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Abstract 
We propose unsupervised embedding adaptation 
for the downstream few-shot classifcation task. 
Based on fndings that deep neural networks learn 
to generalize before memorizing, we develop 
Early-Stage Feature Reconstruction (ESFR) — a 
novel adaptation scheme with feature reconstruc-
tion and dimensionality-driven early stopping that 
fnds generalizable features. Incorporating ESFR 
consistently improves the performance of base-
line methods on all standard settings, including 
the recently proposed transductive method. ESFR 
used in conjunction with the transductive method 
further achieves state-of-the-art performance on 
mini-ImageNet, tiered-ImageNet, and CUB; es-
pecially with 1.2%∼2.0% improvements in accu-
racy over the previous best performing method on 
1-shot setting.1 

1. Introduction 
Deep learning has achieved impressive results on visual 
recognition tasks. However, it still has diffculty generalizing 
to novel classes with few examples; while humans can learn 
to recognize from few experiences. Few-shot classifcation 
(Miller et al., 2000; Vinyals et al., 2016; Ravi & Larochelle, 
2017) is designed to bridge the gap between the two and has 
recently attracted substantial attention. 

Several works (Liu et al., 2019; Hou et al., 2019; Qiao 
et al., 2019; Hu et al., 2020; Dhillon et al., 2020; Ziko 
et al., 2020; Boudiaf et al., 2020) have shown the effec-
tiveness of transductive methods in few-shot classifcation, 
showing a signifcant improvement over inductive methods. 
While test samples are inaccessible in an inductive few-shot 
classifcation setting, one can utilize all the unlabeled test 
samples together to make an inference in a transductive 
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setting. The co-existence of labeled- and unlabeled-data in 
this setting motivates the use of transductive inference or 
semi-supervised learning. A popular transductive approach 
is pseudo-label-based methods that progressively update the 
labels or inference models by predicted test samples. For 
instance, Liu et al. (2019); Kim et al. (2019) use a neighbor 
graph for label propagation, Hou et al. (2019); Liu et al. 
(2020) use predicted labels on test samples to update the 
class prototypes, and Antoniou & Storkey (2019); Hu et al. 
(2020) use prediction to produce an intrinsic loss or syn-
thetic gradient. Another line of works utilizes regularization 
terms on unlabeled test samples. To list a few, Dhillon et al. 
(2020); Boudiaf et al. (2020) use entropy minimization of 
the prediction on unlabeled data, Ziko et al. (2020) uses the 
Laplacian regularization term for graph clustering. These 
methods are mostly originated from semi-supervised learn-
ing studies; approaches in semi-supervised learning are still 
motivating few-shot classifcation research. 

On the other hand, semi-supervised learning research has 
recently benefted from unsupervised learning. Rapidly ad-
vancing self-supervised learning methods (Caron et al., 
2020; Grill et al., 2020; Chen et al., 2020) have shown strong 
performance on semi-supervised image classifcation tasks. 
A popular approach is to use a self-supervision loss for repre-
sentation learning to acquire more general features. Learned 
representations are then used with fne-tuning (Caron et al., 
2020; Grill et al., 2020; Chen et al., 2020) or other semi-
supervised learning methods (Zhai et al., 2019; Kim et al., 
2021) for downstream tasks. These studies achieved state-
of-the-art performance on semi-supervised learning tasks, 
especially in settings with extremely few labels. 

The success of unsupervised learning on semi-supervised 
tasks suggests the potential beneft of fnding shared features 
or patterns without labels in relevant research areas. In few-
shot classifcation, several works (Gidaris et al., 2019; Su 
et al., 2020) use additional self-supervision loss during the 
training of base datasets to learn more general features. 
However, the use of unsupervised learning on unlabeled 
data that appears in test-time is less studied. In this work, 
we study unsupervised learning for adaptation to satisfy the 
thirst. 

https://github.com/movinghoon/ESFR
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Our contributions are summarized as follows: 

• We fnd that early generalized features during unsu-
pervised training are valuable for recognizing novel 
classes of few-shot classifcation. Based on recent stud-
ies of deep neural network’s training dynamics, we 
explain the fnding with experiments. (Section 3.1) 

• Based on the fnding, we construct a novel embedding 
adaptation scheme with (1) feature reconstruction train-
ing and (2) dimensionality-driven early stopping. Our 
method provides task-adapted embeddings composed 
of desirable-shared features, which are more likely to 
be task-relevant and valuable for the few-shot classif-
cation. Our method is used as a plug-and-play module 
for few-shot methods. (Section 3.3) 

• We test our method, ESFR, used in conjunction with 
baseline methods in the standard few-shot classifcation 
benchmarks. ESFR consistently improves the perfor-
mance of baselines; adding ESFR to the transductive 
method achieves the state-of-the-art performance on 
mini-ImageNet, tiered-ImageNet, and CUB. Particu-
larly in the scarce-label setting of 1-shot, our method 
outperforms the previous state-of-the-art with accura-
cies of 1.2%∼2.0%. (Section 5.3) 

2. Preliminaries 
2.1. Problem Setting 

In a few-shot classifcation task, a small labeled support 
i iset S = {(x , y )}|S| and unlabeled query set Q = s s i=1 

i{(x , )}|Q| are given.2 Both support samples and queryq i=1 
samples are from the same novel classes that are never seen 
during training. The goal of few-shot classifcation is to 
classify query (test) samples by few examples in the support 
set. In the usual setting, the support set has K = 1 or 5 ex-
amples per N = 5 novel classes, and we call this an N -way 
K-shot problem. 

