Near-Optimal Linear Regression under Distribution Shift

A. Omitted proof for minimax estimator with covariate shift
A.1. Pinsker’s Theorem and covariate shift with linear model

Theorem A.1 (Pinsker’s Theorem). Suppose the obervations follow sequence model y; = 0F + €;z;,¢; > 0,1 € [d], and ©
is an ellipsoid in R%: © = O(a,C) = {0 : Y. a26? < C?}. Then the minimax linear risk
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where p = pu(C') is determined by

d
Ze a;(p—a;)y = =C>.
i=1
The linear minimax estimator is given by
0 (y) = ciyi = (1 — ai/ )4y, (11)

and is Bayes for a Gaussian prior wc having independent components 0; ~ N (0,72) with 7} = €2(u/a; — 1) 4.

Our theorem 3.2 is to connect our parameter 3* to the 6* in pinsker’s theorem. First we show that reformulating the problem
from a linear map of n dimensional observations yg to a linear map on the d-dimensional statistic 3gg is sufficient, i.e.,
Claim 3.1:

Proof of Claim 3.1. This is to show that if ,é (ys) := Ayg is a minimax linear estimator, each row vector of A € R¥*™ is
in the column span of X 5. Write A = A; XJ + A, W T where W € R"*("=9 _ columns of which forms the orthonormal
complement for the column space of Xg. Equivalently we want to show A; = 0. We have

R.(B) = min maxIEH21/2(5 B2
B=AyB*€

1/2 T _a*\|2
—j{lglzéqfé}éEIIZ (A1 Xg + AW Nys — 8Y)||

= min max E |24 X (XsB* + 2) + AWz — 8| (Since WT X g = 0)
A1 Az B*eB

= S (ALXE X — 2L E(IZ A XY 2|2
= min max {224 X] X5 - 1)B** + E| 32l
+E ||X)1T/2AQI/V—|—z||2 +E <21T/2A1ng, ElT/zAQWTz>} (Other cross terms vanish since E[z] = 0)

= min max {||2 VA AXEXs - DB +E S A XS 2| + B |52 AW T 2|2, }
A1 Az B*eB

where the last equation is because
< S A X2, 224, 2 > E [Tr [ 1T/2A1X5TzzWA2TET”
—Tr [le/ 24, X Elz2T W A] ET} = Tt [EIT/ 24, XIwA] ZT} —0.
Clearly, at min-max point, without loss of generality we can take Ay = 0. O
Formally the proof for Theorem 3.2 is presented here:
Proof of Theorem 3.2. To use Pinsker’s theorem to prove Theorem 3.2, we simply need to transform the problem match

its setting. Let yp = ElT/Qflng;:ys/nS = 0} + zp, where 07, = UTE;/Q,B* and zp ~ N(0, o%diag([t:/si]%,)/ns).
The set for 6% is © = {0][|S;"/2U6| < r}.ie. © = {0, 02/t; < r?}.
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Now with Pinsker’s theorem, 6 (y7); = (1 — 1/(uv/%;))+ (y7)s is the best linear estimator for 63, where 1 = pu(r) solves
i de Vi Ly, =2 (12)
— Y —(p—-—=)+ =7~
ns = s H +

Connecting to the original problem, we get that the best estimator for E;/ B isU(I — l%diag([l JVE ) yr =UI —
sding((1/ VAL )UT S "85 X ys /ns.
[

A.2. Omitted proof for noncommute second-moment matrices

Convex program. Our estimator for 3* can be achieved through convex programming:

Proof of Proposition 3.3. First note the objective function is quadratic in C' and linear in 7, therefore we only need to
prove the constraint S = {(C, 7)|(C — I)"S7(C — I) = 71} is a convex set. Notice for (C1,71), (Ca,72) € S, i.e.,
(Ci —D)TSr(C; — I) < 71,0 € {1,2}. We simply need to prove for C, := aC + (1 — a)Ca, Ty := 1 + 72(1 — @),
(Co —I)TE7(Cy — I) = 741 for any a € [0, 1]. First, notice (C; — Co) " S (Cy — Cq) = 0. Next,
(Co —I)T27p(Cy — 1)
:a(C’1 - I)TET(Cl - I) + (1 - O[)(CQ - I)TET(CQ - I)
— O((l — Oé)(Cl — CQ)TZT(C]_ — Cg)
=a(Cy =) "Sp(C1 = I) + (1 — a)(Co — I) T E7(Cy — I)
<Tol.

