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Abstract
We consider the offline reinforcement learning
(RL) setting where the agent aims to optimize
the policy solely from the data without further
environment interactions. In offline RL, the distri-
butional shift becomes the primary source of diffi-
culty, which arises from the deviation of the target
policy being optimized from the behavior policy
used for data collection. This typically causes
overestimation of action values, which poses se-
vere problems for model-free algorithms that use
bootstrapping. To mitigate the problem, prior
offline RL algorithms often used sophisticated
techniques that encourage underestimation of ac-
tion values, which introduces an additional set of
hyperparameters that need to be tuned properly.
In this paper, we present an offline RL algorithm
that prevents overestimation in a more principled
way. Our algorithm, OptiDICE, directly estimates
the stationary distribution corrections of the opti-
mal policy and does not rely on policy-gradients,
unlike previous offline RL algorithms. Using an
extensive set of benchmark datasets for offline RL,
we show that OptiDICE performs competitively
with the state-of-the-art methods.

1. Introduction
The availability of large-scale datasets has been one of the
important factors contributing to the recent success in ma-
chine learning for real-world tasks such as computer vi-
sion (Deng et al., 2009; Krizhevsky et al., 2012) and natural
language processing (Devlin et al., 2019). The standard
workflow in developing systems for typical machine learn-
ing tasks is to train and validate the model on the dataset,
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and then to deploy the model with its parameter fixed when
we are satisfied with training. This offline training allows
us to address various operational requirements of the sys-
tem without actual deployment, such as acceptable level of
prediction accuracy rate once the system goes online.

However, this workflow is not straightforwardly applicable
to the standard setting of reinforcement learning (RL) (Sut-
ton & Barto, 1998) because of the online learning assump-
tion: the RL agent needs to continuously explore the envi-
ronment and learn from its trial-and-error experiences to
be properly trained. This aspect has been one of the fun-
damental bottlenecks for the practical adoption of RL in
many real-world domains, where the exploratory behaviors
are costly or even dangerous, e.g. autonomous driving (Yu
et al., 2020b) and clinical treatment (Yu et al., 2020a).

Offline RL (also referred to as batch RL) (Ernst et al., 2005;
Lange et al., 2012; Fujimoto et al., 2019; Levine et al.,
2020) casts the RL problem in the offline training setting.
One of the most relevant areas of research in this regard
is the off-policy RL (Lillicrap et al., 2016; Haarnoja et al.,
2018; Fujimoto et al., 2018), since we need to deal with the
distributional shift resulting from the trained policy being
deviated from the policy used to collect the data. How-
ever, without the data continuously collected online, this
distributional shift cannot be reliably corrected and poses
a significant challenge to RL algorithms that employ boot-
strapping together with function approximation: it causes
compounding overestimation of the action values for model-
free algorithms (Fujimoto et al., 2019; Kumar et al., 2019),
which arises from computing the bootstrapped target using
the predicted values of out-of-distribution actions. To miti-
gate the problem, most of the current offline RL algorithms
have proposed sophisticated techniques to encourage under-
estimation of action values, introducing an additional set of
hyperparameters that needs to be tuned properly (Fujimoto
et al., 2019; Kumar et al., 2019; Jaques et al., 2019; Lee
et al., 2020; Kumar et al., 2020).

In this paper, we present an offline RL algorithm that es-
sentially eliminates the need to evaluate out-of-distribution
actions, thus avoiding the problematic overestimation of
values. Our algorithm, Offline Policy Optimization via Sta-
tionary DIstribution Correction Estimation (OptiDICE),
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estimates stationary distribution ratios that correct the dis-
crepancy between the data distribution and the optimal pol-
icy’s stationary distribution. We first show that such optimal
stationary distribution corrections can be estimated via min-
imax optimization that does not involve sampling from the
target policy. Then, we derive and exploit the closed-form
solution to the sub-problem of the aforementioned minimax
optimization, which reduces the overall problem into an
unconstrained convex optimization, and thus greatly stabi-
lizing our method. To the best of our knowledge, OptiDICE
is the first deep offline RL algorithm that optimizes policy
purely in the space of stationary distributions, rather than in
the space of either Q-functions or policies (Nachum et al.,
2019b). In the experiments, we demonstrate that OptiDICE
performs competitively with the state-of-the-art methods
using the D4RL offline RL benchmarks (Fu et al., 2021).

2. Background
We consider the reinforcement learning problem with the
environment modeled as a Markov Decision Process (MDP)
M = 〈S,A, T,R, p0, γ〉 (Sutton & Barto, 1998), where S is
the set of states s, A is the set of actions a, R : S ×A→ R
is the reward function, T : S × A → ∆(S) is a transition
probability, p0 ∈ ∆(S) is an initial state distribution, and
γ ∈ [0, 1] is a discount factor. The policy π : S → ∆(A)
is a mapping from state to distribution over actions. While
T (s, a) and π(s) indicate distributions by definition, we let
T (s′|s, a) and π(a|s) denote their evaluations for brevity.
For the given policy π, the stationary distribution dπ is
defined as

dπ(s, a) =


(1− γ)

∞∑
t=0

γt Pr(st = s, at = a) if γ < 1,

lim
T→∞

1
T+1

T∑
t=0

Pr(st = s, at = a) if γ = 1,

where s0 ∼ p0 and at ∼ π(st), st+1 ∼ T (st, at) for
all time step t. The goal of RL is to learn an opti-
mal policy that maximizes rewards through interactions
with the environment: maxπ E(s,a)∼dπ [R(s, a)]. The
value functions of policy π is defined as Qπ(s, a) :=
Eπ,M [

∑∞
t=0 γ

tR(st, at)|s0 = s, a0 = a] and V π(s) :=
Ea∼π(s)[Q

π(s, a)], where the action-value function Qπ is a
unique solution of the Bellman equation:

Qπ(s, a) = R(s, a) + γEs′∼T (s,a)
a′∼π(s′)

[Qπ(s′, a′)].