We address a transductive few-shot classifcation task where 
all query samples are accessible. Since learning from few 
samples without prior is extremely hard, we use a pre-
trained embedding network f that is trained on the base 
dataset as in Rusu et al. (2019); Wang et al. (2019); 
Hu et al. (2020); Ziko et al. (2020). We denote Sf = 

|S| |Q|i i i{(f(x ), y )} and Qf = {(f(x ), ·)} as the support s s i=1 q i=1 
set and the query set in the embedding domain, respectively. 

Our interest is in task-adapted embeddings (representations) 
that are useful in the given few-shot task. We construct the 
embeddings with a module gφ on top of f by training on the 
union of the support set and query set. 

2(x, y) denotes an image and its label. 

2.2. Local Intrinsic Dimensionality (LID) 

We briefy explain LID that our method uses as early stop-
ping criterion. LID is a statistical version of an expansion-
based Intrinsic Dimension (ID) that provides an estimated 
subspace dimension of local regions. Recently, substantial 
redundant dimensions of modern deep neural networks lead 
to the wide use of ID and LID to track and analyze training 
(Amsaleg et al., 2017; Ma et al., 2018a;b; Ansuini et al., 
2019; Gong et al., 2019). The formal defnition of LID is 
given as (Amsaleg et al., 2015; Houle, 2017a;b): 

Defnition 1 (Local Intrinsic Dimensionality). Given a data 
point x, let r > 0 be a continuous random distance variable 
from x. For the cumulative density function Fx(r), the LID 
of x at distance r is defned as: 

ln Fx((1 + �)r) − ln Fx(r)defLID(r; Fx) = lim , (1) 
�→0+ ln(1 + �) 

whenever the limit exists. The LID at x is then defned as 
the limit of distance r → 0+: 

defLID(x) = lim LID(r; Fx). (2) 
r→0+ 

Since the density function of the distance variable is usually 
unknown, the exact value of LID is hard to acquire. We 
use the maximum likelihood estimation by Amsaleg et al. 
(2015) to calculate the LID estimates as follows: " #−1mX1 ri(x)dLID(x) = − ln , (3) 

m rm(x)
i=1 

where ri(x) indicates the distance3 between x and its i-th 
nearest neighbor. The number of the nearest neighbor m 
should be chosen appropriately to make estimation local but 
stabilized.4 

We refer to Amsaleg et al. (2015); Houle (2017a;b) for more 
details about LID and its estimation methods. 

3. Methodology 
Figure 1 illustrates the usage and overview of our method. 
As a plug-and-play module, our method provides task-
adapted embeddings to other few-shot classifcation meth-
ods. Our method is mainly composed of feature recon-
struction training and LID-based early stopping. We will 
explain feature reconstruction training (Section 3.1); LID-
based early stopping (Section 3.2); the overall method (Sec-
tion 3.3), in the following. 

3We use Euclidean distance. 
4We set m = 20 throughout experiments as in Ma et al. 

(2018a). 
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Figure 1. Overview of our method. 1-(a) shows the case without embedding adaptation, and 1-(b) shows the case with embedding 
adaptation. Our scheme mainly consists of feature reconstruction training and dimensionality-driven early stopping, and provides new 
embeddings of generalizable features for the downstream few-shot task. 

3.1. Feature Reconstruction 

Our main idea is based on the fndings that deep neural 
networks learn to generalize before memorizing to abstract 
task-useful features. We design feature-level reconstruction 
training, which is unsupervised learning and builds on prior 
knowledge given by embeddings. As mentioned before, un-
supervised learning for few-shot adaptation tends to have 
less attention; and we fnd that naively applied unsupervised 
learning for few-shot adaptation often fails.5 Moreover, the 
behavior of unsupervised learning with a pre-trained embed-
ding network is often ambiguous. For instance, contrastive 
learning heavily relies on augmentations, while augmenta-
tions affect embeddings differently depending on how the 
embedding network is pre-trained. Instead, we fnd that our 
feature reconstruction training can be used to adapt embed-
dings for few-shot classifcation. 

We explain our feature reconstruction training. For a few-
shot classifcation task with embedding support set Sf and 
query set Qf ; we train a reconstruction module gφ using the 
following feature level reconstruction loss: X1 L(φ) = dcos(z, gφ(z)), (4)

|Sf ∪ Qf | 
z∈Sf ∪Qf 

where dcos denotes the cosine distance. Both z and gφ(z) are 
preprocessed6 embeddings, but their expressions are omitted 
for notational simplicity. We note that for a newly given few-
shot classifcation task, the weight φ of the reconstruction 
module is randomly re-initialized. 

