
Near-Optimal Linear Regression under Distribution Shift

A. Omitted proof for minimax estimator with covariate shift
A.1. Pinsker’s Theorem and covariate shift with linear model

Theorem A.1 (Pinsker’s Theorem). Suppose the obervations follow sequence model yi = θ∗i + εizi, εi > 0, i ∈ [d], and Θ
is an ellipsoid in Rd: Θ = Θ(a,C) = {θ :

∑
i a

2
i θ

2
i ≤ C2}. Then the minimax linear risk

RL(Θ) := min
θ̂ linear

max
θ∗∈Θ

E ‖θ̂(y)− θ∗‖2

=
∑
i

ε2i (1− ai/µ)+,

where µ = µ(C) is determined by
d∑
i=1

ε2i ai(µ− ai)+ = C2.

The linear minimax estimator is given by

θ̂∗i (y) = c∗i yi = (1− ai/µ)+yi, (11)

and is Bayes for a Gaussian prior πC having independent components θi ∼ N (0, τ2
i ) with τ∗i = ε2i (µ/ai − 1)+.

Our theorem 3.2 is to connect our parameter β∗ to the θ∗ in pinsker’s theorem. First we show that reformulating the problem
from a linear map of n dimensional observations yS to a linear map on the d-dimensional statistic β̂SS is sufficient, i.e.,
Claim 3.1:

Proof of Claim 3.1. This is to show that if β̂(yS) := AyS is a minimax linear estimator, each row vector of A ∈ Rd×n is
in the column span of XS . Write A = A1X

>
S +A2W

> where W ∈ Rn×(n−d), columns of which forms the orthonormal
complement for the column space of XS . Equivalently we want to show A2 = 0. We have

RL(B) ≡ min
β̂=Ay

max
β∗∈B

E ‖Σ1/2
T (β̂ − β∗)‖2

= min
A1,A2

max
β∗∈B

E ‖Σ1/2
T ((A1X

>
S +A2W

>)yS − β∗)‖2

= min
A1,A2

max
β∗∈B

E ‖Σ1/2
T (A1X

>
S (XSβ

∗ + z) +A2W
>z − β∗)‖2 (Since W>XS = 0)

= min
A1,A2

max
β∗∈B

{
‖Σ1/2

T (A1X
>
S XS − I)β∗‖2 + E ‖Σ1/2

T A1X
>
S z‖2

+E ‖Σ1/2
T A2W

>z‖2 + E
〈

Σ
1/2
T A1X

>
S z,Σ

1/2
T A2W

>z
〉}

(Other cross terms vanish since E[z] = 0)

= min
A1,A2

max
β∗∈B

{
‖Σ1/2

T (A1X
>
S XS − I)β∗‖2 + E ‖Σ1/2

T A1X
>
S z‖2 + E ‖Σ1/2

T A2W
>z‖2,

}
where the last equation is because

E
〈

Σ
1/2
T A1X

>
S z,Σ

1/2
T A2W

>z
〉

= E
[
Tr
[
Σ

1/2
T A1X

>
S zzWA>2 ΣT

]]
= Tr

[
Σ

1/2
T A1X

>
S E[zz>]WA>2 ΣT

]
= σ2Tr

[
Σ

1/2
T A1X

>
SWA>2 ΣT

]
= 0.

Clearly, at min-max point, without loss of generality we can take A2 = 0.

Formally the proof for Theorem 3.2 is presented here:

Proof of Theorem 3.2. To use Pinsker’s theorem to prove Theorem 3.2, we simply need to transform the problem match
its setting. Let yT = Σ

1/2
T Σ̂−1

S X>S yS/nS = θ∗T + zT , where θ∗T = U>Σ
1/2
T β∗ and zT ∼ N (0, σ2diag([ti/si]

d
i=1)/nS).

The set for θ∗T is Θ = {θ|‖Σ−1/2
T Uθ‖ ≤ r}, i.e., Θ = {θ|

∑
i θ

2
i /ti ≤ r2}.
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Now with Pinsker’s theorem, θ̂(yT )i = (1− 1/(µ
√
ti))+(yT )i is the best linear estimator for θ∗T , where µ = µ(r) solves

σ2

nS

d∑
i=1

√
ti
si

(µ− 1√
ti

)+ = r2. (12)

Connecting to the original problem, we get that the best estimator for Σ
1/2
T β∗ is U(I − 1

µdiag([1/
√
ti]
d
i=1))yT = U(I −

1
µdiag([1/

√
ti]
d
i=1))U>Σ

1/2
T Σ−1

S X>S yS/nS .