O

Benefit of our estimator. Compared to ridge regression, our estimator could possibly achieve much better (d~1/%)
improvements:

Proof of Remark 3.1. We consider diagonal second-moment matrices $g = diag(s),Xp = diag(t), o = 1. First
we calculate the expected risk obtained with ridge regression: By = (XJ Xg/n + M) ' Xdys/ns ~ N((Xs +
)\I)_lzgﬁ*, 1/ns(Xs + )\I)_zxs).

Li(Be) = max Bys |27 (Bre(ys) — 8°)]°

N A 1
—gggréuz/«zﬁm*zs DB+ Tr( (S5 + A1) ~*8s%r)

2 Viisi tsl
miaxr (si—&—)\ ) +Zns (si +

Compared to our risk:
1t 1
1

RL(B) = %37( —m

)+7

‘/7( - %)4_ =72 Letr? = %SE, s; = 1,Vi,t; = 1,Yi € [do],t; = d='/?,dy < i < d, where

do = f ~ d"*. Then yu = 1, and Ry (B) = 17/4 In this case,

ar/a_
. Vs t; s,
min max r? [ ~—— — i + E
A i si+ A ns Sz

where * 24

=1 s;

Z



Near-Optimal Linear Regression under Distribution Shift

, d( Vi 2 1t CVd N\ N
= vz s - s ye  *
S <1+)\ ‘F) +Zn5(1+)\)2_ T @02 T T (12
)
—2n
Therefore miny Lz (B3g) > d*/*Ry(B)/2. O

Near minimax risk. Even among all nonlinear estimators, our estimator is within 1.25 of the minimax risk:

Proof of Theorem 3.4. First we note that for both linear and nonlinear estimators, it is sufficient to use Bss instead of the
original observations yg. See Lemma A.2 and its corollary. Therefore it suffices to do the following reformulations of the
problem.

When g and Y7 commute, we formulate the problem as the following Gaussian sequence model. Recall Y =
Udiag(s)U T, S = Udiag()UT. Let 6* = UTSY?B* and y = UTSY?Bss ~ N(6%, %diag(t/s)). Our objec-
tive of minimizing ||21T/2 (B(ys) — B*)]| from linear estimator is equivalent to minimizing ||U (8 (y) — 6*)|| = [|6(y) — 6*||
from linear estimator.

The set for the parameter that satisfies 0* = UTZ%/Qﬂ*, |1B3*|| < r is equivalent to ||Z;1/2U0*|| <re |05/ <ris
an axis-aligned ellipsoid. Then we could directly derive our result from Corollary 4.26 from (Johnstone, 2011). Note that

this result is a special case of Theorem 5.2 and we have provided a detailed proof in Section C. Therefore here we save
further descriptions.

T

For the case when X7 = aa ' is rank-1, the objective function becomes:

Ri(B) = min maxE(a’ (B(ys) - 87))"

Then the result could be derived from Corollary 1 of (Donoho, 1994), which reformulate the problem to the hardest
one-dimensional problem which becomes tractable.

O

In the proof above, we equate the best nonlinear estimator on yg as the best nonlinear estimator on Bss. The reasoning is as
follows:

Lemma A.2 (Sufficient statistic is enough to achieve a best estimator). Consider the statistical problem of estimating
B* € B from observations y € Y. B {*-compact. If S(y) is a sufficient statistic of 3%, then the best estimator that achieves
ming maxg £(B3, 8%) is of the form B = f(S(y)) with some function f, for any loss £ : Y — [0, c0).

This Lemma is restated from Proposition 3.13 from (Johnstone, 2011).

Corollary A.3 (Corollary of Lemma A.2). Under the same setting of Lemma A.2, Ry (B) is achieved with the form
B =f(5(y))
A.3. Omitted proof for utilizing source and target data jointly

Sufficient statistic.