In offline RL, the agent optimizes the policy from static
dataset D = {(si, ai, ri, s′i)}Ni=1 collected before the train-
ing phase. We denote the empirical distribution of the
dataset by dD and will abuse the notation dD to represent
s ∼ dD, (s, a) ∼ dD, and (s, a, s′) ∼ dD.

Prior offline model-free RL algorithms, exemplified by (Fu-
jimoto et al., 2019; Kumar et al., 2019; Wu et al., 2019; Lee

et al., 2020; Kumar et al., 2020; Nachum et al., 2019b), rely
on estimating Q-values for optimizing the target policy. This
procedure often yields unreasonably high Q-values due to
the compounding error from bootstrapped estimation with
out-of-distribution actions sampled from the target policy
(Kumar et al., 2019).

3. OptiDICE
In this section, we present Offline Policy Optimization via
Stationary DIstribution Correction Estimation (OptiDICE).
Instead of the optimism in the face of uncertainty princi-
ple (Szita & Lörincz, 2008) in online RL, we discourage
the uncertainty as in most offline RL algorithms (Kidambi
et al., 2020; Yu et al., 2020c); otherwise, the resulting policy
may fail to improve on the data-collection policy, or even
suffer from severe performance degradation (Petrik et al.,
2016; Laroche et al., 2019). Specifically, we consider the
regularized policy optimization framework (Nachum et al.,
2019b)

π∗ := arg max
π

E(s,a)∼dπ [R(s, a)]− αDf (dπ||dD), (1)

where Df (dπ||dD) := E(s,a)∼dD
[
f
( dπ(s,a)
dD(s,a)

)]
is the f -

divergence between the stationary distribution dπ and the
dataset distribution dD, and α > 0 is a hyperparameter that
balances between pursuing the reward-maximization and
penalizing the deviation from the distribution of the offline
dataset (i.e. penalizing distributional shift). We assume
dD > 0 and f being strictly convex and continuously differ-
entiable. Note that we impose regularization in the space of
stationary distributions rather than in the space of policies
(Wu et al., 2019). However, optimizing for π in (1) involves
the evaluation of dπ , which is not directly accessible in the
offline RL setting.

To make the optimization tractable, we reformulate (1) in
terms of optimizing a stationary distribution d : S ×A→
R. For brevity, we consider discounted MDPs (γ < 1) and
then generalize the result to undiscounted MDPs (γ = 1).
Using d, we rewrite (1) as

max
d

E(s,a)∼d[R(s, a)]− αDf (d||dD) (2)

s.t. (B∗d)(s) = (1− γ)p0(s) + γ(T∗d)(s) ∀s, (3)
d(s, a) ≥ 0 ∀s, a, (4)

where (B∗d)(s) :=
∑
ā d(s, ā) is a marginalization opera-

tor, and (T∗d)(s) :=
∑
s̄,ā T (s|s̄, ā)d(s̄, ā) is a transposed

Bellman operator1. Note that when α = 0, the optimiza-

1While AlgaeDICE (Nachum et al., 2019b) also proposes f -
divergence-regularized policy optimization as (1), it imposes Bell-
man flow constraints on state-action pairs, whereas our formulation
imposes constraints only on states, which is more natural for find-
ing the optimal policy.
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tion (2-4) is exactly the dual formulation of the linear pro-
gram (LP) for finding an optimal policy of the MDP (Puter-
man, 1994), where the constraints (3-4) are often called the
Bellman flow constraints. Once the optimal stationary dis-
tribution d∗ is obtained, we can recover the optimal policy
π∗ in (1) from d∗ by π∗(a|s) = d∗(s,a)∑

ā d
∗(s,ā) .

We then obtain the following Lagrangian for the constrained
optimization problem in (2-4):

max
d≥0

min
ν

E(s,a)∼d[R(s, a)]− αDf (d||dD) (5)

+
∑
s
ν(s)

(
(1− γ)p0(s) + γ(T∗d)(s)− (B∗d)(s)

)
,

where ν(s) are the Lagrange multipliers. Lastly, we elimi-
nate the direct dependence on d and T∗ by rearranging the
terms in (5) and optimizing the distribution ratio w instead
of d:

E(s,a)∼d[R(s, a)]− αDf (d||dD)

+
∑
s
ν(s)

(
(1− γ)p0(s) + γ(T∗d)(s)− (B∗d)(s)

)
=(1− γ)Es∼p0

[ν(s)] + E(s,a)∼dD
[
−αf

(
d(s,a)
dD(s,a)

)]
(6)