A.2. Omitted proof for noncommute second-moment matrices

Convex program. Our estimator for β∗ can be achieved through convex programming:

Proof of Proposition 3.3. First note the objective function is quadratic in C and linear in τ , therefore we only need to
prove the constraint S = {(C, τ)|(C − I)>ΣT (C − I) � τI} is a convex set. Notice for (C1, τ1), (C2, τ2) ∈ S, i.e.,
(Ci − I)>ΣT (Ci − I) � τiI, i ∈ {1, 2}. We simply need to prove for Cα := αC1 + (1− α)C2, τα := τ1α+ τ2(1− α),
(Cα − I)>ΣT (Cα − I) � ταI for any α ∈ [0, 1]. First, notice (C1 − C2)>ΣT (C1 − C2) � 0. Next,

(Cα − I)>ΣT (Cα − I)

=α(C1 − I)>ΣT (C1 − I) + (1− α)(C2 − I)>ΣT (C2 − I)

− α(1− α)(C1 − C2)>ΣT (C1 − C2)

�α(C1 − I)>ΣT (C1 − I) + (1− α)(C2 − I)>ΣT (C2 − I)

�ταI.

Benefit of our estimator. Compared to ridge regression, our estimator could possibly achieve much better (d−1/4)
improvements:

Proof of Remark 3.1. We consider diagonal second-moment matrices Σ̂S = diag(s),ΣT = diag(t), σ = 1. First
we calculate the expected risk obtained with ridge regression: β̂λRR = (X>S XS/n + λI)−1X>S yS/nS ∼ N ((Σ̂S +
λI)−1ΣSβ

∗, 1/nS(ΣS + λI)−2ΣS).

LB(βλRR) = max
β∗∈B

EyS ‖Σ
1/2
T (β̂λRR(yS)− β∗)‖2

= max
β∗∈B

‖Σ1/2
T ((Σ̂S + λI)−1Σ̂S − I)β∗‖2 + Tr(

1

nS
(Σ̂S + λI)−2Σ̂SΣT )

= max
i
r2

( √
tisi

si + λ
−
√
ti

)2

+
∑
i

1

nS

tisi
(si + λ)2

.

Compared to our risk:

RL(B) =
∑
i

1

nS

ti
si

(1− 1√
tiµ

)+,

where 1
n

∑d
i=1

√
ti
si

(µ − 1√
ti

)+ = r2. Let r2 =
√
d

nS
, si = 1,∀i, ti = 1,∀i ∈ [d0], ti = d−1/2, d0 < i ≤ d, where

d0 =
√
d

d1/4−1
≈ d1/4. Then µ = 1, and RL(B) = d1/4

n . In this case,

min
λ

max
i
r2

( √
tisi

si + λ
−
√
ti

)2

+
∑
i

1

nS

tisi
(si + λ)2
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= min
λ

max
i

√
d

n

( √
ti

1 + λ
−
√
ti

)2

+
∑
i

1

nS

ti
(1 + λ)2

≥ min
λ

√
d

n

λ2

(1 + λ)2
+

√
d

n

1

(1 + λ)2

≥
√
d

2n
.

Therefore minλ LB(β̂λRR) ≥ d1/4RL(B)/2.

Near minimax risk. Even among all nonlinear estimators, our estimator is within 1.25 of the minimax risk:

Proof of Theorem 3.4. First we note that for both linear and nonlinear estimators, it is sufficient to use β̂SS instead of the
original observations yS . See Lemma A.2 and its corollary. Therefore it suffices to do the following reformulations of the
problem.

When ΣS and ΣT commute, we formulate the problem as the following Gaussian sequence model. Recall Σ̂S =

Udiag(s)U>,ΣT = Udiag(t)U>. Let θ∗ = U>Σ
1/2
T β∗, and y = U>Σ

1/2
T β̂SS ∼ N (θ∗, σ

2

nS
diag(t/s)). Our objec-

tive of minimizing ‖Σ1/2
T (β̂(yS)− β̂∗)‖ from linear estimator is equivalent to minimizing ‖U(θ̂(y)− θ̂∗)‖ = ‖θ̂(y)− θ̂∗‖

from linear estimator.

The set for the parameter that satisfies θ∗ = U>Σ
1/2
T β∗, ‖β∗‖ ≤ r is equivalent to ‖Σ−1/2

T Uθ∗‖ ≤ r ⇔ ‖θ∗i /
√
ti‖ ≤ r is

an axis-aligned ellipsoid. Then we could directly derive our result from Corollary 4.26 from (Johnstone, 2011). Note that
this result is a special case of Theorem 5.2 and we have provided a detailed proof in Section C. Therefore here we save
further descriptions.

For the case when ΣT = aa> is rank-1, the objective function becomes:

R∗L(B) = min
β∗ linear

max
β∈B

E(a>(β̂(yS)− β∗))2.

Then the result could be derived from Corollary 1 of (Donoho, 1994), which reformulate the problem to the hardest
one-dimensional problem which becomes tractable.