Proof of Claim 3.9. Denote by Bg := f]nggyS/nS ~ N (8%, "—2251) and B7 = f);lX;yT/nT ~ N(B* 0—2251)

ns _ ’ nr
We use the Fisher—-Neyman factorization theorem to derive the sufficient statistics. The likelihood of observing B, B from
parameter 3* is:

p(Bs, Br: B7) —ce— 2 Bs=B"Es(Bs—p") = 2% (B—p") 21 (Br—6")
=cg(B*, T(B"))h(Bs, Br),

« A \NT/ng < np &\ — x A
where g(3*,T(8*)) = e B P (G525t 75%0) (B =B%) and c is some constant. Therefore it’s easy to see that
T(B*) = Bss is the sufficient statistic for 3*. O
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Proof of Claim 3.10. With similar procedure as before, and notice zg and zr are independent, we could first conclude
that the optimal estimator is of the form 8 = AY ' XJys/ng + BX.' X[ yr/nr ~ N((A + B)B*, %AZ?AT +
2 BS;'BT).

. 1/2 /4 *
Ry (B) = min max E. |[97/(8 — 6)

= SY2(A+ B - 1)B*|?
gugggg%{\l (A+ )87

+02Tr(( ASg AT 4 Lpss 1BT)ET)}
ns nr

1 - 1 .
: 1/2 2 2 2 —14T -1pT
:1}711131{|2 / (A+B—=1)|5,r" +0o Tr((n—SAZS A +EBET B )ET)}
Take gradient w.r.t A and B respectively we have:
2
o &
Va(|SV2(A+ B - D2, + EETAle =0
2
o o
=Vp(|ZV*(A+B-1)|2,r) + EETBle -0

Notice the first terms are equivalent. Therefore —AE_ 1TBi3;1 thus the optimal B is of the form C (Xdys+XJyr)
for some matrix C, thus finishing the proof. O

B. Omitted proof with approximation error

Unbiased estimator for 3.
Proof of Claim 4.1.

Bis — By =(Xg diag(w)Xs) ' (X{ diag(w)y) — B7
=(X3 diag(w)Xs) ™! (X diag(w)(XsB7 + ar + 2)) — B
=(Xg diag(w) Xs) ! (Xg diag(w) (ar + 2))
Notice Egpg [Tar(x) gzgzg] = Eg~pr[Tar(x)] = 0. This is due to the KKT condition for the minimizer of I(3) :=
Egmpr | f*(x) — BT x|? at ﬁT ng(ﬁ*) = 0 —> Egmpr [®(f* — 2T B5)] = 0, i€, Egupy [Tar(z)] = 0. Next we have:
Eaimps [ X g diag(w) Xs] = Egimps Dory cc z] =Eg,pr Z;Zl[mjm;r] = ngXp. Therefore

pS

Bis — By — N (0, 7715251 Eznpr [pr(2)/ps (@) (ar (2)? + 0*)zz ]S,

Proof of Claim 4.2. Recall Xg = [z \a:z\ Jxl]T € R™4, with x;,Vi € [n] drawn from pg, and ar =
lar (1), ar(@2), - ar(2,)] " € R", y = [y(@1),y(@2), - y(xa)]" € R noise z = y — f(X). w

[pr () /ps ()]

To prove the, we only need to show the minimax linear estimator Ay is achieved of the form A; X " diag(w), i.e., the row
span of A is in the row span of X ' diag(w).

. 1/2 3% |2
Ru(B)=min | max B, <[|57 (Ay — 87|

. 1/2 - * 2
—min _amax_E[S)7(AX —1)B} + Aar + A2)|

—mi 1/2 _ * 2
=min x5/ (B[AX] ~ 1)} + E[Aar]) 3
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+E||Si*(AX — E[AX])B;|? + E |2} (Aar — E[Aar])|? + E |5} Az}

Write A = A; X "diag(w) + AsW T, where X € R"*? and W € R"*("~9) forms the orthogonal complement for the
column span of diag(w)X. Therefore X "diag(w)W = 0,and W'W = I,,_4. Also, notice Eq;,~,;[X " diag(w)ar] =
NnEg~pr [xar(x)] = 0. Therefore plugging it in Ry, (B), we have:

RuB) =min max  {[[54/((41 By [X T ding(w) X] = )87 + A E[W Tag])
+E||2y% A1 (X diag(w) X — E[X " diag(w) X])85
+ RS2 AW T ar — E[W T ag)))?
+0? B [ 2524, X T diag(w)|? + 02 E ||21T/2A2||2}

= mi SY2(AngSr — 1)Bs + AL E[W T 2
X?,lﬁza;emsiﬁef{” - (AinsEr = 1Br + A EW ar])lz