+
∑
s,a
d(s, a)

(
R(s, a) + γ(T ν)(s, a)− (Bν)(s, a)︸ ︷︷ ︸

=: eν(s, a) (‘advantage’ using ν)

)

=(1− γ)Es∼p0
[ν(s)] + E(s,a)∼dD

[
−αf

(
d(s,a)
dD(s,a)

)]
+ E(s,a)∼dD

[
d(s,a)
dD(s,a)︸ ︷︷ ︸

=: w(s, a)

(
eν(s, a)

)]

=(1− γ)Es∼p0
[ν(s)] + E(s,a)∼dD

[
−αf

(
w(s, a)

)]
+ E(s,a)∼dD

[
w(s, a)

(
eν(s, a)

)]
=: L(w, ν). (7)

The first equality holds due to the property of the adjoint
(transpose) operators B∗ and T∗, i.e. for any ν,∑

s
ν(s)(B∗d)(s) =

∑
s,a
d(s, a)(Bν)(s, a),∑

s
ν(s)(T∗d)(s) =

∑
s,a
d(s, a)(T ν)(s, a),

where (T ν)(s, a) =
∑
s′ T (s′|s, a)ν(s′) and (Bν)(s, a) =

ν(s). Note that L(w, ν) in (7) does not involve expectation
over d, but only expectation over p0 and dD, which allows
us to perform optimization only with the offline data.

Remark. The terms in (7) will be estimated only by using
the samples from the dataset distribution dD:

L̂(w, ν) := (1− γ)Es∼p0 [ν(s)] (8)

+ E(s,a,s′)∼dD
[
−αf

(
w(s, a)

)
+ w(s, a)

(
êν(s, a, s′)

)]
.

Here, êν(s, a, s′) := R(s, a) + γν(s′) − ν(s) is a single-
sample estimation of advantage eν(s, a). On the other hand,

prior offline RL algorithms often involve estimations using
out-of-distribution actions sampled from the target policy,
e.g. employing a critic to compute bootstrapped targets
for the value function. Thus, our method is free from the
compounding error in the bootstrapped estimation due to
using out-of-distribution actions.

In short, OptiDICE solves the problem

max
w≥0

min
ν
L(w, ν), (9)

where the optimal solution w∗ of the optimization (9) rep-
resents the stationary distribution corrections between the
optimal policy’s stationary distribution and the dataset dis-

tribution: w∗(s, a) = dπ
∗

(s,a)
dD(s,a)

.

3.1. A closed-form solution

When the state and/or action spaces are large or continuous,
it is a standard practice to use function approximators to
represent terms such asw and ν, and perform gradient-based
optimization of L. However, this could break nice properties
for optimizing L, such as concavity in w and convexity in
ν, which causes numerical instability and poor convergence
for the maximin optimization (Goodfellow et al., 2014). We
mitigate this issue by obtaining the closed-form solution of
the inner optimization, which reduces the overall problem
into a unconstrained convex optimization.

Since the optimization problem (2-4) is an instance of con-
vex optimization, one can easily show that the strong duality
holds by the Slater’s condition (Boyd et al., 2004). Hence
we can reorder the optimization from maximin to minimax:

min
ν

max
w≥0

L(w, ν). (10)

Then, for any ν, a closed-form solution to the inner maxi-
mization of (10) can be derived as follows:

Proposition 1. The closed-form solution of the inner maxi-
mization of (10), w∗ν := arg maxw≥0 L(w, ν), is

w∗ν(s, a) = max

(
0, (f ′)−1

(
eν(s, a)

α

))
∀s, a, (11)

where (f ′)−1 is the inverse function of the derivative f ′ of
f and is strictly increasing by strict convexity of f . (Proof
in Appendix A.)

A closer look at (11) reveals that that for a fixed ν, the op-
timal stationary distribution correction w∗ν(s, a) is larger
for a state-action pair with larger advantage eν(s, a). This
solution property has a natural interpretation as follows. As
α→ 0, the term in (6) becomes the Lagrangian of the primal
LP for solving the MDP, where d(s, a) serve as Lagrange
multipliers to impose constraints R(s, a) + γ(T ν)(s, a) ≤
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(a) Stationary Dist. dπD (b) Empirical Dist. dD (c) OptiDICE w∗ (d) Estimated d̂π
∗

Figure 1. Illustrative example of how OptiDICE estimates the optimal policy’s stationary distribution in the Four Rooms domain (Sutton
et al., 1999; Nachum et al., 2019b). The initial state and the goal state are denoted by orange and green squares, respectively. Based on
a sub-optimal data-collection policy πD , which induces dπD shown in (a), a static dataset is sampled and its empirical distribution dD

( 6= dπD ) shown in (b). The opacity of each square is determined by the state marginals of each stationary distribution, where the opacity
of the arrow shows the policy induced by each stationary distribution. By multiplying the OptiDICE w∗ obtained by solving (9) (shown in
(c)), a near-optimal policy π∗ is obtained from d̂π

∗
(s, a) = dD(s, a)w∗(s, a) shown in (d).

