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Appendix: Unsupervised Embedding Adaptation via Early-Stage Feature
Reconstruction for Few-Shot Classification

A. Preprocessing
In this section, we describe the preprocessing including equations in our paper. Assume we are given the embedding support
set Sf and embedding query set Qf . We apply centering and l2-normalization to the embedding samples for reconstruction
training as described in (A.2). Preprocessed embeddings z ∈ Zpreprocess are used as an input to the reconstruction module gφ.
The same preprocessing (centering and l2-normalization) is applied at the output of reconstruction module to compute the
reconstruction loss LFR as in (A.5).

z̄ =
1

|Sf ∪Qf |
∑

z∈Sf∪Qf

z (A.1)

Spreprocessed =
{

(z′, y)|z′ =
z − z̄
‖z − z̄‖2

, (z, y) ∈ Sf
}
, Qpreprocessed =

{
z′|z′ =

z − z̄
‖z − z̄‖2

, z ∈ Qf
}

(A.2)

Zpreprocessed = Spreprocessed ∪Qpreprocessed (A.3)

z̄φ =
1

|Zpreprocessed|
∑

z∈Zpreprocessed

Eµ[gφ(z � µ)] (A.4)

LFR(φ) = − 1

|Zpreprocessed|
∑

z∈Zpreprocessed

Eµ
[
zT

gφ(z � µ)− z̄φ
‖gφ(z � µ)− z̄φ‖2

]
(A.5)

As new embeddings for few-shot classification, we apply only l2-normalization since it performs the best. The new
embedding sets SESFR and QESFR for the few-shot classification task are as follows:

SESFR =
{

(z′, y)|z′ =
1

Ne

Ne∑
i=1

gφi
∗
(z)

‖gφi
∗
(z)‖

2

, (z, y) ∈ Spreprocessed

}
(A.6)

QESFR =
{
z′|z′ =

1

Ne

Ne∑
i=1

gφi
∗
(z)

‖gφi
∗
(z)‖

2

, z ∈ Qpreprocessed

}
(A.7)

For BD-CSPN (Liu et al., 2020) and our method used with BD-CSPN, additional shifting-term is added for query samples
before preprocessing. In this case, we define Spreprocess and Qpreprocess as follows:

shifting-term:4 =
1

Sf

∑
zs∈Sf

zs −
1

Qf

∑
zq∈Qf

zq (A.8)

Qshifted
f =

{
z′|z′ = z +4, z ∈ Qf

}
(A.9)

z̄ =
1

|Sf ∪Qshifted
f |

∑
z∈Sf∪Qshifted

f

z (A.10)

Spreprocessed =
{

(z′, y)|z′ =
z − z̄
‖z − z̄‖2

, (z, y) ∈ Sf
}
, Qpreprocessed =

{
z′|z′ =

z − z̄
‖z − z̄‖2

, z ∈ Qshifted
f

}
(A.11)
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B. Comparison to TIM
Table B.1. Table describes the performance comparison with TIM (Boudiaf et al., 2020) of 5-way 1- and 5-shot accuracies (in %) on
mini-ImageNet, tiered-ImageNet and CUB. The performance of TIM-GD is from the paper (Boudiaf et al., 2020). We use preprocessing
with shifting-term to acquire new embeddings for TIM-GD + ESFR since it performs better.

mini-ImageNet tiered-ImageNet CUB
Method Backbone 1-shot 5-shot 1-shot 5-shot 1-shot 5-shot
TIM-GD (Boudiaf et al., 2020) ResNet-18 73.9 85.0 79.9 88.5 82.2 90.8
TIM-GD + ESFR ResNet-18 76.02 84.42 82.03 88.11 84.69 90.43
TIM-GD (Boudiaf et al., 2020) WRN 77.8 87.4 82.1 89.8 - -
TIM-GD + ESFR WRN 79.25 86.38 83.58 89.44 - -

We separately compare the performance of our method with TIM (Boudiaf et al., 2020) since we believe TIM uses a strong
prior that query samples per class are balanced in the standard few-shot classification benchmarks (e.g., 15-query samples per
class); while our method combined with the baseline methods (NN, Linear, BD-CSPN (Liu et al., 2020)) does not utilize any
query statistics. We find that TIM’s proposed regularization term with conditional entropy and label-marginal entropy forces
balancing among the predicted number of query samples per class. To be specific, the conditional entropy minimization
term encourages the classification model to output confident prediction and the label-marginal entropy maximization term
encourages marginal predicted label distribution to be uniform. When both conditional and label-marginal entropy terms are
used simultaneously, the predicted labels close to one-hot from uniform class distribution, resulting in the same number of
predicted samples for each class. This seems helpful in the balanced query class distribution setting where all query samples
per class are the same, but its possible use case will be limited. We find that query class imbalance setting can easily ruin
TIM’s performance in Section D.

