi-
tionwm, focusing on how to produce streams of tokens. We
keep choosing a topic z from wm and then a word x from
bz for each of the nm positions. The correlations between
words that wm ∼ f induces are not explicitly modeled. In
contrast, the matrix-based view starts with individual topic
correlationsAm for each documentm. Then for each of the
possible nm(nm−1) position pairs, a pair of topics (z1, z2)
is selected first from Am, then a pair of words (x1, x2) is

1As the number of documents M grows, A converges to the
true A∗ and the prior Ew∼f[wwT ] (Arora et al., 2012).
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chosen according to the topics (bz1 , bz2), respectively. The
word co-occurrence matrix explicitly captures the resulting
correlations induced by the prior topic correlationsA. This
pair generation view has the following two important im-
plications: Recall that sharing the prior f for {wm} ∼ f is
the crux of modern topic modeling (Asuncion et al., 2009),
and our flexible matrix priorA takes the role of f for JSMF.

Q5: Why don’t you compare against existing methods
like Variational Inference, Gibbs Sampling or tensor-
based spectral topic models? Why only comparing to
AP for rectification?
A5: We mainly compare against RAW (=AP+AW) as our
main contribution is to scale the anchor-based algorithms to
larger vocabularies. Earlier work (Lee et al., 2015) shows
that RAW learns quality topics comparable to those from
Collapsed Gibbs Sampling. Previous work (Lee et al., 2019)
already shows that RAW performs both quantitatively and
qualitatively better than Online Variational Inference and
the tensor-based spectral method with CP-decomposition.
It also tests Douglas-Rachford rectification (DR) instead of
AP for RAW, but there was no difference in performance.
Therefore our submission compares the performance only
to RAW.

Q6: Likelihood-based methods do not suffer from the
model-data mismatch issue. What are the benefits of
using spectral methods instead of using standard prob-
abilistic inference?
A6: Whereas likelihood-based methods keeps iterating
through the input data (e.g., documents or playlists) un-
til convergence, spectral methods no longer revisit the in-
put data once it is summarized into a co-occurrence statis-
tics. Note that we often operate on millions or billions
of documents, whereas the size of vocabulary is order-of-
magnitudes smaller. In addition, spectral methods are

• Consistent. Predictions are consistent in the limit of infi-
nite data.

• Transparent. The overall inference consists of clearly
separated three steps: co-occurrence construction, rectifi-
cation, and factorization.

• Interpretable. Each topic associates with a unique iden-
tifier called anchor words. Our Table 1 show that the
Characteristic Words (CWs) from each anchor word can
contribute to a specific understanding of each topic.

• Provable. Though this is not the main point of our paper,
one can show finite sample convergence bounds.

Q7: For large vocabularies, the original Anchor Word
algorithm already uses random projections of co-oc-
currence given Johnson-Lindenstrauss lemma. What

makes your work different?
A7: The original Anchor Word algorithm (AW) (Arora et al.,
2013) uses two types of random projections. Both transform
the empirical co-occurrence into low-dimensional spaces.
However,

• As studied in (Lee & Mimno, 2014), the projected co-
occurrence matrix has many non-negligible negative en-
tries, which break the next step of inferring topics B
(or concretely topic-word matrix B̆) as this step is based
mainly on Bayes Rule. As an additional result, the learned
topic correlationsA consist of many negative entries, be-
ing far from a legal joint distribution.

• Even if the random projections are used only for fast
finding of anchor words, the result set of anchors S can-
not be better than the anchor words found in the original
space. Our Figure 1 clearly demonstrates that the an-
chor words found from the raw co-occurrence without
any rectification are far from covering the convex hull of
co-occurrence space.

The key implication is that rectification is an essential step
for high-quality topic and correlation inference as well as
high-quality anchor finding. But the previously available
rectifications like AP and DR cannot scale to increasing
vocabularies. Our contribution: ENN and PALM are to
simultaneously achieve compression and rectification of
co-occurrence statistics. Our another contribution LAW
indeed scales similarly to AW with random projection, but it
infers topics and topic correlations more naturally from the
outputs of ENN and PALM. In particular, it avoids forming
any rectifiedC, which would incur a cost of O(N2). In our
LR-JSMF pipeline, we can completely bypass this O(N2)
constraint by constructing a low-rank approximation of the
full co-occurrence directly from the raw data.

3. Algorithms and Pipeline
Q8: The paper has a number of different but related al-
gorithms. Which algorithm is used in which step? What
algorithms are from prior work and what are new in
this work?
A8: Our framework consists of three main steps: 1) co-
occurrence construction; 2) rectification; and 3) factoriza-
tion. See our flowchart in Figure 1 together with the follow-
ing explanations.