ν(s) ∀s, a. Also, each ν(s) serves as the optimization vari-
able representing the optimal state value function (Puterman,
1994). Thus, eν∗(s, a) = Q∗(s, a)− V ∗(s), i.e. the advan-
tage function of the optimal policy, should be zero for the op-
timal action while it should be lower for sub-optimal actions.
For α > 0, the convex regularizer f

( d(s,a)
dD(s,a)

)
in (6) relaxes

those constraints into soft ones, but it still prefers the actions
with higher eν∗(s, a) over those with lower eν∗(s, a). From
this perspective, α adjusts the softness of the constraints
eν(s, a) ≤ 0 ∀s, a, and f determines the relation between
advantages and stationary distribution corrections.

Finally, we reduce the nested optimization in (10) to the
following single minimization problem by plugging w∗ν into
L(w, ν):

min
ν
L(w∗ν , ν) = (1− γ)Es∼p0

[ν(s)] (12)

+ E(s,a)∼dD
[
−αf

(
max

(
0, (f ′)−1

(
1
αeν(s, a)

)))]
+ E(s,a)∼dD

[
max

(
0, (f ′)−1

(
1
αeν(s, a)

))(
eν(s, a)

)]
.

Proposition 2. L(w∗ν , ν) is convex with respect to ν. (Proof
in Appendix B.)

The minimization of this convex objective can be performed
much more reliably than the nested minimax optimization
problem. For practical purposes, we use the following ob-
jective that can be easily optimized via sampling from D:

L̃(ν) := (1− γ)Es∼p0
[ν(s)] (13)

+ E(s,a,s′)∼dD

[
− αf

(
max

(
0, (f ′)−1

(
1
α êν(s, a, s′)

)))
+ max

(
0, (f ′)−1

(
1
α êν(s, a, s′)

))(
êν(s, a, s′)

)]
.

However, careful readers may notice that L̃(ν) can be a
biased estimate of our target objective L(w∗ν , ν) in (12)

due to non-linearity of (f ′)−1 and double-sample problem
(Baird, 1995) in L(w∗ν , ν). We justify L̃(ν) by formally
showing that L̃(ν) is the upper bound of L(w∗ν , ν):
Corollary 3. L̃(ν) in (13) is an upper bound of L(w∗ν , ν)
in (12), i.e. L(w∗ν , ν) ≤ L̃(ν) always holds, where equality
holds when the MDP is deterministic. (Proof in Appendix B.)
Illustrative example Figure 1 outlines how our approach
works in the Four Rooms domain (Sutton et al., 1999) where
the agent aims to navigate to a goal location in a maze
composed of four rooms. We collected static dataset D
consisting of 50 episodes with maximum time step 50 using
the data-collection policy π

D
= 0.5π∗true + 0.5πrand, where

π∗true is the optimal policy of the underlying true MDP
and πrand is the random policy sampled from the Dirichlet
distribution, i.e. πrand(s) ∼ Dir(1, 1, 1, 1) ∀s.
In this example, we explicitly constructed Maximum Likeli-
hood Estimate (MLE) MDP M̂ based on the static dataset
D. We then obtained ν∗ by minimizing (12) where M̂
was used to exactly compute eν(s, a). Then, w∗ν∗ was esti-
mated directly via Eq. (11) (Figure 1(c)). Finally, w∗ was
multiplied by dD to correct dD towards an optimal policy,
resulting in d̂π

∗
, which is the stationary distribution of the

estimated optimal policy (Figure 1(d)). For tabular MDPs,
the global optima (ν∗, w∗) can always be obtained. We
describe these experiments on OptiDICE for finite MDPs in
Appendix C.

3.2. Stationary distribution correction estimation with
function approximation

Based on the results from the previous section, we assume
that ν and w are parameterized by θ and φ, respectively, and
that both models are sufficiently expressive, e.g. using deep
neural networks. Using these models, we optimize θ by

min
θ
Jν(θ) := min

θ
L̃(νθ). (14)
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After obtaining the optimizing solution θ∗, we need a way to

evaluate w∗(s, a) = dπ
∗

(s,a)
dD(s,a)

for any (s, a) to finally obtain
the optimal policy π∗. However, the closed-form solution
w∗νθ (s, a) in Proposition 1 can be evaluated only on (s, a)
in D since it requires both R(s, a) and Es′∼T (s,a)[νθ(s

′)]
to evaluate the advantage eν . Therefore, we use a paramet-
ric model eφ that approximates the advantage inside the
analytic formula presented in (11), so that

wφ(s, a) := max

(
0, (f ′)−1

(
eφ(s, a)

α

))
. (15)

We consider two options to optimize φ once we obtain νθ
from Eq. (14). First, φ can be optimized via

min
φ
Jw(φ; θ) := min

φ
−L̂(wφ, νθ) (16)

which corresponds to solving the original minimax problem
(10). We also consider

min
φ

JMSE
w (φ; θ)

:= min
φ

E(s,a,s′)∼dD
[(
eφ(s, a)− êνθ (s, a, s′)

)2]
, (17)

which minimizes the mean squared error (MSE) between the
advantage eφ(s, a) and the target induced by νθ. We observe
that using either Jw or JMSE

w works effectively, which will
be detailed in our experiments. In our implementation, we
perform joint training of θ and φ, rather than optimizing φ
after convergence of θ.