+E (27 A1 (X T diag(w) X — 7)85|% + E =Y A (W Tar — EW  ar])|?
+0?E||£2/2A, X T diag(w)|? + 02 E ||21T/2A2||2}

We could view E[W "az]| and W Tar — E[W Tar] separately. First notice at min-max point, if E[W "ar| = 0, the
minimizer A, should be 0 since it only appears in the third and last non-negative terms. If E[W " ar] # 0, the cross term of
the bias should be non-negative, or otherwise since both f* and — f* are in the set, ar, 8} could be replaced by —ar, —G}
and the loss increases. Clearly in this case A5 should also be 0 at min-max point. O

On estimating pr/pg.

Proof of Proposition 4.3.
]Ez,yNQ(y - f(x))z :Ewaer(l/Z) [E[z ~ (IX\Y](?J - f(x))Q\y]
:1/2Ew~p7(1 - f(x))Q +1/2 Eznps (0— f(m))z
= [ pri@)(1 - £(@)) + ps(e)f (@) de.

x

For any «, the optimal value for a := f(x) is obtained by taking the derivative of pr(x)(1 — a)? + ps(x)a?, i.e.,

p2(®) __ Therefore, the optimal function f(z) = —2Z&)__ for all . O

4= ps@ tpr(@ = ps(@) tpr(@)

C. Omitted Proof with Model Shift

Definition C.1 (Orthosymmetry). A set © is said to be solid and orthosymmetric if 0 € © and |(;| < |0;| for all i implies

that ¢ € O. If a solid, orthosymmetric © contains a point T, then it contains the entire hyperrectangle that T defines:
O(r) ={0||6;| < =, Vi} C ©.

Proof of Claim 5.1. First notice for any estimator B3, it all satisfies

Lg.a(B) <rpa(B) <2Lpa(B). (13)
The first inequality is straightforward with the same reasoning of AM-GM as the derivation of (8). As for the second
inequality, we take a closer look at (8). Notice that when maxg: eB,scA is achieved, the cross term has to be non-negative,
or otherwise one could flip the sign of 3% to make the value larger. Therefore at maximum ||E%F/ (A4 Ay — DB +
=82 A,8)2 < |S3/2((Ay + Ay — )35 + S4/2 A16||2, and notice the remaining parts are all non-negative. Therefore

r8.a(8) <2Lp A (B).
Now let 3* = arg Ming_ 4 0ot aas L a(B). We have:

.~ (a) R
Rr(B,A) =L a(B*) < L a(Bvm)
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(13) ~ (b) - (13) -
<rpa(Bum) < m8,A(B") < 2L a(B") =2RL(B,A).

The inequality (a) is by definition of ,é* while (b) is from the definition of BMM. O

C.1. Lower Bound with Model Shift

In order to derive the lower bound, we abstract the problem to the following more general one:

Problem 1. For arbitrary diagonal matrix D € R¥?, two ly-compact, solid, orthosymmetric, and quadratically convex

sets O, A C RY, let
Pasn= {0 (| 7% | [t ocoses)

Let R;,(©,A, D) and RN (0, A, D) be the minimax linear risk and minimax risk respectively for estimating 0 within the
distribution class Po A p:

RL(©,A, D)= min max rp(é),

6:R?—0 linear PEPo,A,D
Ry(©,A,D) = min max rp(0).
6.Ri—»0 PEPo,A,D

Here 1p(0) := Eqp ||0(x) — O(P)|32. We want to derive a uniform lower bound for Ry with Ry, i.e., Ry > u*Ry,
where * is universal and doesn’t depend on the choices of D, © or A.

Before proving the lower bound, we establish its connection to our considered problem:

Remark C.1. Suppose Y5 = Udiag(s)U " and X7 = Udiag(t)U " share the same eigenspace. Recall our samples

a ~ N(Zém(ﬂ} +6),0%1),b ~ /\/’(EITN,@},UQI). Our goal to uniformly lower bound Ry (r,~) by Rp(r,v) is
essentially Problem I, where

Ri(r,y) := min x  E|2/*(B(a,b) — 8|,

] ma.
B linear IBLII<r18]I<v

Ry (r,7) :=mi E|£/*(B(a,b) — 8%

in max
B IBzl<rlI8l<~

Proof of Remark C.1. Our target considers samples drawn from distributions  ~ N (ng/ (85 + 6),020),y ~
N385, 0°1).