We investigate the behavior of reconstruction modules dur-
ing feature reconstruction training w.r.t. the downstream 
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Figure 2. Few-shot classifcation accuracy with A0, A1, and B1 
during feature reconstruction training. We use ResNet-18 back-
bone, mini-ImageNet dataset, and nearest neighbor classifer. For 
gφ1 , we use a 4-layer neural network with 256-128-256-512 units. 
Other settings are described in the experiment section. (left) shows 
the accuracy on 1-shot and (right) shows the accuracy on 5-shot 
setting. 

few-shot task. We train two types of reconstruction mod-
ules, gφ1 with compressed (bottleneck) hidden layer as in 
conventional auto-encoders, and gφ2 ; without compression. 
We evaluate few-shot classifcation accuracy with three em-
beddings A0, A1, B1; where A0 is the middle compressed 
hidden layer output of gφ1 ; A1 and B1 are the reconstructed 
output of gφ1 and gφ2 , respectively. 

Figure 2 shows an interesting behavior that few-shot classi-
fcation accuracies, with embeddings of reconstruction mod-
ules, initially increase then decrease. Moreover, the peak 
accuracy of B1 exceeds the baseline accuracy of the original 
embedding, on both 1- and 5-shot settings. We believe that 
recent studies of Deep Neural Networks (DNNs) explain 
such behavior. Several works (Arpit et al., 2017; Lampinen 
& Ganguli, 2019; Stephenson et al., 2021) observe a prop-5We test self-supervised learning models of rotation (Gidaris 

et al., 2018) and jigsaw (Noroozi & Favaro, 2016) in Appendix E. erty that DNNs learn to generalize before memorizing. To 
6Details are described in the experiment section. be more specifc, Arpit et al. (2017) reports that DNNs learn 
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patterns frst before memorization, with experiments on the 
mixture of well-structured real data and noisy data. Further 
research Lampinen & Ganguli (2019); Stephenson et al. 
(2021) provide analytical explanations on the property that 
learning speeds between generalization of patterns and mem-
orization of noise are different.7 We argue that the behavior, 
shown in Figure 2, is a result of the DNNs’ property. By the 
property, reconstruction modules learn shared features faster 
since they form certain patterns or correlations among data, 
while non-shared features are learned later since they are 
less generalizable. Generalizable shared features are more 
likely to be task-relevant in classifcation; the difference 
in learning speeds between shared features and non-shared 
features explains the initial increase of accuracies. 

Our main idea is to use the behavior shown in Figure 2 
for embedding adaptation. The behavior provides an oppor-
tunity to achieve improved few-shot classifcation perfor-
mance by acquiring new embeddings of generalized features. 
To do this, we fnd that non-compressed and non-encoded 
embedding (B1) performs the best. Throughout the rest of 
our work, we use the reconstructed output gφ that is non-
compressed as task-adapted embeddings. 
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Figure 3. The fgure shows the accuracy and the LID curve during 
feature reconstruction training, with (Acc:dropout, LID:dropout) 
and without (Acc, LID) dropout perturbation. We use the same 
setting as in Figure 2. The vertical lines indicate the maximum 
accuracy (blue) and the minimum LID (red) points; for 1-shot, they 
are overlapped. (left) shows the results in the 1-shot and (right) 
shows the results in the 5-shot setting. 

We propose to perturb the training to further discard the non-
shared features. Perturbation with noise does not form gen-
eralizable patterns or correlations; thus, perturbation tends 
to make training harder for less generalizable non-shared 
features while shared features are still learnable by pattern 
learning. While additive perturbation is hard to design, due 
to the unknown distribution of z, we fnd that multiplica-
tive perturbation by dropout (Srivastava et al., 2014) is well 
suited for our purpose. Our feature reconstruction training 

7Generalization is faster than memorization. 

with input dropout uses the following loss function8: X1 LFR(φ) = Eµ[dcos(z, gφ(z ◦µ))], (5)
|Sf ∪ Qf | 

z∈Sf ∪Qf 

where µ is a multiplicative noise implemented with dropout. 
Figure 3 shows the effect of dropout on the training curve; 
we can observe that the dropout perturbation results in 
higher peak accuracies. 

3.2. Dimensionality Driven Early Stopping 

Utilization of early retained generalizable features seems a 
promising idea for the downstream few-shot classifcation. 
However, determining the optimal early stopping time is 
not straightforward. Here, we suggest using Local Intrinsic 
Dimensionality (LID) as an early stopping criterion. Re-
cent work by Ma et al. (2018b) used LID to monitor the 
internal generalization and memorization during training. 
They argued that LID tends to decrease while DNNs learn 
to generalize, due to summarizing effect; LID tends to in-
crease while memorizing, as DNNs try to encode detailed 
information individually. We observe the tendency in our 
reconstruction training, and we fnd that LID can be used as 
an early stopping criterion. 