3.3. Policy extraction

As the last step, we need to extract the optimal policy
π∗ from the optimal stationary distribution corrections

wφ(s, a) = dπ
∗

(s,a)
dD(s,a)

. While the optimal policy can be easily

obtained by π∗(a|s) =
dD(s,a)wφ(s,a)∑
ā d

D(s,ā)wφ(s,ā)
for tabular do-

mains, this procedure is not straightforwardly applicable to
continuous domains.

One of the ways to address continuous domains is to use
importance-weighted behavioral cloning: we optimize the
parameterized policy πψ by maximizing the log-likelihood
on (s, a) that would be sampled from the optimal policy π∗:

max
ψ

E(s,a)∼dπ∗ [log πψ(a|s)]

= max
ψ

E(s,a)∼dD [wφ(s, a) log πψ(a|s)] .

Despite its simplicity, this approach does not work well in
practice, since πψ will be trained only on samples from the
intersection of the supports of dπ

∗
and dD, which becomes

very scarce when π∗ deviates significantly from the data
collection policy π

D
.

We thus use the information projection (I-projection) for
training the policy:

min
ψ

KL
(
dD(s)πψ(a|s)||dD(s)π∗(a|s)

)
, (18)

where we replace dπ
∗
(s) by dD(s) for dπ

∗
(s, a). This re-

sults in minimizing the discrepancy between πψ(a|s) and
π∗(a|s) on the stationary distribution over states from π

D
.

This approach is motivated by the desideratum that the pol-
icy πψ should be trained at least on the states observed in D
to be robust upon deployment. Now, rearranging the terms
in (18), we obtain

KL
(
dD(s)πψ(a|s)||dD(s)π∗(a|s)

)
= −E s∼dD

a∼πψ(s)

[
log

d∗(s, a)

dD(s, a)︸ ︷︷ ︸
=wφ(s,a)

− log
πψ(a|s)
π
D

(a|s) − log
d∗(s)

dD(s)︸ ︷︷ ︸
constant for π

]

= −E s∼dD
a∼πψ(s)

[logwφ(s, a)−KL(πψ(ā|s)||π
D

(ā|s))] + C

=: Jπ(ψ;φ, π
D

) (19)

We can interpret this I-projection objective as a KL-
regularized actor-critic architecture (Fox et al., 2016; Schul-
man et al., 2017), where logwφ(s, a) taking the role of the
critic and πψ being the actor2. Note that I-projection re-
quires us to evaluate π

D
for the KL regularization term. For

this, we employ another parameterized policy πβ to approx-
imate π

D
, trained via simple behavioral cloning (BC).

3.4. Generalization to γ = 1

For γ = 1, our original problem (2-4) for the stationary
distribution d is an ill-posed problem: for any d that satisfies
the Bellman flow constraints (3-4) and a constant c ≥ 0,
cd also satisfies the Bellman flow constraints (3-4) (Zhang
et al., 2020a). We address this issue by adding additional
normalization constraint

∑
s,a d(s, a) = 1 to (2-4). By

using analogous derivation from (2) to (10) with the nor-
malization constraint—introducing a Lagrange multiplier
λ ∈ R and changing the variable d to w—we obtain the
following minimax objective for w, ν and λ:

min
ν,λ

max
w≥0

L(w, ν, λ)

:= L(w, ν) + λ(1− E(s,a)∼dD [w(s, a)])

= (1− γ)Es∼p0 [ν(s)] + E(s,a)∼dD [−αf(w(s, a))]

− E(s,a)∼dD [w(s, a)(eν(s, a)− λ))] + λ. (20)

2When f(x) = x log x (i.e. KL-divergence), (f ′)−1 =
exp(x − 1), and we have logwν∗(s, a) = 1

α
eν∗(s, a) − 1 by

Eq. (11). Given that eν∗(s, a) represents an approximately op-
timal advantage A∗(s, a) ≈ Q∗(s, a) − V ∗(s) (Section 3.1),
the policy extraction via I-projection (19) corresponds to a
KL-regularized policy optimization: maxπ Ea∼π[ 1

α
A∗(s, a) −

KL(π(ā|s)||πD(ā|s))].
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Similar to (8), we define L̂(w, ν, λ), an unbiased estimator
for L(w, ν, λ) such that

L̂(w, ν, λ) := (1− γ)Es∼p0
[ν(s)] + λ (21)

+ E(s,a,s′)∼dD
[
−αf

(
w(s, a)

)
+ w(s, a)

(
êν,λ(s, a, s′)

)]
,

where êν,λ(s, a, s′) := êν(s, a, s′) − λ. We then derive a
closed-form solution for the inner maximization in (20):

Proposition 4. The maximizer w∗ν,λ : S ×A → R of the
inner optimization of (20), which is defined by w∗ν,λ :=
arg maxw≥0 L(w, ν, λ), is

w∗ν,λ(s, a) = max

(
0, (f ′)−1

(
eν(s, a)− λ

α

))
.

(Proof in Appendix D.)

Similar to (13), we minimize the biased estimate L̃(ν, λ),
which is an upper bound of L(w∗ν,λ, ν, λ), by applying the
closed-form solution from Proposition 4:

L̃(ν, λ) := (1− γ)Es∼p0
[ν(s)] (22)

+ E(s,a,s′)∼dD

[
− αf

(
max

(
0, (f ′)−1

(
1
α êν,λ(s, a, s′)

)))
+ max

(
0, (f ′)−1

(
1
α êν,λ(s, a, s′)

))(
êν,λ(s, a, s′)

)]
+ λ.