To investigate our method when using query statistics, we experiment with TIM-GD + ESFR. Table B.1 shows the results on
standard mini-ImageNet, tiered-ImageNet, and CUB with 5-way 1- and 5-shot settings. For 1-shot settings, our method
improves the performance of TIM by 1.5%∼2.5% across all datasets and backbones. As mentioned before (in Section 5.3),
this indicates that our method can offer a complementary improvement to semi-supervised learning techniques such as TIM
for 1-shot. For 5-shot settings, our method decreases the performance by 0.4%∼1.0%. The decrease in 5-shot performance
encourages further research about the simultaneous use of pseudo-label information and unsupervised information, which
we leave as future work.

C. Ablation: noise level of dropout

Table C.1. The table shows the influence of drop-rate applied to our method. We experimented with ResNet-18 backbone on mini-ImageNet
and tiered-ImageNet.

mini-ImageNet tiered-ImageNet
rate 1shot 5shot 1shot 5shot
0. 68.90 81.53 75.39 85.31

0.1 69.41 81.59 75.90 85.50
0.2 69.90 81.70 76.39 85.63
0.3 70.39 81.71 76.78 85.71
0.4 70.63 81.71 77.23 85.77
0.5 70.94 81.61 77.44 85.84

We further investigate the effect of the dropout noise level. In the main text, we argued that multiplicative noise by dropout
seems well suited for our method. Experiments in Table C.1 with various drop-rate show that the dropout can be used in our
method without careful tuning.

D. Few-shot classification with imbalance query class distribution
To verify our method’s robustness on various query settings, we experiment with the setting when the numbers of query
samples per class are imbalanced. We set the number of query samples per class as (11, 13, 15, 17, 19) and (7, 11, 15, 19, 23).
Table D.1 shows that our method consistently improves the performance of few-shot classification regardless of the query
imbalance setting. To be more specific, the improvement by our method in different query settings varies within < 1.5%;
thus, our method is robust to different query settings. In contrast, TIM (Boudiaf et al., 2020) that uses the strong prior about
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Table D.1. This table shows few-shot classification performance when the numbers of query samples per class are imbalanced. For
standard settings, the number of query samples per class is equally 15, given as (15, 15, 15, 15, 15). For the imbalance case, we set the
number of query samples per class as (11, 13, 15, 17, 19) and (7, 11, 15, 19, 23). The ± describes 95% confidence interval. For these
results, we use our implementation version of TIM-GD (Boudiaf et al., 2020), which matches the original paper’s performance. For
BD-CSPN (Liu et al., 2020) with an imbalance number of query samples, we do not use shift-term since it worsens the performance.

mini-ImageNet

Method Backbone (15, 15, 15, 15, 15) (11, 13, 15, 17, 19) (7, 11, 15, 19, 23)
1-shot 5-shot 1-shot 5-shot 1-shot 5-shot

TIM-GD ResNet-18 73.67±0.33 85.01±0.19 68.93±0.30 79.05±0.17 66.04±0.28 75.60±0.16
NN ResNet-18 64.04±0.44 79.71±0.32 63.73±0.46 80.01±0.33 63.25±0.47 79.88±0.33

+ESFR ResNet-18 70.94±0.50 81.61±0.33 70.32±0.52 81.35±0.33 69.74±0.53 81.12±0.34
BD-CSPN ResNet-18 70.00±0.51 82.36±0.32 68.99±0.51 81.49±0.34 68.26±0.52 81.12±0.34

+ESFR ResNet-18 73.98±0.55 82.32±0.33 72.39±0.56 81.51±0.34 71.74±0.57 81.17±0.35
TIM WRN 77.60±0.31 87.31±0.17 72.03±0.28 80.91±0.16 68.86±0.26 77.28±0.15
NN WRN 66.73±0.44 81.85±0.31 66.64±0.46 82.07±0.31 66.30±0.47 81.98±0.32

+ESFR WRN 74.01±0.51 83.58±0.31 73.34±0.51 83.27±0.32 72.89±0.52 83.03±0.33
BD-CSPN WRN 72.74±0.49 84.14±0.30 71.67±0.51 83.34±0.32 71.19±0.51 83.02±0.33

+ESFR WRN 76.84±0.54 84.36±0.32 75.26±0.55 83.48±0.33 74.66±0.55 83.09±0.34
tiered-ImageNet

Method Backbone (15, 15, 15, 15, 15) (11, 13, 15, 17, 19) (7, 11, 15, 19, 23)
1-shot 5-shot 1-shot 5-shot 1-shot 5-shot