For a given few-shot classifcation task with embedding 
support set Sf and query set Qf , we use estimated LID, 
with reconstruction module gφ, given as: Xd d L−2LID(φ) = LID(g (z))φ 

z∈Sf ∪Qf " #−1m L−2X 1 X ri(g (z))φ 
= − ln , (6) 

m rm(g L−2(z))
z∈Sf ∪Qf i=1 φ 

L−2where g is the hidden representation of the second-to-φ 
L−2last layer of gφ; ri(g (z)) denotes the Eucidean dis-φ 

L−2tance between g (z) and its i-th nearest neighbor inφ 
L−2{g (z0)|z LID(φ) is a proxy for the 0 ∈ Sf ∪ Qf }. Our d 
φ 

hidden layer subspace dimensionality of the reconstruction 
module. 

In Figure 3, we empirically investigate the relationship be-
tween the LID and accuracy during reconstruction training. 
The result shows that the change of LID can be used to fnd 
the early stopping time of the best possible new embeddings; 
when the LID becomes the lowest or starts to increase. To 
be more specifc, in 1-shot settings, we observe that the 
LID behaves exactly the opposite of the accuracy curve, for 
both with and without dropout. For 5-shot settings, the LID 
behaves almost the opposite of the accuracy curve; how-
ever, it has a small misalignment, especially for the case 

8◦ indicates the element-wise product. 
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Algorithm 1 ESFR 
Input: embedding support set Sf , embedding query set 
Qf , and few-shot classifer Alg : Sf , Qf → Yb 

Q 

Initialize: φi=1:Ne 

for i = 1 to Ne do dprev lid = LID(φi 
0) 

Initialize: optimizer 
for j = 0 to MAX ITERATION do 

φi ← φi −rφi L(φi ) from equation 5 or 7j+1 j jj dlid = LID(φi
j+1) 

if lid > prev lid then 
φi = φi 
∗ j+1 

break 
end if 
prev lid = lid 

end for 
end for 
SESFR = {(z0, y)|z0 = 1 PNe (z), (z, y) ∈ Sf }Ne i=1 gφ∗ 

i 

QESFR = {z0|z0 = 1 PNe (z), z ∈ Qf }Ne i=1 gφ∗ 
i 

= Alg(SESFR, QESFR)Output: Yb 
Q 

with dropout. This seems reasonable since the classifer can 
further flter out non-shared features by multiple examples 
of novel classes in 5-shot settings; hence acquiring more 
shared features at the cost of learning non-shared ones can 
be advantageous. 

3.3. Proposed Methods 

ESFR: We describe our unsupervised adaptation scheme for 
few-shot classifcation: Early-Stage Feature Reconstruction 
(ESFR). Given a few-shot classifcation task and embedding 
network, we run feature reconstruction training by LFR (5) 
with initialized φ. At every training iteration, we measure 
the LID of gφ with task samples by (6) and we early stop 
the training when the LID starts to increase. Task-adapted 
embeddings of gφ(z) are used for the classifcation of the 
given few-shot task. A wide range of metric-based and fne-
tuning few-shot methods can be used with our embeddings 
for such classifcation. To reduce the variance by random 
initial weights of φ, we train Ne reconstruction modules, 
separately, with different initial weights, and take the center 
of each sample’s reconstructed embeddings. 

ESFR-Semi: We further investigate the semi-supervised 
version of our scheme, ESFR-Semi, by adding the support 
classifcation loss to the reconstruction loss (5): 

Cj (z, φ, W, b) = softmaxj [Wgφ(z) + b] X1 LCE(φ, W, b) = − log Cyi (zi, φ, W, b)
|Sf | 

(zi,yi)∈Sf 

LSemi(φ, W, b) = LFR(φ) + λLCE(φ, W, b) (7) 

where LCE is the cross-entropy loss given by an affne clas-
sifer on new embeddings, and λ is a trade-off parameter. 
Additional weights W and b are jointly trained with φ. The 
trade-off parameter λ is tuned using few-shot classifcation 
tasks from validation datasets as in Ziko et al. (2020). Note 
that the only ESFR-Semi requires (while ESFR does not) 
few-shot classifcation task experiences to determine a cer-
tain parameter. 

The overall methods are described in Algorithm 1. 