By using the above estimators, we correspondingly update
our previous objectives for θ and φ as follows. First, the
objective for θ is modified to

min
θ
Jν(θ, λ) := min

θ
L̃(νθ, λ). (23)

For φ, we modify our approximator in (15) by including the
Lagrangian λ′ ∈ R:

wφ,λ′(s, a) := max

(
0, (f ′)−1

(
eφ(s, a)− λ′

α

))
.

Note that λ′ 6= λ is used to stabilize the learning process.
For optimizing over φ, the minimax objective (16) is modi-
fied as

min
φ
Jw(φ, λ′; θ) := min

φ
−L̂(wφ,λ′ , νθ, λ

′), (24)

while the same objective JMSE
w (φ; θ) in (17) is used for the

MSE objective. We additionally introduce learning objec-
tives for λ and λ′, which is required for the normalization
constraint discussed in this subsection:

min
λ
Jν(θ, λ) and min

λ′
Jw(φ, λ′; θ). (25)

Finally, by using the above objectives in addition to BC ob-
jective and policy extraction objective in (19), we describe
our algorithm, OptiDICE, in Algorithm 1, where we train

Algorithm 1 OptiDICE
Input: A dataset D := {(si, ai, ri, s′i)}Ni=1, a set of initial

states D0 := {s0,i}N0
i=1, neural networks νθ and eφ

with parameters θ and φ, learnable parameters λ and λ′,
policy networks πβ and πψ with parameter β and ψ, a
learning rate η

1: for each iteration do
2: Sample mini-batches from D and D0, respectively.
3: Compute θ-gradient to optimize (23):

gθ ≈ ∇θJν(θ, λ)

4: Compute φ-gradient for either one of objectives:
gφ ≈ ∇φJw(φ, λ′; θ) (minimax obj. (24))

gφ ≈ ∇φJMSE
w (φ; θ) (MSE obj. (17))

5: Compute λ and λ′ gradients to optimize (25):
gλ ≈ ∇λJν(θ, λ), gλ′ ≈ ∇λ′Jw(φ, λ′; θ)

6: Compute β-gradient gβ for BC.
7: Compute ψ-gradient via (19) (policy extraction):

gψ ≈ ∇ψJπ(ψ;φ, πβ)

8: Perform SGD updates:
θ ← θ − ηgθ,
φ← φ− ηgφ,

λ← λ− ηgλ,
λ′ ← λ′ − ηgλ′ ,

β ← β − ηgβ ,
ψ ← ψ − ηgψ.

9: end for
Output: νθ ≈ ν∗, wφ,λ′ ≈ w∗, πψ ≈ π∗,

neural network parameters via stochastic gradient descent.
In our algorithm, we use a warm-up iteration—optimizing
all networks except πψ—to prevent πψ from its converging
to sub-optimal policies during its initial training. In addi-
tion, we empirically observed that using the normalization
constraint stabilizes OptiDICE’s learning process even for
γ < 1, thus we used the normalization constraint in all
experiments (Zhang et al., 2020a).

4. Experiments
In this section, we evaluate OptiDICE for both tabular
and continuous MDPs. For the f -divergence, we chose
f(x) = 1

2 (x− 1)2, i.e. χ2-divergence for the tabular-MDP
experiment, while we use its softened version for continuous
MDPs (See Appendix E for details).

4.1. Random MDPs (tabular MDPs)

We validate tabular OptiDICE’s efficiency and robustness us-
ing randomly generated MDPs by following the experimen-
tal protocol from Laroche et al. (2019) and Lee et al. (2020)
(See Appendix F.1.). We consider a data-collection policy
π
D

characterized by the behavior optimality parameter ζ that
relates to π

D
’s performance ζV ∗(s0) + (1 − ζ)V πunif (s0)

where πunif denotes the uniformly random policy. We eval-
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Figure 2. Performance of tabular OptiDICE and baseline algorithms in random MDPs. For baselines, we use BasicRL (a model-based RL
computing an optimal policy via MLE MDP), Robust MDP (Nilim & El Ghaoui, 2005; Iyengar, 2005), Reward-adjusted MDP (RaMDP)
(Petrik et al., 2016), SPIBB (Laroche et al., 2019), BOPAH (Lee et al., 2020). For varying numbers of trajectories and two types of
data-collection policies (ζ = 0.9, 0.5), the mean and the 5%-CVaR of normalized performances for 10,000 runs are reported with 95%
confidence intervals. OptiDICE performs better than (for ζ = 0.9) or on par with (for ζ = 0.5) the baselines in the mean performance
measure, while always outperforming the baselines in the CVaR performance measure.

uate each algorithm in terms of the normalized performance
of the policy π, given by (V ∗(s0)− V πD (s0))/(V π(s0)−
V πD (s0)), which intuitively measures the performance en-
hancement of π over π

D
. Each algorithm is tested for 10,000

runs, and their mean and 5% conditional value at risk (5%-
CVaR) are reported, where the mean of the worst 500 runs is
considered for 5%-CVaR. Note that CVaR implicitly stands
for the robustness of each algorithm.