a Udiag(s*?)UT (B + 6) a?I| 0
[b}’vN([ Udiag(tl/Q)UTTﬂ; o Tozr | )09 0en

T i 1/2\77T (3%
= e |2 (| M " | 1] e < s e

Leta = U'a/o,b = U'b/o,0 = {0]|diag(t~1/2)0|| < r}, A = {||diag(s~/?)d|| < ~}. 6 = UTE%FQQ},J =
UTZklgmé, and D = diag(s*/2t~'/2). We get:

UT di Y2\T (3 5 Ilo
{ UTZ;Z } NN([ 1a§i(:g(t3/2)é@;ﬁ; | ]{ 01 D Bl < llgll € ¥

_ 2) S T _ _
:»{ﬂ ~ Pos.p ::N([ D09—+5 ],{%%D,ee@,aea

Let Po,a,p :={ Pg5.p|0 € ©,8 € A}. Since U is an invertible matrices, observing U " a /o, U "b/c instead of a, b has
no affect on the performance of the best estimator. Also ©, A are axis-aligned ellipsoid and thus satisfy orthosymmetry.
Therefore our problem is essentially reduced to Problem 1. O
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Lemma C.2. Let O(7) = {6|0; < 7;,Vi,0 € O} and similarly for A() = {8|6; < (;,0 € A}, D is some diagonal
martrix.
RrL(©,A,D)= sup Rp(O(7),A),D), and
TEO,(EA

N(@aAaD) > sup RN(@(T)aA(C)aD)
T€O,CEA

Write samples drawn from some Py 5 p € Po a.p as (z,y) : € ~N(DO +6,1),y ~ N (0,I).

Lemma C.3. The minimax linear estimator 6 : (z,y) — Ax + By has the form éa,b(w, y) =y, aix; + Y. by for
some a,b € R, Namely,

R.(6,A,D) = inf Bap).
r( ) égbperggiprp( a.b)

Proof. According to the proof of Proposition C.4.a, by discarding off-diagonal terms, the maximum risk of any linear
estimator 8 4, g over any hyperrectangles ©(7), A(¢) is reduced.

max T ] > max r ) s s .
vcolSa oo OAB) 2 o (WX | o) Fo.0.0 Bains() dio()
Further we have:
min max r ] >min max 0. :
A,B 0€0,6€A Pos.0(04.8) A,B T€0,LeA eee(f) 66A(<) "Po.5,0(Octiag(4) dins(5))

=min max rp 0 b
ab 0O, CeA 0.6.0(0ab)
>min max 7rp éAB .
=70 ecosen 8,5,D( ) )

Therefore all four terms have to be equal, thus finishing the proof. O

Notice O(7) and A(() are hyperrectangles in R?. Therefore we could decompose the problem to some 2-d problems:

Proposition C.4. Under the same setting as Problem 1,

) RL(@( ZRL Tvala u

If@AA,B(:/c7 y) = Az + By is minimax linear estimator over Pg 7y a(¢),p, then necessarily A, B must be diagonal.

) RN(G)( ZRN TZ?CZ7 n)

Proof of Proposition C.4.a . First review our notation:

"Pos.0(04,8) =E(w y)~py s p [04,8(x,y) — 0]
=Eprn(D0+6.1).y~N(0.1) || AT + By — 6|
=||A(DO + &) + BO — 6|]* + Tr(AAT) + Tr(BB ")
=|(AD + B — )8 + AS||> + Tr(AA") + Te(BB").

Our objective is

RL(O(r).A(Q). D) s=min  max 1, (640)

We will show that restricting A, B to be diagonal will not include the RHS value.

For any 7 € ©(7),{ € A(C), let set V(7,¢) = {(6,8)[(6:,6:) € {(7i,G), (=7, —Ci)}} be the subset of vertices of
O(T) x A(€). Let w(T, ¢) be uniform distribution on this finite set. Due to the symmetry of this distribution, we have

Erzc 0 =0,i € [d],
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Err.¢ 6 =0,i € [d],
¢ 0i0; = 1i—;72,i € [d],
B,z 0i0; = Lizj C7,i € [d],
B, (r.¢) 0i0; = Liz;TiCi, i € [d].