• For rectification, Algorithm 2 (RAW) consists of Alternat-
ing Projection rectification (AP) from the prior work (Lee
et al., 2015). For simultaneous rectification and compres-
sion, we propose the Epsilon Non-negative rectification
(ENN) in Algorithm 3 and the Proximal Alternating Lin-
earized Minimization rectification (PALM) in Algorithm



165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219

On-the-Fly Rectification for Robust Large-Vocabulary Topic Inference (Supplementary Material)

Bag-of-words H C PALM

AP

ENN

AW

RAW

LAW

1) Construct 2) Rectify 3) Factorize

Figure 1. Flowchart of the framework. The bold arrows represent our proposed pipeline, LR-JSMF.

4. Note that AP outputs N ×N rectified co-occurrence
C∗, whereas our ENN and PALM outputN×K rectified
compression of co-occurrence Y .

• For inference given full co-occurrence C, we use the
original Anchor Word algorithm (AW) in Algorithm 1
from the prior work (Arora et al., 2013). For inference
given the rectified and compressed co-occurrence Y , we
propose the Low-rank Anchor Word algorithm (LAW).
AP+AW, together known as the Rectified Anchor Word
algorithm (RAW), is from the previous work (Lee et al.,
2015).

• From co-occurrence construction to factorization, our
Low-Rank Joint Stochastic Matrix Factorization (LR-
JSMF) constructs only a low-rank approximation of the
input dataH , bypassing the construction of any full co-
occurrence C. Then it enjoys total computational cost
linear in N by initializing ENN by the low-rank approxi-
mation of the input data.

Q9: ENN could lead to a co-occurrence matrix with neg-
ative values. Is it fine?
A9: ENN only leads to tiny negative values in the decom-
pressed versionC∗=Y Y ᵀ. Our experimental results show
that ENN+LAW has no visible difference from AP+AW
qualitatively in the learned topics as well as quantitatively
in a number of metrics. Indeed, strictly enforcing non-
negativity constraint of the decompressed C∗ in PALM
deteriorates the quality of topics although they still perform
much better than the original Anchor Word algorithm (AW)
without any rectification. Note also that many other previ-
ous already claim provable guarantees under even bigger
violations in non-negativity (Arora et al., 2012; 2013; 2016).
Different from these papers, our ENN can also control the
degree of violation ε.

Q10: What is the intuition behind using column-pivoted
QR on Cᵀ to find the anchor words?
A10: Previous work (Lee et al., 2015) shows that sep-
arability enables us to represent all non-anchor rows in

C as a convex combination of the anchor rows (i.e.
Ci∗ =

∑
k B̆kiCsk∗). To infer topics (concretely topic-

word matrix B̆), therefore, we need to find K number of
rows in C that form a large enough convex hull to enclose
all the other rows, the co-occurrence space in Figure 1.
Column-pivoted QR is a greedy approach to this problem:
in each step, we pick a pivot that is farthest away from the
points picked so far, orthogonally project all the remaining
points, and repeat this Gram-Schmidt process until we pick
K points. We particularly use the algorithm in (Lee et al.,
2019) for finding the set of anchor words S.

Q11: The Low-rank Anchor Word algorithm (LAW)
shown in Algorithm 5 involves computing the QR de-
composition of Y = QR. What is the additional cost
incurred by this step?
A11: Computing the QR decomposition of Y ∈ RN×K
takes O(NK2) time without affecting to our computational
complexity linear in N .

4. Dataset and Experimental Results
Q12: How exactly is the raw data pre-processed before
constructing co-occurrence matrix C?
A12: Given the bag-of-words, we first filter out all stop
words such as {a, the, of, . . . }. Then we measure the tf-idf
scoring of all words and keep the top N words, where N is
the user-specified vocabulary size. Unlike the usual tf-idf
scoring, we integer floor all inverse document frequency
scores. This consequently removes words that occur in
more than 50% of the documents. Lastly, we discard all
documents that contain less than 3 unique words or are
less than 5 tokens long. Note that this produces exactly
identical dataset on which the previous work measures the
performance of RAW (=AP+AW) (Lee et al., 2015; 2019;
2020).

Q13: For most datasets used, the number of documents
M exceeds the vocabulary size N . In such cases, does
O(NMK) runtime of the proposed LR-JSMF pipeline
exceed O(N2K)?
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A13: Since the word-document matrixH is much sparser
than the word co-occurrence C, usingH to construct com-
pressed co-occurrence statistics V and D turns out to be
much more efficient than explicitly constructing C even in
cases where M > N . To be specific, a tighter bound on the
cost of initializing ENN directly from H gives O(LMK)
time and O(NK) space, where L is the average number
of unique words in each document. For the previous Recti-
fied Anchor Word algorithm (RAW), the tighter bounds of
constructing C are O(L2M) time and O(N2) space.