We describe the performance of tabular OptiDICE and
baselines in Figure 2. For ζ = 0.9, where π

D
is near-

deterministic and thus dD’s support is relatively small, Op-
tiDICE outperforms the baselines in both mean and CVaR
(Figure 2(a),(b)). For ζ = 0.5, where π

D
is highly stochastic

and thus dD’s support is relatively large, OptiDICE outper-
forms the baselines in CVaR, while performing competi-
tively in mean. In summary, OptiDICE was more sample-
efficient and stable than the baselines.

4.2. D4RL benchmark (continuous control tasks)

We evaluate OptiDICE in continuous MDPs using D4RL
offline RL benchmarks (Fu et al., 2021). We use Maze2D (3
tasks) and Gym-MuJoCo (12 tasks) domains from the D4RL
dataset (See Appendix F.2 for task description). We interpret
terminal states as absorbing states and use the absorbing-
state implementation proposed by Kostrikov et al. (2019a).
For obtaining πβ discussed in Section 3.3, we use the tanh-
squashed mixture of Gaussians policy πβ to embrace the
multi-modality of data collected from heterogeneous poli-
cies. For the target policy πψ , we use a tanh-squashed Gaus-
sian policy, following conservative Q Learning (CQL) (Ku-
mar et al., 2020)—the state-of-the-art model-free offline RL
algorithm. We provide detailed information of the experi-
mental setup in Appendix F.2.

The normalized performance of OptiDICE and the best
model-free algorithm for each domain is presented in Ta-

Table 1. Normalized performance of OptiDICE compared with
the best model-free baseline in the D4RL benchmark tasks (Fu
et al., 2021). In the Best baseline column, the algorithm with
the best performance among 8 algorithms (offline SAC (Haarnoja
et al., 2018), BEAR (Kumar et al., 2019), BRAC (Wu et al., 2019),
AWR (Peng et al., 2019), cREM (Agarwal et al., 2020), BCQ (Fu-
jimoto et al., 2019), AlgaeDICE (Nachum et al., 2019b), CQL (Ku-
mar et al., 2020)) is presented, taken from (Fu et al., 2021). Op-
tiDICE achieved highest scores in 7 tasks.

D4RL Task Best baseline OptiDICE

maze2d-umaze 88.2 Offline SAC 111.0
maze2d-medium 33.8 BRAC-v 145.2
maze2d-large 40.6 BRAC-v 155.7
hopper-random 12.2 BRAC-v 11.2
hopper-medium 58.0 CQL 94.1
hopper-medium-replay 48.6 CQL 36.4
hopper-medium-expert 110.9 BCQ 111.5
walker2d-random 7.3 BEAR 9.9
walker2d-medium 81.1 BRAC-v 21.8
walker2d-medium-replay 26.7 CQL 21.6
walker2d-medium-expert 111.0 CQL 74.8
halfcheetah-random 35.4 CQL 11.6
halfcheetah-medium 46.3 BRAC-v 38.2
halfcheetah-medium-replay 47.7 BRAC-v 39.8
halfcheetah-medium-expert 64.7 BCQ 91.1

ble 1, and learning curves for CQL and OptiDICE are shown
in Figure 3, where γ = 0.99 used for all algorithms. Most
notably, OptiDICE achieves state-of-the-art performance for
all tasks in the Maze2D domain, by a large margin. In Gym-
MuJoCo domain, OptiDICE achieves the best mean perfor-
mance for 4 tasks (hopper-medium, hopper-medium-expert,
walker2d-random, and halfcheetah-medium-expert). An-
other noteworthy observation is that OptiDICE overwhelm-
ingly outperforms AlgaeDICE (Nachum et al., 2019b) in
all domains (Table 1 and Table 3 in Appendix for detailed
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performance of AlgaeDICE), although both AlgaeDICE
and OptiDICE stem from the same objective in (1). This
is because AlgaeDICE optimizes a nested max-min-max
problem, which can suffer from severe overestimation by us-
ing out-of-distribution actions and numerical instability. In
contrast, OptiDICE solves a simpler minimization problem
and does not rely on out-of-distribution actions, exhibiting
stable optimization.

As discussed in Section 3.4, OptiDICE can naturally be gen-
eralized to undiscounted problems (γ = 1). In Figure 4, we
vary γ ∈ {0.999, 0.9999, 1.0} to validate OptiDICE’s ro-
bustness in γ by comparing with CQL in {hopper-medium-
expert, walker2d-medium-expert, halfcheetah-medium-exp
ert} (See Appendix G for the results for other tasks). The
performance of OptiDICE stays stable, while CQL easily
becomes unstable as γ increases, due to the divergence of
Q-function. This is because OptiDICE uses normalized
stationary distribution corrections, whereas CQL learns the
action-value function whose values becomes unbounded as

γ gets close to 1, resulting in numerical instability.

5. Discussion
Current DICE algorithms except for AlgaeDICE (Nachum
et al., 2019b) only deal with either policy evalua-
tion (Nachum et al., 2019a; Zhang et al., 2020a;b;b; Yang
et al., 2020; Dai et al., 2020) or imitation learning (Kostrikov
et al., 2019b), not policy optimization.