TIM-GD ResNet-18 79.99±0.33 88.62±0.20 74.21±0.29 81.93±0.18 70.95±0.28 78.36±0.17
NN ResNet-18 71.60±0.49 84.62±0.36 71.10±0.49 84.59±0.35 70.51±0.49 84.52±0.35

+ESFR ResNet-18 77.44±0.52 85.84±0.35 76.77±0.53 85.64±0.35 76.21±0.54 85.42±0.36
BD-CSPN ResNet-18 77.28±0.52 86.55±0.34 76.38±0.52 85.89±0.35 75.63±0.53 85.65±0.36

+ESFR ResNet-18 80.13±0.56 86.34±0.36 78.72±0.57 85.76±0.36 78.12±0.57 85.50±0.37
TIM WRN 82.18±0.32 89.87±0.19 76.11±0.28 83.18±0.17 72.72±0.27 79.55±0.16
NN WRN 72.97±0.49 85.74±0.34 72.17±0.48 85.79±0.34 71.57±0.49 85.70±0.34

+ESFR WRN 79.13±0.52 87.08±0.34 78.30±0.53 86.90±0.34 77.67±0.53 86.69±0.34
BD-CSPN WRN 78.89±0.52 87.72±0.32 77.71±0.52 87.11±0.34 77.05±0.53 86.86±0.35

+ESFR WRN 81.77±0.55 87.61±0.34 80.50±0.55 87.04±0.35 79.67±0.56 86.72±0.35

query statistics, suffers from the change in query setting. The performance of TIM on the 5-shot when the number of query
samples per class is (7, 11, 15, 19, 23) shows −6.2%∼−4.2% performance decrease compare to the baseline (NN).

E. Naively applied unsupervised learning methods

Table E.1. Experiment settings
Candidates

Learning rate 1e-3, 1e-4
Classifier Linear, Cosine

Additional module 2-layer FCN, None
update weights

of embedding networks
None, All,

only-the-last-residual-block
New embeddings Backbone output, Additional module output

We experiment if naively applied unsupervised (or self-supervised) learning can improve few-shot classification in the
standard settings. For a fair comparison, we use the pre-trained embeddings of ResNet-18 on mini-ImageNet. We test with
pretext task-based self-supervised methods of rotation (Gidaris et al., 2018) and jigsaw (Noroozi & Favaro, 2016). For both
methods, we use grid search to find the best performing settings; shown in Table E.1. An additional module is inserted
between the embedding network and classifier and we use hidden dimensions from Su et al. (2020). For jigsaw tasks, we use
35-permutations from Su et al. (2020). For both methods, the same setting with the bold font on Table E.1 performs the best.

Table-E.2 shows the results with (1) new embeddings are provided when training becomes converged and (2) new embeddings
are given via oracle early stopping at the best performing training iteration (for ≥ 1). The result with converged embeddings
shows that the naively applied self-supervised learning fails to improve few-shot classification performance. Note that our
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Table E.2. Naively applied unsupervised learning results
Method mini-ImageNet 1-shot accuracy

NN 64.04
+ESFR 70.94 +6.90

(1) Converged (2) Oracle early stopping
Jigsaw 33.1 67.22 +3.18

Rotation 32.2 66.70 +2.66

method achieves 70.94 on the same setting. Our method outperforms both the rotation- and jigsaw-based1 unsupervised
learning methods that even contain oracle early-stopping.

F. Experiments with Conv4

Table F.1. The table shows the experimental results of our method with Conv4-64 backbone on mini-ImageNet and tiered-ImageNet.

mini-ImageNet tiered-ImageNet
Method 1-shot 5-shot 1-shot 5-shot

NN 50.72 67.17 52.18 69.60
+ ESFR 54.63 +3.91 68.32 +1.15 57.56 +5.38 71.46 +1.86

BD-CSPN 52.73 68.5 54.94 71.53
+ ESFR 56.24 +3.51 69.18 +0.68 60.16 +5.22 72.37 +0.84

We use pre-trained Conv4-64 backbones following the settings of Wang et al. (2019). We applied the same preprocessing
strategy as in the main text. For the reconstruction module, we find that the bottleneck structure (Section 3.1) is helpful for
Conv4-64; while reconstructed embeddings still outperform the encoded ones. Thus, we use 800-400-800-1600 as hidden
dimensions.

Table-F shows experimental results with Conv4-64. As in the experimental results with ResNet and WideResNet, our method
consistently improves the performance of the baseline methods: NN and BD-CSPN. ESFR also offers a complementary
improvement to BD-CSPN (Liu et al., 2020) in 1-shot settings. Compare to prior state-of-the-art methods with Conv4-64,
our method with BD-CSPN has slightly lower performance. 2
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