We utilize the distribution to find the explicit value of the maximum (in fact the maximum will only be obtained inside the
vertices set V (7, () ):

(e,agrel?/}((-f,c’) TPosp(04,5) > E.7.¢) TPos.p(04,5)
=B,z I(AD+ B —1)0 + AS|* + Tr(AAT) + Tr(BBT)
=Tr((AD+B —~1)E[80"](AD+ B—1)") + Tr(AE[§§ "|AT)+
2Tr((AD + B —T)E[85"|AT) + Tr(AAT) + Tr(BB')
=Tr((AD + B — I)"(AD + B — I)diag(7?)) + Tr(A" Adiag(¢?))
+ Tr((AD + B — I) " Adiag(7¢)) + Tr(AAT) + Tr(BB")
=Y (AD + B = I).;% + A.i(i||* + Tr(AAT) + Tx(BBT)

> Z((A”D“ + Bii — )T + Au(;)? + A% + B}

=||(diag(A)D + diag(B) — I)0 + diag(A)d||* 4+ Tr(diag(A)?) + Tr(diag(B)?), v(0,6) c V(7,()
= ‘}r(lgzg) || (diag(A)D + diag(B) — I)0 + diag(A)d||* 4+ Tr(diag(A)?) 4 Tr(diag(B)?)

)

Therefore we have:

RL(O(7),A(¢), D) :=mi P
L( (T), (C), ) I};{%@G@(E’;%XeA(C)TPB,S,D( A,B)
=min max max_ T 0
AB 7e0(7), eA(¢) €V (7,0) Po.s.0(04,5)

> min max max T 0 i ;
T AB 7€0(r),CEA() (0,8)eV(7,0) Po.s.0 (Oaiag(4).diag(5))

ma. TPe,s,D(Oa,b)~

min X
a€R® beER? €O (1),6€A(C)

Next, since the optimal solution on the minimizer is always obtained by diagonal A, B, it becomes straightforward that each
axis could be viewed in separation, thus finishing the proof for part a.

The nonlinear part is a straightforward extension of Proposition 4.16 from (Johnstone, 2011).
O
Theorem C.5 (Restated Le Cam Two Point Theorem (Wainwright, 2019)). Let P be a family of distribution, and 6 : P — ©

is some associated parameter. Let p : © x © — RT be some metric defined on © and ® : R, — R, is a monotone
non-decreasing function with ®(0) = 0. For any o € (0, 1),

igf ;gg[é(p(é, 0(P)))) = PAX %‘I’(%p(ﬁ(H% 0(P2)))(1 — o),

S.1. len — P2n||TV < a.
Lemma C.6. Consider a class of distribution Py ¢ s = {Pp.5.s|Pas.s = N([s0 +6,0]T,I5),|0] < 7,|5| < (}. Define

Rp(7,(,s) = min max Eg;_p Séa}—GQ,
( C ) 0 linear 101<7,|81<¢ * 00 ( ( ) )
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dR = i ]Emw é 792
and Ry (7, ¢, s) min | max_ Pys.(0(x) —0)

We have
RL(Tv C? 5) < 27/2RN(T7 Ca 5)7VCa s> Oa 7>0.

Proof of Lemma C.6. We first calculate an upper bound of R}, and connect it to a lower bound of Ry.

Rr(7,¢,s) =min max [(as+b—1)0 4 ad]® + a® + b?
ab [0]<7,|8]<¢

:mibn(|as +b— 1|7+ |a|¢)* 4+ a® + V?
< migl 2(as + b — 1)27% 4+ 2a*C* + a® + b°.

By some detailed calculations, we get the RHS is equal to:
272(2¢%2 +1)
272(s2+2¢2+ 1)+ 22+ 1

14 4¢3
<min{1, 272, ijl b

For simplify this form, we could see that

Next, we use Le cam two point theorem to lower bound Ry (7, ¢, s) where the metric p is Euclidean distance and & is
squared function. Therefore

11
R ,8) > —(=(6, — 02))%(1 —
NG 2 S gy 2z ) (=)

S.t. HN([SQl + 51,91}T,12),N([892 + 52,92]T,12)||TV < a.

Since the total variation distance is related to Kullback-Leibler divergence by Pinsker’s inequality: |-, -||7y < %D xL(|),
it’s sufficient to replace the constraint as:

Dip (N([s61 4 61,01] ", I2) || N ([s02 + 62, 05] T, I2) ) < 20°.