In the proof above, we equate the best nonlinear estimator on yS as the best nonlinear estimator on β̂SS. The reasoning is as
follows:
Lemma A.2 (Sufficient statistic is enough to achieve a best estimator). Consider the statistical problem of estimating
β∗ ∈ B from observations y ∈ Y . B `2-compact. If S(y) is a sufficient statistic of β∗, then the best estimator that achieves
minβ̂ maxB `(β̂,β

∗) is of the form β̂ = f(S(y)) with some function f , for any loss ` : Y → [0,∞).

This Lemma is restated from Proposition 3.13 from (Johnstone, 2011).
Corollary A.3 (Corollary of Lemma A.2). Under the same setting of Lemma A.2, RN (B) is achieved with the form
β̂ = f(S(y)).

A.3. Omitted proof for utilizing source and target data jointly

Sufficient statistic.

Proof of Claim 3.9. Denote by β̄S := Σ̂−1
S X>S yS/nS ∼ N (β∗, σ

2

nS
Σ̂−1
S ) and β̄T := Σ̂−1

T X>T yT /nT ∼ N (β∗, σ
2

nT
Σ̂−1
T ).

We use the Fisher–Neyman factorization theorem to derive the sufficient statistics. The likelihood of observing β̄S , β̄T from
parameter β∗ is:

p(β̄S , β̄T ;β∗) =ce−
nS
σ2 (β̄S−β∗)Σ̂S(β̄S−β∗)−

nT
σ2 (β̄−β∗)Σ̄T (β̄T−β∗)

=cg(β∗, T (β∗))h(β̄S , β̄T ),

where g(β∗, T (β∗)) = e−(β∗−β̂SS)>(
nS
σ2 Σ̂S+

nT
σ2 Σ̂T )−1(β∗−β̂SS), and c is some constant. Therefore it’s easy to see that

T (β∗) = β̂SS is the sufficient statistic for β∗.
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Proof of Claim 3.10. With similar procedure as before, and notice zS and zT are independent, we could first conclude
that the optimal estimator is of the form β̂ = AΣ̂−1

S X>S yS/nS + BΣ̂−1
T X>T yT /nT ∼ N ((A + B)β∗, σ

2

nS
AΣ̂−1

S A> +
σ2

nT
BΣ̂−1

T B>).

RL(B) = min
A,B

max
β∗∈B

Ez ‖Σ1/2
T (β̂ − β∗)‖2

= min
A,B

max
β∗∈B

{
‖Σ1/2(A+B − I)β∗‖2

+σ2Tr((
1

nS
AΣ̂−1

S A> +
1

nT
BΣ̂−1

T B>)ΣT )

}
= min
A,B

{
‖Σ1/2(A+B − I)‖2opr2 + σ2Tr((

1

nS
AΣ̂−1

S A> +
1

nT
BΣ̂−1

T B>)ΣT )

}
Take gradient w.r.t A and B respectively we have:

∇A(‖Σ1/2(A+B − I)‖2opr2) +
σ2

nS
ΣTAΣ̂−1

S = 0

=∇B(‖Σ1/2(A+B − I)‖2opr2) +
σ2

nT
ΣTBΣ̂−1

T = 0

Notice the first terms are equivalent. Therefore 1
nS
AΣ̂−1

S = 1
nT
BΣ̂−1

T thus the optimal β̂ is of the form C(X>S yS +X>T yT )
for some matrix C, thus finishing the proof.

B. Omitted proof with approximation error

Unbiased estimator for β̂∗T .

Proof of Claim 4.1.

β̂LS − β∗T =(X>S diag(w)XS)−1(X>S diag(w)y)− β∗T
=(X>S diag(w)XS)−1(X>S diag(w)(XSβ

∗
T + aT + z))− β∗T

=(X>S diag(w)XS)−1(X>S diag(w)(aT + z))

Notice Ex∼pS [xaT (x)pT (x)
pS(x) ] = Ex∼pT [xaT (x)] = 0. This is due to the KKT condition for the minimizer of l(β) :=

Ex∼pT ‖f∗(x)− β>x‖2 at β∗T : ∇βf(β∗) = 0→ Ex∼pT [x(f∗ − x>β∗T )] = 0, i.e., Ex∼pT [xaT (x)] = 0. Next we have:
Exi∼pS [X>S diag(w)XS ] = Exi∼pS

∑n
i=1

pT (xi)
pS(xi)

xix
>
i = Exj∼pT

∑n
j=1[xjx

>
j ] = nSΣT . Therefore

β̂LS − β∗T → N (0,
1

nS
Σ−1
T Ex∼pT [pT (x)/pS(x)(aT (x)2 + σ2)xx>]Σ−1

T ).

Proof of Claim 4.2. Recall XS = [x>1 |x>2 | · · · |x>n ]> ∈ Rn×d, with xi,∀i ∈ [n] drawn from pS , and aT =
[aT (x1), aT (x2), · · · aT (xn)]> ∈ Rn, y = [y(x1), y(x2), · · · , y(xn)]> ∈ Rn, noise z = y − f∗(X). w =
[pT (xi)/pS(xi)]

>.