Q14: Why are the different metrics shown in Figures 2
and 3?
A14: We only present 7 metrics for each experiment
for readability in the limited space. The panels that
were missing are shown in Figure 2 of this supple-
mentary. In addition to evaluation metrics discussed
in the main paper, here we present two more metrics
to maximize comparability with other work: Sparsity
( 1
K

∑
k

√
N−(‖bk‖1/‖bk‖2)√

N−1 ) measures how concentrated the
topics are on specific words, and the traditional Coherence
( 1
K

∑
k

∑x1,x2∈Topk
x1 6=x2

log D2(x1,x2)+ε
D1(x2)

) measures how often
the top Prominent Words of each topic co-occur within
training documents. D1(·) and D2(·, ·) denote document
frequencies and co-document frequencies within the corpus,
respectively.

Q15: For metrics involvingC, were they measured with
the original C or the rectified C?
A15: All metrics presented are measured against the orig-
inal C. Particularly for the large-vocabulary experiments
in Figure 3, we use approximated versions of RelativeRe-
covery and RelativeApproximation instead since vocabulary
sizes over 15k prohibit explicit use of full co-occurrence C
on standard hardware. We verified that the approximated
versions agree with the exact versions in their trends when
measuring on the datasets with small vocabularies.

Q16: Why the patterns over increasing x-axis values are
not always consistent?
A16: Say we generate a dataset from a probabilistic topic
model with two topics. As topic modeling is also a cluster-
ing, learning two or four clusters from the dataset is much
easier than learning three clusters or five clusters. Therefore
our metric values or runtimes are not necessarily mono-
tone when increasing the number of topics. Similarly, the
difficulty of learning some number of topics varies when
changing the size of vocabularies, thereby creating some
amount of inconsistency.

Q17: Why some of the metrics are changed to relative
versions?
A17: We change three intrinsic metrics: Recovery error,
Approximation error, and Diagonal Dominancy into their
relative versions from the original ones in (Lee et al., 2015;

2017; 2019). This is because we here compare different
sizes of vocabularies as well as different numbers of topics.

Q18: According to the source code, the proposed algo-
rithms seem to use fixed number of iterations rather
than running until convergence. Is it fair?
A18: It is primarily because the previous work (Lee et al.,
2015) that we directly compare against uses the fixed num-
ber of iterations for its rectification step by AP. However,
we significantly test both fixed number of iterations and
fixed thresholds for convergence. Then we set the proper
number of iterations for our ENN and PALM empirically,
so that the learned topics are in convergence. However, such
convergence in topics is not easy to be translated into the
uniform convergence criteria for different rectifications. Al-
though we cannot guarantee these number of iterations are
optimal for every possible textual and non-textual datasets,
our experimental designs are fair on these four datasets.

Q19: How did you choose the parameters in your algo-
rithm?
A19: Most of them are selected empirically through careful
experimentation. We are able to find these which perform
well across all datasets we have tested on. Some other
parameters in our numerical methods are by the recommen-
dation of the original paper.

Q20: What was the hardware setup for the experiments
presented in Section 5?
A20: All experiments were performed on a high-
performance computing cluster running on RedHat 6.6 OS.
The non-monotonic increase in runtimes are due to preemp-
tive load-balancing of the cluster’s job scheduler. To reduce
fluctuation, we took the average over 10 runs for all runtime
measurements shown in the main paper.

Q21: Will be source code be released upon publication?
A21: Yes. We will include a Github link to our libraries in
the final draft. The anonymized source codes are submitted
with the datasets used in the experiments.

5. Topic Variations when Increasing or
Decreasing Vocabularies

Figure 3 shows qualitatively that users can learn more distin-
guishable topics by using larger vocabularies. It is especially
because the algorithms make use of rarer words for more
specific contexts. Moving from left to right columns, we
can observe that the set of Prominent Words (PWs) becomes
more specific. For instance, the topic corresponding to the
third row are slightly vague when the sizes of vocabulries
are smaller thanN=5000, whereas we gain access to highly
topic-specific words such as hjb (Hamilton-Jacobi-Bellman
equation) or pid (Proportional Integral Derivative) when
N = 5000, signifying the pertinence to dynamical and con-
trol systems of the topic. When using smaller vocabularies,
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Figure 2. Additional panels for Figures 2 and 3 of the main paper. The x-axes show the number of topics K in Figure 2, and the vocabulary
size N in Figure 3. In y-axes, higher is better for all metrics except for MST-Incoherence. We cannot measure Coherence for the
increasing-vocabulary experiment in Figure 3 due to the large memory cost of storing co-document counts for every pair of words.

we also observe that words normally considered as less in-
teresting terms can often contribute highly to topics. For
example, the topic corresponding to the bottom row shows
red shade when N = 1250, indicating that general terms
such as equivalent or cambridge are strongly connected to
the machine learning literature.
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Figure 3. Losses or gains in Prominent Words (PWs) depending on the vocabulary size. Each row represents a topic from the NeurIPS
dataset, with the top 6 PWs shown in the middle column. The red and green cells denote PWs that are lost or gained by shifting the
vocabulary size from the default size N = 5000, respectively. The color intensities indicate the each word’s contribution towards the
corresponding topic.