4. Related Work 
Few-Shot Classifcation (FSC): Few-shot learning or 
few-shot classifcation methods have broad categories: 
optimization-based methods (Ravi & Larochelle, 2017; Finn 
et al., 2017; Rusu et al., 2019), distance-based approaches 
(Vinyals et al., 2016; Snell et al., 2017; Oreshkin et al., 
2018), fne-tunings (Wang et al., 2019; Tian et al., 2020; 
Dhillon et al., 2020), etc. A large portion of these meth-
ods is based on meta-learning (Thrun & Pratt, 2012). In 
meta-learning, training is done in a series of few-shot classi-
fcation tasks (a.k.a. episodic training) to train the model in 
a way that refects test-time scenarios. Several recent studies 
(Wang et al., 2019; Tian et al., 2020; Dhillon et al., 2020; 
Ziko et al., 2020; Boudiaf et al., 2020) have questioned the 
necessity of meta-learning on few-shot classifcation, report-
ing competitive performance on few-shot benchmarks with-
out neither episodic training nor few-shot task experiences. 
These methods solve the few-shot task by fne-tuning9 a 
pre-trained embedding network trained on the base dataset 
with standard cross-entropy loss. Our method lies in this 
line of research that doesn’t require meta-learning. It seems 
possible to merge our method with meta-learning; we leave 
it as future work. 

Unsupervised adaptation for FSC: We mentioned in the 
introduction that transductive methods, based on semi-
supervised learning techniques, have been widely studied 
in few-shot classifcation. In contrast, unsupervised adap-
tation for few-shot classifcation is an open feld. To the 
best of our knowledge, we are the frst to propose deep 
unsupervised adaptation for few-shot classifcation. The 
closest related works are Rodrı́guez et al. (2020) and Licht-
enstein et al. (2020). Embedding Propagation proposed by 
Rodrı́guez et al. (2020) iteratively updates embeddings by a 
linear combination with the nearest neighbors’ embeddings 
and improves few-shot classifcation performance. Licht-
enstein et al. (2020) uses the principal component analysis 
to acquire major components from given task embeddings; 
this classical approach shows impressive performance gain. 
However, these works are limited to an affne transformation 

9Including the only change of class prototypes or last layer 
parameters. 
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of embeddings and do not beneft from deep learning; while 
our method fnds non-linear patterns and correlations by the 
beneft of deep unsupervised learning. Though unsupervised 
adaptation in few-shot classifcation had less attention, our 
experimental results show that it can outperform conven-
tional transductive baselines, especially when extremely few 
labeled samples are available in the 1-shot setting. 

Training behavior of DNNs: Our method is based on the 
property of Deep Neural Networks’ (DNNs) training be-
havior that DNNs learn to generalize before memorizing. 
The property is reported and studied in recent works (Arpit 
et al., 2017; Lampinen & Ganguli, 2019; Stephenson et al., 
2021), as mentioned in Section 3.1. Similar to our work, sev-
eral methods of training DNNs with noisy labels are based 
on different training behaviors between generalization and 
memorization. After the report of the property by Arpit et al. 
(2017), several works (Hendrycks et al., 2019; Oymak et al., 
2019; Song et al., 2020) suggest using early stopping to 
discard noisy information before memorization, Jiang et al. 
(2018); Yu et al. (2019); Sugiyama (2018) propose to gather 
the clean samples that exhibit high confdent prediction 
in the early pattern learning for further training. Ma et al. 
(2018b) offer to use LID to detect and correct noisy label 
memorization, which strongly motivates our methodology. 
However, these works are limited to the domain of learning 
from noisy labels and supervised learning. In our work, we 
fnd the behavior also appears in unsupervised adaptation 
for few-shot classifcation. 

5. Experiments 
5.1. Experimental Settings 

Datasets: We evaluate our method on three standard 
datasets of few-shot classifcation: (1) mini-ImageNet 
(Vinyals et al., 2016) dataset as in Ravi & Larochelle 
(2017), (2) tiered-ImageNet dataset as in Ren et al. (2018), 
and (3) Caltech-UCSD Birds 200 (CUB) (Welinder et al., 
2010) as in Chen et al. (2019). Each dataset is divided into 
train/val/test splits according to references. All the images 
are resized to 84 × 84. 

Baseline Methods: We investigate three baseline few-shot 
classifcation methods (classifers) used in conjunction with 
our method. 

• Linear: Train an affne classifer on labeled support set 
with embeddings and use the trained classifer to classify 
the query samples. 

• Nearest Neighbor (NN): Compute the class prototype by 
the centroid of support sample embeddings in each class 
and classify the query sample to the class of the nearest 
prototype.10 

10We use Euclidean as a distance metric. 

• BD-CSPN: BD-CSPN (Liu et al., 2020) is chosen as a 
baseline transductive method. It can be used with pre-
trained embeddings and achieves state-of-the-art perfor-
mance on 5-shot (Table 2). To briefy summarize, BD-
CSPN consists of two components: (1) shifting-term for 
removing the cross-class bias between the support set and 
query set, (2) Prototype Rectifcation (PR) that updates 
class prototypes by accounting pseudo-labeled query sam-
ples. Our particular interest is in PR since it is a baseline 
approach of transductive methods; a similar scheme was 
suggested in Ren et al. (2018); Hou et al. (2019). 