To prove the, we only need to show the minimax linear estimator Ay is achieved of the form A1X
>diag(w), i.e., the row

span of A is in the row span of X>diag(w).

RL(B) ≡min
A

max
β∗T∈B,aT∈F

Exi∼ps,z[‖Σ1/2
T (Ay − β∗T )‖2]

= min
A

max
β∗T∈B,aT∈F

E ‖Σ1/2
T ((AX − I)β∗T +AaT +Az)‖2

= min
A

max
β∗T∈B,aT∈F

{
‖Σ1/2

T ((E[AX]− I)β∗T + E[AaT ])‖22
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+E ‖Σ1/2
T (AX − E[AX])β∗T ‖2 + E ‖Σ1/2

T (AaT − E[AaT ])‖2 + E ‖Σ1/2
T Az‖2

}
Write A = A1X

>diag(w) + A2W
>, where X ∈ Rn×d and W ∈ Rn×(n−d) forms the orthogonal complement for the

column span of diag(w)X . Therefore X>diag(w)W = 0, and W>W = In−d. Also, notice Exi∼pS [X>diag(w)aT ] =
nEx∼pT [xaT (x)] = 0. Therefore plugging it in RL(B), we have:

RL(B) = min
A

max
β∗T∈B,f∗∈F

{
‖Σ1/2

T ((A1 EpS [X>diag(w)X]− I)β∗T +A2 E[W>aT ])‖22

+ E ‖Σ1/2
T A1(X>diag(w)X − E[X>diag(w)X])β∗T ‖2

+ E ‖Σ1/2
T A2(W>aT − E[W>aT ])‖2

+σ2 E ‖Σ1/2
T A1X

>diag(w)‖2 + σ2 E ‖Σ1/2
T A2‖2

}
= min
A1,A2

max
β∗T∈B,f∗∈F

{
‖Σ1/2

T ((A1nSΣT − I)β∗T +A2 E[W>aT ])‖22

+ E ‖Σ1/2
T A1(X>diag(w)X − ΣT )β∗T ‖2 + E ‖Σ1/2

T A2(W>aT − E[W>aT ])‖2

+σ2 E ‖Σ1/2
T A1X

>diag(w)‖2 + σ2 E ‖Σ1/2
T A2‖2

}
We could view E[W>aT ] and W>aT − E[W>aT ] separately. First notice at min-max point, if E[W>aT ] = 0, the
minimizer A2 should be 0 since it only appears in the third and last non-negative terms. If E[W>aT ] 6= 0, the cross term of
the bias should be non-negative, or otherwise since both f∗ and −f∗ are in the set, aT ,β∗T could be replaced by −aT ,−β∗T
and the loss increases. Clearly in this case A2 should also be 0 at min-max point.

On estimating pT /pS .

Proof of Proposition 4.3.

Ex,y∼q(y − f(x))2 =Ey∼Ber(1/2)[E[x ∼ qX|Y ](y − f(x))2|y]

=1/2Ex∼pT (1− f(x))2 + 1/2Ex∼pS (0− f(x))2

=

∫
x

pT (x)(1− f(x))2 + pS(x)f(x)2dx.

For any x, the optimal value for a := f(x) is obtained by taking the derivative of pT (x)(1 − a)2 + pS(x)a2, i.e.,
a = pT (x)

pS(x)+pT (x) . Therefore, the optimal function f(x) ≡ pT (x)
pS(x)+pT (x) for all x.

C. Omitted Proof with Model Shift
Definition C.1 (Orthosymmetry). A set Θ is said to be solid and orthosymmetric if θ ∈ Θ and |ζi| ≤ |θi| for all i implies
that ζ ∈ Θ. If a solid, orthosymmetric Θ contains a point τ , then it contains the entire hyperrectangle that τ defines:
Θ(τ ) ≡ {θ||θi| ≤ τi,∀i} ⊂ Θ.

Proof of Claim 5.1. First notice for any estimator β̂, it all satisfies

LB,∆(β̂) ≤ rB,∆(β̂) ≤ 2LB,∆(β̂). (13)

The first inequality is straightforward with the same reasoning of AM-GM as the derivation of (8). As for the second
inequality, we take a closer look at (8). Notice that when maxβ∗T∈B,δ∈∆ is achieved, the cross term has to be non-negative,

or otherwise one could flip the sign of β∗T to make the value larger. Therefore at maximum ‖Σ1/2
T ((A1 +A2 − I)β∗T ‖2 +

‖Σ1/2
T A1δ‖2 ≤ ‖Σ1/2

T ((A1 + A2 − I)β∗T + Σ
1/2
T A1δ‖2, and notice the remaining parts are all non-negative. Therefore

rB,∆(β̂) ≤ 2LB,∆(β̂).