1
Z(6; — 69)%(1 —
1< ey 801 B2 (1)

S.t. (801 + (51 — (802 + 52))2 + (91 — 92)2 < 20[2
2

C
max —(1—q)
e|<27,|d|<2¢ 8

st (sc+d)? + ¢ <202

=

Recall Ry, < min{1,272, i;ﬁ}

We first note that ¢? < 472 and setting o = 0 we have Ry > T2 /2 > 1/4Ry. For In the following we look at other cases
when the bound for ¢? is smaller.

When 2¢ > sc, will set d = —sc and ¢® = 2a2. Let o = 2/3 for large 7 we get : ¢*(1 — «)/8 = 2/27 > 2/27Ry,.

When 2¢ < sc we set d = —2¢ and require (sc — 2¢)? + ¢? < 2a2. We have (sc — 2¢)% + ¢? = s2¢? +4¢% — 4¢sc+ 2 <
2 2

s2¢2 +4¢2 - 82 + 2 = (s> + 1) — 4(22. Therefore as we set ¢Z = %, the original inequality is satisfied. Again

by setting v = 2/3 we have ¢? > 8/9% > 8/9R. Therefore in this case Ry > 2 Ry.

O
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D. Discussions on Random Design under Covariate Shift.

In the main text, we present the results where we consider Xg as fixed and X7 to be known. In this section, we view both
source and target input data as random, and generalize the results of Section 3 while training is on finite observations and
testing is on the (worst case) population loss, under some light-tail properties of the input data samples.

Proof of Theorem 3.8. The proof relies on the two technical claims D.1, D.2.

Let BR be the optimal linear estimator on Lz, i.e., LB(BR) = MiNg inearin ys LB(B) = Rr(B).

(d+10g(1/3)). ;o

Ls(B) < (1+ O(\/p4 - ) Ls(B) (Claim D.2)
<1+ oy 28U (from defniion of )
<1+ 0(y 2B/ o 5 (Clim D2)
<+ o(y 2D 1) — (14 oy LB g

(from M < 1, and definition of B R)

From Theorem 3.4 we know Ry (B) < 1.25Rx (B) when Y is rank-1 matrix or commute with 3 which further finishes
the whole proof. O

Claim D.1 (Restated Claim A.6 from (Du et al., 2020)). Fix a failure probability § € (0,1), and assume n > p*(d +
log(1/6)) ''. Then with probability at least 1 — 1% over the inputs x1,...,x,, if x; ~ p and p is a p*-subgaussian
distribution, we have

(1_0(\/p4(d+10g(1/5))))2jTllXTXj(1+O(\/,04(d+10g(1/5))))27 (14

n n

where ¥ = Eqp[zx ']

With the help of Claim D.1 we directly get:

Claim D.2. Fix a failure probability § € (0, 1), and assume ny > p*(d +log(1/6)), Xp = [T1,- -+ , @y, ] € Rw*d
satisfies x; ~ pr where pr is p?-subgaussian. We have for any estimator (3:

(1- 0<\/ P+ 1081/0)) )1 () < Lis(B) < (1 + OM Pd+108(1/0))y ),

nuy nu

with high probability 1 — §/10 over the random samples X .

Proof of Claim D.2. Recall

o 1 o
Ls(B) = max By, -\ Xr(Blys) - 87"

Ls(B) = max By, [ (Blys) - 4]

Therefore for any estimator ,é, it satisfies

Ls(B) — Ls(B)
=(B(ys) — B) " (Zs — Bs)(B(ys) — BY)

""When this is not satisfied the result is still satisfied by replacing O(/ M) with O(max{ p4(d+lig(1/5)) , pz(d+1(:Lg(1/5)) H.
For cleaner presentation, we assume 7 is large enough and simplify the results.
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nuy

o UREO I 1, 5

ny

SO(\/ PHd +108(1/0) ) iy — 34T (Blys) - B°)

which finishes the proof. ]

D.1. Random design on source domain.

In the main text or the subsection above, the worst case excess risk is upper bounded by 1.25R, which is achieved by best
estimator that is using the same set of training data (X g, ys). Here we would like to take into consideration the randomness
of X g and compare the worst case excess risk using our estimator with a stronger notion of linear estimator.