Evaluation Protocol: We evaluate our method on standard 
5-way 1- and 5-shot settings with 15 query samples per 
class. We sampled 2,000 tasks for each experimental result. 
Our method uses the same fxed hyper-parameters for all 
experiments and settings. For the semi-supervised version 
of our method, with trade-off parameter λ, we tune λ by 
selecting the best among λ ∈ [0, 0.1, 0.2, 0.4, 0.8, 1.6] from 
600 sampled few-shot tasks of validation dataset. 

5.2. Implementation Details 

Embedding Network: We follow the embedding network 
training procedure from Ziko et al. (2020), using backbone 
architectures: ResNet-18, WRN-28-10. We use from in-
put to the average-pooled last residual block output as an 
embedding network. Embedding networks are trained for 
90 epochs, using stochastic gradient descent to minimize 
the standard cross-entropy on labeled base datasets. Label 
smoothing with parameter 0.1 is used for more general fea-
tures. Random cropping, color jittering, and random horizon-
tal fipping are applied for data augmentation.11 The initial 

1learning rate is 0.1 and shrank by at 45 and 66 epochs. 10 
Mini-batch sizes of 256 and 128 are used for ResNet-18 and 
WRN-28-10 training, respectively. The best performing em-
bedding network on the 5-way 1-shot task of validation split 
dataset is chosen; while using the nearest neighbor classifer 
and l2-normalized embeddings for classifcation. 

Reconstruction Training: For the reconstruction module, 
we use 4-layer fully connected deep neural network with 
ReLU activation. Each layer has the size of units equal to 
the embedding dimension, and weight initialization follows 
the TensorFlow (Abadi et al., 2016) default setting (Gloro-
tUniform). As an optimizer, we use Adam (Kingma & Ba, 
2015) with a default learning rate of 1e-3. For dropout (Sri-
vastava et al., 2014), we use the maximum possible rate of 
0.5. Finally, we take the ensemble of Ne = 5 reconstruction 
modules. 

Preprocessing: Wang et al. (2019) reports the importance 
of preprocessing in few-shot classifcation. We apply center-

11Data augmentations are used only for embedding network 
pre-training. 



Unsupervised Embedding Adaptation via Early-Stage Feature Reconstruction 

Table 1. Improvement by incorporating our method into baseline methods with ResNet-18/WRN-28-10 backbone on mini-ImageNet and 
tiered-ImageNet. † indicates the use of shifting-term (8) during preprocessing. 

Method 

ResNet-18 
mini-ImageNet tiered-ImageNet 

1-shot 5-shot 1-shot 5-shot 

WRN-28-10 
mini-ImageNet tiered-ImageNet 

1-shot 5-shot 1-shot 5-shot 

(i) Linear 
+ ESFR 

62.45 
70.38+7.93 

79.32 
81.6+2.28 

68.49 
76.98+8.49 

83.77 
86.09+2.32 

64.53 
73.33+8.8 

80.81 
83.65+2.84 

69.78 
78.57+8.79 

84.91 
87.37+2.46 

(ii) NN 
+ ESFR 

64.04 
70.94+6.9 

79.71 
81.61+1.9 

71.60 
77.44+5.84 

84.62 
85.84+1.22 

66.73 
74.01+7.28 

81.85 
83.58+1.73 

72.97 
79.13+6.16 

85.74 
87.08+1.34 

(iii) CSPN† 
+ ESFR 

64.54 
71.71+7.17 

80.49 
82.22+1.73 

71.89 
78.17+6.28 

85.09 
86.38+1.29 

67.52 
74.83+7.31 

82.36 
84.17+1.81 

73.00 
79.65+6.65 

86.28 
87.57+1.29 

(iv) 
BD-CSPN† 

+ ESFR 
+ ESFR-Semi 

70.00 
73.98+3.98 

82.36 
82.32-0.04 
82.89+0.53 

77.28 
80.13+2.85 

86.55 
86.34-0.21 
86.83+0.28 

72.74 
76.84+4.10 

84.14 
84.36+0.22 
84.97+0.83 

78.89 
81.77+2.88 

87.72 
87.61-0.11 
88.10+0.38 

ing and l2-normalization to embedding network’s output for 
reconstruction training and baseline methods. For centering, 
we subtract the center of task sample embeddings from each 
embedding as in Lichtenstein et al. (2020) since it performs 
better on all baseline methods. For BD-CSPN (Liu et al., 
2020), the aforementioned shifting-term defned as: X X1 1 4 = f(xs) − f(xq) (8)

|S| |Q|
xs∈S xq ∈Q 

is added for query sample before centering as in Ziko 
et al. (2020); Liu et al. (2020). For reconstruction train-
ing, when computing the reconstruction loss, output em-
beddings of the reconstruction module and the pre-trained 
embedding network follows the same preprocessing. For 
few-shot classifcation with new embeddings, we apply only 
l2-normalization since it performs the best.12 We refer to 
Appendix A for more details on preprocessing. 

5.3. Results 

Improvement by ESFR: We validate the improvement of 
our method when used in conjunction with commonly used 
few-shot classifcation methods. We evaluate our method in 
the most common 5-way 1- and 5-shot settings on standard 
mini-ImageNet, tiered-ImageNet datasets with ResNet-18, 
WRN-28-10 backbone networks. The results are listed in 
Table 1. 