Now let β̂∗ = arg minβ̂=A1ȳS+A2ȳS
LB,∆(β̂). We have:

RL(B,∆) =LB,∆(β̂∗)
(a)

≤ LB,∆(β̂MM)
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(13)
≤ rB,∆(β̂MM)

(b)

≤ rB,∆(β̂∗)
(13)
≤ 2LB,∆(β̂∗) = 2RL(B,∆).

The inequality (a) is by definition of β̂∗ while (b) is from the definition of β̂MM.

C.1. Lower Bound with Model Shift

In order to derive the lower bound, we abstract the problem to the following more general one:

Problem 1. For arbitrary diagonal matrix D ∈ Rd×d, two `2-compact, solid, orthosymmetric, and quadratically convex
sets Θ,∆ ⊂ Rd, let

PΘ,∆,D =

{
N
([

Dθ + δ
θ

]
,

[
I 0
0 I

])∣∣∣∣θ ∈ Θ, δ ∈ ∆

}
Let RL(Θ,∆, D) and RN (Θ,∆, D) be the minimax linear risk and minimax risk respectively for estimating θ within the
distribution class PΘ,∆,D:

RL(Θ,∆, D) = min
θ̂:Rd→Θ linear

max
P∈PΘ,∆,D

rP (θ̂),

RN (Θ,∆, D) = min
θ̂:Rd→Θ

max
P∈PΘ,∆,D

rP (θ̂).

Here rP (θ̂) := Ex∼P ‖θ̂(x) − θ(P )‖22. We want to derive a uniform lower bound for RN with RL, i.e., RN ≥ µ∗RL,
where µ∗ is universal and doesn’t depend on the choices of D, Θ or ∆.

Before proving the lower bound, we establish its connection to our considered problem:

Remark C.1. Suppose ΣS = Udiag(s)U> and ΣT = Udiag(t)U> share the same eigenspace. Recall our samples
a ∼ N (Σ

1/2
S (β∗T + δ), σ2I), b ∼ N (Σ

1/2
T β∗T , σ

2I). Our goal to uniformly lower bound RN (r, γ) by RL(r, γ) is
essentially Problem 1, where

RL(r, γ) := min
β̂ linear

max
‖β∗T ‖≤r,‖δ‖≤γ

E ‖Σ1/2
T (β̂(a, b)− β∗)‖2,

RN (r, γ) := min
β̂

max
‖β∗T ‖≤r,‖δ‖≤γ

E ‖Σ1/2
T (β̂(a, b)− β∗)‖2.

Proof of Remark C.1. Our target considers samples drawn from distributions x ∼ N (Σ
1/2
S (β∗T + δ), σ2I),y ∼

N (Σ
1/2
T β∗T , σ

2I). [
a
b

]
∼ N

([
Udiag(s1/2)U>(β∗T + δ)

Udiag(t1/2)U>β∗T

]
,

[
σ2I 0
0 σ2I

])
,θ ∈ Θ, δ ∈ ∆

⇐⇒
[
U>a/σ
U>b/σ

]
∼ N

([
diag(s1/2)U>(β∗T + δ)

diag(t1/2)U>β∗T

]
,

[
I 0
0 I

])
, ‖β∗T ‖ ≤ r, ‖δ‖ ∈ γ

Let ā = U>a/σ, b̄ = U>b/σ,Θ = {θ|‖diag(t−1/2)θ‖ ≤ r}, ∆ = {‖diag(s−1/2)δ‖ ≤ γ}. θ̄ = U>Σ
1/2
T β∗T , δ =

U>Σ
1/2
S δ, and D = diag(s1/2t−1/2). We get:[

U>a/σ
U>b/σ

]
∼ N

([
diag(s1/2)U>(β∗T + δ)

diag(t1/2)U>β∗T

]
,

[
I 0
0 I

])
, ‖βT ‖ ≤ r, ‖δ‖ ∈ γ

⇐⇒
[
ā
b̄

]
∼ Pθ,δ,D := N

([
Dθ̄ + δ̄
θ̄

]
,

[
I 0
0 I

])
, θ̄ ∈ Θ, δ̄ ∈ ∆.

Let PΘ,∆,D :=
{
Pθ̄,δ̄,D

∣∣ θ̄ ∈ Θ, δ̄ ∈ ∆
}

. Since U is an invertible matrices, observing U>a/σ, U>b/σ instead of a, b has
no affect on the performance of the best estimator. Also Θ,∆ are axis-aligned ellipsoid and thus satisfy orthosymmetry.
Therefore our problem is essentially reduced to Problem 1.
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Lemma C.2. Let Θ(τ ) = {θ|θi ≤ τi,∀i,θ ∈ Θ} and similarly for ∆(ζ) = {δ|δi ≤ ζi, δ ∈ ∆}, D is some diagonal
matrix.

RL(Θ,∆, D) = sup
τ∈Θ,ζ∈∆

RL(Θ(τ ),∆(ζ), D), and

RN (Θ,∆, D) ≥ sup
τ∈Θ,ζ∈∆

RN (Θ(τ ),∆(ζ), D).