For this purpose, we consider estimators that are linear functionals of yg := Z;/ ’8* +z e RY, 2z ~ N(0,02 /ngly) (this
o? /ng is the correct scaling since XSTX 5/ns is comparable to ¥.g). We consider the minimax linear estimator with yr
and with access to X g, and we compare our estimator against this oracle linear estimator. This estimator is not computable
in practice since X g must be estimated, but we will show that our estimator is within an absolute multiplicative constant in
minimax risk of the oracle linear estimator.

To recap the notations and setup, let
Ls(B) iinga%XEys X7 (Bys) — B,
Ls(B) := max By Eonpy " (B(ys) — B,

Lp.r(B) = max By, Bopr 12" (5(yr) - B

L
nu

Our target is to find the best linear estimator using Ly (ﬁ) (trained with X7) and prove its performance on the population

(worst-case) excess risk Ly (ﬁ) is no much worse compared to the minimax linear risk trained on Yy and Xg.

Theorem D.3. Fix a failure probability § € (0,1). Suppose both target and source distributions pg and pr _are p>-
subgaussian, and the sample sizes in source domain and target domain satisfies ng,ny > p*(d + log %) Let C' be the
solution for Eqn.(4), and set ﬁ(yg) — C'ﬁng;—yS. Then with probability at least 1 — & over all the unlabeled samples

from target domain and all the labeled samples X s from source domain, our estimator ,é (yr) yields the worst case expected
excess risk that satisfies:

) min  Lg g(3).

ny nr B linearin yr

Ls(B) < HOMWHMHO(WMHM

Proof of Theorem D.3. For each matrix C' € R%*9, we first conduct bias-variance decomposition and rewrite each worst-
case risk with linear estimator in terms of a matrix C. When B(ys) = Cflng;ys, we have:
Ls(B) =ISY2(C ~ DI + T T(S,085'CT) = I(C),
Ls(8) =IB*(C — D + T Te(mCS5CT) = UC),
Similarly, when QR = CE§1/2yR, we have:
Lra(B) =ISH2(C ~ D3 + TT(SrCS510T) =: 15(C).

Claim D.4. Fix a failure probability § € (0,1), and assume ny,ng > p*(d +1log(1/9)), Xg € R"s*4 X7 € R"W*4 gre
respectively from ps pr which are both p?-subgaussian. We have for any matrix C € R4¥4;

(- 0<\/ P+ 1081/9) oy < 110y < (1 + oM P+ 108(1/0)) i oy

nu nu
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with high probability 1 — §/10 over the random samples X .

(a- OM PUAF10801/9)) )10y < 1) < (1 + OM P+ 108(1/0)) oy,

ns ns

with high probability 1 — §/10 over the random samples Xg.

Proof of Claim D.4. We omit the proof of the first inequality since it’s exactly the same as proof of Claim D.2.

For the second line, we have:

<o \/p4<d+log<1/6>>) @ EeoSCT)

ns ns

SO(W%dHogu/é»ﬂ(C),

ns

Therefore we prove the RHS of the second inequality. The LHS follows with the same proof techniques. [

Now let C' be the minimizer for [(C'), and Cg be the minimizer for [z(C).

1(C) <(1+ O(\/W))i(é) (w.p. 1 — 6/10; due to Claim D.4)
<(1+ O(\/ M%?Jg(l/‘m NI(CR) (Due to the definition of (')
<(1 +O(\/W))2Z(CR) (w.p. 1 — &/5; due to Claim D.4)
1+ o LRIy (since ny is arge enough
<1 0PI,y [P IBO 1cap35/10s ol
= (1 o0 1 U, g PRI, ) 1)
This finishes the proof. O

E. More empirical results

We include some more empirical studies. In the main text our results have small noise. Here we show some more results
with larger noise, and also the case with varied eigenspace. For the following results, we use o = 10 and 7 = 0.2v/d. Other
meta data remains the same as presented in the main text. Figure 4 (a)(b) show similar phenomenon as the small noise
setting presented in the main text. From Figure 4 (c) we see no particular relationship between the performance of each
algorithm with eigenspace shift.
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Figure 4: (a): The x-axis « defines the spread of eigen-spectrum of Xg: s; &< 1/i*,¢; o< 1/i. (b) x-axis is the normalized
value of signal strength: ||X3*||/r. (c) X-axis is the covariate shift due to eigenspace shift measured by ||{Us — Ur|| r.