Although both AlgaeDICE (Nachum et al., 2019b) and Op-
tiDICE aim to solve f -divergence regularized RL, each al-
gorithm solves the problem in a different way. AlgaeDICE
relies on off-policy evaluation (OPE) of the intermediate
policy π via DICE (inner minν maxw of Eq. (26)), and then
optimizes π via policy-gradient upon the OPE result (outer
maxπ of Eq. (26)), yielding an overall maxπ minν maxw
problem of Eq. (26). Although the actual AlgaeDICE imple-
mentation employs an additional approximation for practical
optimization, i.e. using Eq. (28) that removes the inner-
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AlgaeDICE
(
eπν (s, a) := r(s, a) + γEs′∼T (s,a),a′∼π(s′)[ν(s′, a′)]− ν(s, a), êν(s, a, s′, a′) := r(s, a) + γν(s′, a′)− ν(s, a)

)
maxπ minν maxwE(s,a)∼dD

[
eπν (s, a)w(s, a)− αf

(
w(s, a)

)]
+ (1− γ)Es0∼p0,a0∼π(s0) [ν(s0, a0)] (26)

= maxπ minναE(s,a)∼dD
[
f∗
(

1
α
eπν (s, a)

)]
+ (1− γ)Es0∼p0,a0∼π(s0) [ν(s0, a0)] (27)

≈ maxπ minναE(s,a,s′)∼dD,a′∼π(s′)
[
f∗
(

1
α
êν(s, a, s′, a′)

)]
+ (1− γ)Es0∼p0,a0∼π(s0) [ν(s0, a0)] (28)

OptiDICE
(
eν(s, a) := r(s, a) + γEs′∼T (s,a)[ν(s′)]− ν(s), êν(s, a, s′) := r(s, a) + γν(s′)− ν(s), x+ := max(0, x)

)
minν maxw≥0E(s,a)∼dD

[
eν(s, a)w(s, a)− αf

(
w(s, a)

)]
+ (1− γ)Es0∼p0 [ν(s0)] (29)

= minνE(s,a)∼dD
[
eν(s, a)(f ′)−1

(
1
α
eν(s, a)

)
+
− αf

(
(f ′)−1

(
1
α
eν(s, a)

)
+

)]
+ (1− γ)Es0∼p0 [ν(s0)] (30)

≈ minνE(s,a,s′)∼dD
[
êν(s, a, s′)(f ′)−1

(
1
α
êν(s, a, s′)

)
+
− αf

(
(f ′)−1( 1

α
êν(s, a, s′))+

)]
+ (1− γ)Es0∼p0 [ν(s0)] (31)

most maxw via convex conjugate and uses a biased estima-
tion of f∗(Es′,a′ [·]) via Es′,a′ [f∗(·)], it still involves nested
maxπ minν optimization, susceptible to instability. In con-
trast, OptiDICE directly estimates the stationary distribution
corrections of the optimal policy, resulting in minν maxw
problem of Eq. (29). In addition, our implementation per-
forms the single minimization of Eq. (31) (the biased esti-
mate of minν of (30)), which greatly improves the stability
of overall optimization.

To see this, we conduct single-state MDP experiments,
where S = {s0} is the state space, A = [−1, 1] is the action
space, T (s0|s0, a) = 1 is the transition dynamics, r(s0, a)
is a reward function, γ = 0.9, and D is the offline dataset.
The blue lines in the figures present the estimates learned by
each algorithm (i.e. Q, ν, w) (Darker colors mean later iter-
ations). Similarly, the red lines visualize the action densities
from intermediate policies. In this example, a vanilla off-
policy actor-critic (AC) method suffers from the divergence
of Q-values due to its TD target being outside the data distri-
bution dD. This makes the policy learn toward unreasonably
high Q-values outside dD. AlgaeDICE with Eq. (28) is no
better for small α. CQL addresses this issue by lowering
the Q-values outside dD. Finally, OptiDICE computes opti-

mal stationary distribution corrections w(s, a) = dπ
∗

(s,a)
dD(s,a)

by Eq. (31) and Eq. (29) (maxw(·) for ν∗). Then, the pol-
icy π(a|s) ∝ w(s, a)dD(s, a) is extracted, automatically
ensuring actions to be selected within the support of dD

(supp(dD)).

Also, note that Eq. (31) of OptiDICE is unbiased (i.e., (31)
= (30)) if T is deterministic (Corollary 3). In contrast,
Eq. (28) of AlgaeDICE is always biased (i.e., (27) 6= (28))
even for the deterministic T , due to its dependence on ex-
pectation w.r.t. π. Our biased objective of Eq. (31) removes

the need for double sampling in Eq. (30).

6. Conclusion
We presented OptiDICE, an offline RL algorithm that aims
to estimate stationary distribution corrections between the
optimal policy’s stationary distribution and the dataset distri-
bution. We formulated the estimation problem as a minimax
optimization that does not involve sampling from the target
policy, which essentially circumvents the overestimation is-
sue incurred by bootstrapped target with out-of-distribution
actions, practiced by most model-free offline RL algorithms.
Then, deriving the closed-form solution of the inner opti-
mization, we simplified the nested minimax optimization for
obtaining the optimal policy to a convex minimization prob-
lem. In the experiments, we demonstrated that OptiDICE
performs competitively with the state-of-the-art offline RL
baselines.
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