Write samples drawn from some Pθ,δ,D ∈ PΘ,∆,D as (x,y) : x ∼ N (Dθ + δ, I),y ∼ N (θ, I).

Lemma C.3. The minimax linear estimator θ̂ : (x,y) → Ax + By has the form θ̂a,b(x,y) =
∑
i aixi +

∑
i biyi for

some a, b ∈ Rd. Namely,
RL(Θ,∆, D) = inf

θ̂a,b

max
P∈PΘ,∆,D

rP (θ̂a,b).

Proof. According to the proof of Proposition C.4.a, by discarding off-diagonal terms, the maximum risk of any linear
estimator θ̂A,B over any hyperrectangles Θ(τ ),∆(ζ) is reduced.

max
θ∈Θ(τ ),δ∈∆(ζ)

rPθ,δ,D (θ̂A,B) ≥ max
θ∈Θ(τ ),δ∈∆(ζ)

rPθ,δ,D (θ̂diag(A),diag(B)).

Further we have:

min
A,B

max
θ∈Θ,δ∈∆

rPθ,δ,D (θ̂A,B) ≥min
A,B

max
τ∈Θ,ζ∈∆

max
θ∈Θ(τ ),δ∈∆(ζ)

rPθ,δ,D (θ̂diag(A),diag(B))

= min
a,b

max
θ∈Θ,ζ∈∆

rPθ,δ,D (θ̂a,b)

≥min
C

max
θ∈Θ,δ∈∆

rPθ,δ,D (θ̂A,B).

Therefore all four terms have to be equal, thus finishing the proof.

Notice Θ(τ ) and ∆(ζ) are hyperrectangles in Rd. Therefore we could decompose the problem to some 2-d problems:

Proposition C.4. Under the same setting as Problem 1,

a). RL(Θ(τ ),∆(ζ), D) =
∑
i

RL(τi, ζi, Dii).

If θ̂A,B(x,y) = Ax+By is minimax linear estimator over PΘ(τ ),∆(ζ),D, then necessarily A,B must be diagonal.

b). RN (Θ(τ ),∆(ζ), D) =
∑
i

RN (τi, ζi, Dii).

Proof of Proposition C.4.a . First review our notation:

rPθ,δ,D (θ̂A,B) =E(x,y)∼Pθ,δ,D ‖θ̂A,B(x,y)− θ‖2

=Ex∼N (Dθ+δ,I),y∼N (θ,I) ‖Ax+By − θ‖2

=‖A(Dθ + δ) +Bθ − θ‖2 + Tr(AA>) + Tr(BB>)

=‖(AD +B − I)θ +Aδ‖2 + Tr(AA>) + Tr(BB>).

Our objective is
RL(Θ(τ ),∆(ζ), D) := min

A,B
max

θ∈Θ(τ ),δ∈∆(ζ)
rPθ,δ,D (θ̂A,B)

We will show that restricting A,B to be diagonal will not include the RHS value.

For any τ̄ ∈ Θ(τ ), ζ̄ ∈ ∆(ζ), let set V (τ̄ , ζ̄) = {(θ, δ)|(θi, δi) ∈ {(τ̄i, ζ̄i), (−τ̄i,−ζ̄i)}} be the subset of vertices of
Θ(τ̄ )×∆(ζ̄). Let π(τ̄ , ζ̄) be uniform distribution on this finite set. Due to the symmetry of this distribution, we have

Eπ(τ̄ ,ζ̄) θi = 0, i ∈ [d],
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Eπ(τ̄ ,ζ̄) δi = 0, i ∈ [d],

Eπ(τ̄ ,ζ̄) θiθj = 1i=j τ̄
2
i , i ∈ [d],

Eπ(τ̄ ,ζ̄) δiδj = 1i=j ζ̄
2
i , i ∈ [d],

Eπ(τ̄ ,ζ̄) θiδj = 1i=j τ̄iζ̄i, i ∈ [d].

We utilize the distribution to find the explicit value of the maximum (in fact the maximum will only be obtained inside the
vertices set V (τ̄ , ζ̄) ):

max
(θ,δ)∈V (τ̄ ,ζ̄)

rPθ,δ,D (θ̂A,B) ≥ Eπ(τ̄ ,ζ̄) rPθ,δ,D (θ̂A,B)

=Eπ(τ̄ ,ζ̄) ‖(AD +B − I)θ +Aδ‖2 + Tr(AA>) + Tr(BB>)

=Tr((AD +B − I)E[θθ>](AD +B − I)>) + Tr(AE[δδ>]A>)+

2Tr((AD +B − I)E[θδ>]A>) + Tr(AA>) + Tr(BB>)

=Tr((AD +B − I)>(AD +B − I)diag(τ̄ 2)) + Tr(A>Adiag(ζ̄2))

+ Tr((AD +B − I)>Adiag(τ̄ ζ̄)) + Tr(AA>) + Tr(BB>)