In Table 1-(i, ii), we investigate our method with linear and 
NN classifers. Each is a widely used baseline method in 
unsupervised representation learning and few-shot classif-
cation. Our method provides noticeable improvements in 
all settings; +5.9%∼8.9% for 1-shot and +1.5%∼3.1% for 
5-shot settings. This roughly indicates that our embedding 
adaptation provides well-clustered new embeddings; hence 
samples can be classifed by simple affne classifers. 

12Note that applying only l2-normalization for baseline methods 
worsen the performance. 

In Table 1-(iii, iv), we compare our method with the semi-
supervised learning approach, Prototype-Rectifcation (PR) 
(Liu et al., 2020). For a fair comparison, we use the same 
preprocessing with shifting-term (8) and cosine similarity-
based nearest neighbor (CSPN) classifer as in BD-CSPN† 
(which includes PR); the result is described as CSPN† 
+ ESFR. We can observe that ESFR further improves 
accuracies on 1-shot by +0.8%∼2.1% compared to BD-
CSPN† while showing comparable improvements on 5-shot. 
This result implies that, though unsupervised adaptation 
has received less attention in few-shot classifcation, well-
designed unsupervised learning can provide comparable 
improvements to conventional transductive methods. 

Performance can be further improved by incorporating our 
method into BD-CSPN, a transductive method. The result is 
described in Table 1-(iv). For the 5-shot setting, there was 
no additional gain by combining our method; however, for 
the 1-shot setting, improvements of +2.9%∼4.1% indicates 
that ESFR can offer a complementary improvement to PR. 

In the last row of Table 1-(iv), we also investigate ESFR-
semi that uses the semi-supervised loss LSemi (7) for em-
bedding adaptation. As mentioned in Section 5.2, we chose 
the trade-off parameter λ that best performs with validation 
tasks. For the 1-shot setting, we fnd that λ = 0 performs 
the best that does not use label information during adapta-
tion. For the 5-shot setting, ESFR-semi gives an additional 
+0.3%∼0.8% gain over BD-CSPN. 

Comparison with prior work: We compare our method 
with prior few-shot classifcation methods13 on mini-
ImageNet, tiered-ImageNet, and CUB datasets in Table 2. 
We use BD-CSPN + ESFR and BD-CSPN + ESFR-Semi as 
our methods. 

For the 1-shot setting, our method achieves new state-of-the-

13We separately compared the work by (Boudiaf et al., 2020) in 
Appendix B; since they use strong prior that the number of query 
samples per class is equal. 
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Table 2. Comparison with state-of-the-art methods of 5-way 1- and 5-shot accuracy (in %) on mini-ImageNet, tiered-ImageNet and CUB. 
The best results are reported in bold. 

mini-ImageNet tiered-ImageNet CUB 
Method Backbone 1-shot 5-shot 1-shot 5-shot 1-shot 5-shot 
MAML (Finn et al., 2017) ResNet-18 49.61 65.72 - - 68.42 83.47 
Chen (Chen et al., 2019) ResNet-18 51.87 75.68 - - 67.02 83.58 
ProtoNet (Snell et al., 2017) ResNet-18 54.16 73.68 - - 72.99 86.64 
TPN (Liu et al., 2019) ResNet-12 59.46 75.65 - - - -
TEAM (Qiao et al., 2019) ResNet-18 60.07 75.90 - - 80.16 87.17 
SimpleShot (Wang et al., 2019) ResNet-18 63.10 79.92 69.68 84.56 70.28 86.37 
CTM (Li et al., 2019) ResNet-18 64.12 78.64 68.41 84.28 - -
FEAT (Ye et al., 2020) ResNet-18 66.78 82.05 70.80 84.79 - -
BD-CSPN (Liu et al., 2020) ResNet-18 70.00 82.36 77.28 86.55 78.89 88.70 
LaplacianShot (Ziko et al., 2020) ResNet-18 72.11 82.31 78.98 86.39 80.96 88.68 
BD-CSPN + ESFR (Ours) ResNet-18 73.98 82.32 80.13 86.34 82.68 88.65 
BD-CSPN + ESFR-Semi (Ours) ResNet-18 - 82.89 - 86.83 - 89.10 
LEO (Rusu et al., 2019) WRN 61.76 77.59 66.33 81.44 - -
wDAE-GNN (Gidaris & Komodakis, 2019) WRN 62.96 78.85 68.18 83.09 - -
FEAT (Ye et al., 2020) WRN 65.10 81.11 70.41 84.38 - -
Tran. Baseline (Dhillon et al., 2020) WRN 65.73 78.40 73.34 85.50 - -
SimpleShot (Wang et al., 2019) WRN 65.87 82.09 70.90 85.76 - -
SIB (Hu et al., 2020) WRN 70.0 79.2 - - - -
BD-CSPN (Liu et al., 2020) WRN 72.74 84.14 78.89 87.72 - -
LaplacianShot (Ziko et al., 2020) WRN 74.86 84.13 80.18 87.56 - -
BD-CSPN + ESFR (Ours) WRN 76.84 84.36 81.77 87.61 - -
BD-CSPN + ESFR-Semi (Ours) WRN - 84.97 - 88.10 - -

Table 3. Ablation study evaluating the effects of embedding ensemble and dropout perturbation. 