=
∑
i

‖(AD +B − I):,iτ̄i +A:,iζ̄i‖2 + Tr(AA>) + Tr(BB>)

≥
∑
i

((AiiDii +Bii − 1)τ̄i +Aiiζ̄i)
2 +A2

ii +B2
ii

=‖(diag(A)D + diag(B)− I)θ + diag(A)δ‖2 + Tr(diag(A)2) + Tr(diag(B)2), (∀(θ, δ) ∈ V (τ̄ , ζ̄))

= max
V (τ̄ ,ζ̄)

‖(diag(A)D + diag(B)− I)θ + diag(A)δ‖2 + Tr(diag(A)2) + Tr(diag(B)2)

Therefore we have:

RL(Θ(τ ),∆(ζ), D) := min
A,B

max
θ∈Θ(τ ),δ∈∆(ζ)

rPθ,δ,D (θ̂A,B)

= min
A,B

max
τ̄∈Θ(τ ),ζ̄∈∆(ζ)

max
θ∈V (τ̄ ,ζ̄)

rPθ,δ,D (θ̂A,B)

≥min
A,B

max
τ̄∈Θ(τ ),ζ̄∈∆(ζ)

max
(θ,δ)∈V (τ̄ ,ζ̄)

rPθ,δ,D (θ̂diag(A),diag(B))

= min
a∈Rd,b∈Rd

max
θ∈Θ(τ ),δ∈∆(ζ)

rPθ,δ,D (θ̂a,b).

Next, since the optimal solution on the minimizer is always obtained by diagonal A,B, it becomes straightforward that each
axis could be viewed in separation, thus finishing the proof for part a.

The nonlinear part is a straightforward extension of Proposition 4.16 from (Johnstone, 2011).

Theorem C.5 (Restated Le Cam Two Point Theorem (Wainwright, 2019)). Let P be a family of distribution, and θ : P → Θ
is some associated parameter. Let ρ : Θ × Θ → R+ be some metric defined on Θ and Φ : R+ → R+ is a monotone
non-decreasing function with Φ(0) = 0. For any α ∈ (0, 1),

inf
θ̂

sup
P∈P

[Φ(ρ(θ̂, θ(P )))] ≥ max
P1,P2∈P

1

2
Φ(

1

2
ρ(θ(P1), θ(P2)))(1− α),

s.t. ‖Pn1 − Pn2 ‖TV ≤ α.

Lemma C.6. Consider a class of distribution Pτ,ζ,s = {Pθ,δ,s|Pθ,δ,s := N ([sθ + δ, θ]>, I2), |θ| ≤ τ, |δ| ≤ ζ}. Define

RL(τ, ζ, s) = min
θ̂ linear

max
|θ|≤τ,|δ|≤ζ

Ex∼Pθ,δ,s(θ̂(x)− θ)2,
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and RN (τ, ζ, s) = min
θ̂

max
|θ|≤τ,|δ|≤ζ

Ex∼Pθ,δ,s(θ̂(x)− θ)2

We have
RL(τ, ζ, s) ≤ 27/2RN (τ, ζ, s),∀ζ, s > 0, τ > 0.

Proof of Lemma C.6. We first calculate an upper bound of RL and connect it to a lower bound of RN .

RL(τ, ζ, s) = min
a,b

max
|θ|≤τ,|δ|≤ζ

[(as+ b− 1)θ + aδ]2 + a2 + b2

= min
a,b

(|as+ b− 1|τ + |a|ζ)2 + a2 + b2

≤min
a,b

2(as+ b− 1)2τ2 + 2a2ζ2 + a2 + b2.

By some detailed calculations, we get the RHS is equal to:

2τ2(2ζ2 + 1)

2τ2(s2 + 2ζ2 + 1) + 2ζ2 + 1

≤min{1, 2τ2,
1 + 4ζ2

s2 + 1
}.

For simplify this form, we could see that

Next, we use Le cam two point theorem to lower bound RN (τ, ζ, s) where the metric ρ is Euclidean distance and Φ is
squared function. Therefore

RN (τ, ζ, s) ≥ max
|θi|≤τ,|δi|≤ζ,i∈{1,2}

1

2
(
1

2
(θ1 − θ2))2(1− α)

s.t. ‖N ([sθ1 + δ1, θ1]>, I2),N ([sθ2 + δ2, θ2]>, I2)‖TV ≤ α.

Since the total variation distance is related to Kullback-Leibler divergence by Pinsker’s inequality: ‖·, ·‖TV ≤
√

1
2DKL(·‖·),

it’s sufficient to replace the constraint as:

DKL

(
N ([sθ1 + δ1, θ1]>, I2)

∥∥N ([sθ2 + δ2, θ2]>, I2)
)
≤ 2α2.

max
|θi|≤τ,|δi|≤ζ,i∈{1,2}

1

8
(θ1 − θ2)2(1− α)

s.t. (sθ1 + δ1 − (sθ2 + δ2))2 + (θ1 − θ2)2 ≤ 2α2

⇔ max
|c|≤2τ,|d|≤2ζ

c2

8
(1− α)

s.t. (sc+ d)2 + c2 ≤ 2α2.