Method 
mini-Im
1-shot 

ageNet 
5-shot 

tiered-ImageNet 
1-shot 5-shot 

CUB 
1-shot 5-shot 

NN with ResNet-18 64.04 79.71 71.60 84.62 71.43 86.44 
(i) w/o Dropout and Ensemble 

(ii) w/o Ensemble 
(iii) w/o Dropout 

NN + ESFR 

66.87 
69.66 
68.90 
70.94 

80.59 
81.10 
81.53 
81.61 

73.39 
76.31 
75.39 
77.44 

84.60 
85.33 
85.31 
85.84 

75.46 
78.32 
77.32 
79.44 

87.02 
87.63 
87.66 
88.02 

art performance on all datasets and backbone networks. To 
be specifc, our method outperforms the previous state-of-
the-art LaplacianShot (Ziko et al., 2020) by +1.2%∼2.0%. 
We note that our implementation is based on Laplacian-
Shot; BD-CSPN + ESFR shares many aspects including 
the baseline method BD-CSPN and embedding network 
pre-training. 

For the 5-shot setting, our method shows comparable per-
formance to the state-of-the-art. Note that in Table 1, CSPN 
+ ESFR, which does not beneft from transductive infer-
ence, shows subequal performance with BD-CSPN + ESFR. 
For BD-CSPN + ESFR-Semi, our method provides further 
improvements of +0.3%∼0.8%. 

Ablation study: We conduct an ablation analysis on the 
effects of different components of the proposed method. We 
use a NN classifer with ResNet-18 backbone network for 
these experiments; our experimental results are on mini-
ImageNet, tiered-ImageNet, and CUB with 5-way 1- and 
5-shot tasks. Table 3 shows the infuences of the embedding 
ensemble and dropout perturbation. 

In Section 3.3, we proposed the embedding ensemble to 

reduce the variance by random initialization. The empirical 
result in Table 3-(iii) shows that the ensemble consistently 
provides improvements in all settings. In Section 3.1, we 
expected the effectiveness of dropout perturbation since 
noise perturbations tend to make memorization harder. The 
result in Table 3-(ii) shows consistent improvements by 
dropout; supports our expectation. Finally, we observe that 
the complete version with both the embedding ensemble and 
dropout perturbation outperforms the other confgurations. 

Comparison with prior embedding adaptation: We com-
pare our method with prior embedding adaptation methods 
that are based on affne transformations: 1) Embedding Prop-
agation (EP) from Rodrı́guez et al. (2020), 2) Principal Com-
ponent Analysis (PCA)- and Independent Component Anal-
ysis (ICA)14 -based methods from Lichtenstein et al. (2020). 
For a fair comparison, we experiment with the same nearest 
neighbor classifer and pre-trained embeddings. We use the 
released offcial code of each method. Table 4 describes 

14Lichtenstein et al. (2020) explained their method as Indepen-
dent Component Analysis (ICA), but it seems the difference be-
tween their PCA- and ICA-based methods is only in the whitening; 
for ICA, they whiten by the projection of 1T z = 0. 
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the results of 1- and 5-shot settings on mini-ImageNet with 
WRN backbone. 

Table 4. Comparison with prior embedding adaptation methods 

1-shot 5-shot 
NN 66.73 ± 0.44 81.85 ± 0.31 
NN + PCA 69.63 ± 0.50 82.28 ± 0.32 
NN + EP 70.58 ± 0.47 82.73 ± 0.30 
NN + ICA 72.19 ± 0.54 83.12 ± 0.32 
NN + ESFR (Ours) 74.01 ± 0.51 83.58 ± 0.31 

Our method outperforms both Rodrı́guez et al. (2020) and 
Lichtenstein et al. (2020) on all settings. Extracting shared 
or correlated features reminds us of the concept of PCA; 
however, compared to PCA, our method advantage from 
discovering non-linear patterns and correlates. 

6. Conclusion 
We propose the novel unsupervised embedding adaptation 
scheme based on the fnding that deep neural networks learn 
to generalize before memorizing. Our method, ESFR, pro-
vides task-adapted embeddings of generalizable features by 
feature reconstruction training and LID-based early stop-
ping. Experimental results show that well-designed unsuper-
vised adaptation can consistently improve baseline methods; 
outperform conventional transductive methods; be further 
improved by joint usage with a transductive method. ESFR 
used in conjunction with the transductive method achieves 
new state-of-the-art performance on the 1-shot setting. We 
hope that our work will become a starting point for future 
unsupervised learning studies on few-shot classifcation. 
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