Recall RL ≤ min{1, 2τ2, 1+4ζ
s2+1}.

We first note that c2 ≤ 4τ2 and setting α = 0 we have RN ≥ τ2/2 ≥ 1/4RL. For In the following we look at other cases
when the bound for c2 is smaller.

When 2ζ ≥ sc, will set d = −sc and c2 = 2α2. Let α = 2/3 for large τ we get : c2(1− α)/8 = 2/27 ≥ 2/27RL.

When 2ζ ≤ sc we set d = −2ζ and require (sc− 2ζ)2 + c2 ≤ 2α2. We have (sc− 2ζ)2 + c2 = s2c2 + 4ζ2− 4ζsc+ c2 ≤
s2c2 + 4ζ2 − 8ζ2 + c2 = (s2 + 1)c2 − 4ζ2. Therefore as we set c2 = 2α2+4ζ2

s2+1 , the original inequality is satisfied. Again

by setting α = 2/3 we have c2 ≥ 8/9 1+4ζ2

s2+1 ≥ 8/9RL. Therefore in this case RN ≥ 2
27RL.
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D. Discussions on Random Design under Covariate Shift.
In the main text, we present the results where we consider XS as fixed and ΣT to be known. In this section, we view both
source and target input data as random, and generalize the results of Section 3 while training is on finite observations and
testing is on the (worst case) population loss, under some light-tail properties of the input data samples.

Proof of Theorem 3.8. The proof relies on the two technical claims D.1, D.2.

Let β̂R be the optimal linear estimator on LB, i.e., LB(β̂R) = minβ linear in yS LB(β) = RL(B).

LB(β̂) ≤ (1 +O(

√
ρ4(d+ log(1/δ))

n
))L̂B(β̂) (Claim D.2)

≤(1 +O(

√
ρ4(d+ log(1/δ))

n
))L̂B(β̂R) (from definition of β̂)

≤(1 +O(

√
ρ4(d+ log(1/δ))

n
))2LB(β̂R) (Claim D.2)

≤(1 +O(

√
ρ4(d+ log(1/δ))

n
))LB(β̂) = (1 +O(

√
ρ4(d+ log(1/δ))

n
))RL(B).

(from ρ4(d+log(1/δ))
n � 1, and definition of β̂R)

From Theorem 3.4 we know RL(B) ≤ 1.25RN (B) when ΣT is rank-1 matrix or commute with Σ̂S which further finishes
the whole proof.

Claim D.1 (Restated Claim A.6 from (Du et al., 2020)). Fix a failure probability δ ∈ (0, 1), and assume n � ρ4(d +
log(1/δ)) 11. Then with probability at least 1 − δ

10 over the inputs x1, . . . ,xn, if xi ∼ p and p is a ρ2-subgaussian
distribution, we have

(1−O(

√
ρ4(d+ log(1/δ))

n
))Σ � 1

n
X>X � (1 +O(

√
ρ4(d+ log(1/δ))

n
))Σ, (14)

where Σ = Ex∼p[xx>].

With the help of Claim D.1 we directly get:

Claim D.2. Fix a failure probability δ ∈ (0, 1), and assume nU � ρ4(d + log(1/δ)), XT = [x1, · · · ,xnU ]> ∈ RnU×d
satisfies xi ∼ pT where pT is ρ2-subgaussian. We have for any estimator β:

(1−O(

√
ρ4(d+ log(1/δ))

nU
))LB(β) ≤ L̂B(β) ≤ (1 +O(

√
ρ4(d+ log(1/δ))

nU
))LB(β),

with high probability 1− δ/10 over the random samples XT .

Proof of Claim D.2. Recall

L̂B(β̂) = max
β∗∈B

EyS
1

nU
‖XT (β̂(yS)− β∗)‖2,

LB(β̂) = max
β∗∈B

EyS ‖Σ
1/2
T (β̂(yS)− β∗)‖2.

Therefore for any estimator β̂, it satisfies

LB(β̂)− L̂B(β̂)

=(β̂(yS)− β∗)>(ΣS − Σ̂S)(β̂(yS)− β∗)

11When this is not satisfied the result is still satisfied by replacing O(

√
ρ4(d+log(1/δ))

n
) with O(max{

√
ρ4(d+log(1/δ))

n
, ρ

2(d+log(1/δ))
n

}).
For cleaner presentation, we assume n is large enough and simplify the results.



Near-Optimal Linear Regression under Distribution Shift

.O(

√
ρ4(d+ log(1/δ))

nU
)(β̂(yS)− β∗)>ΣS(β̂(yS)− β∗)

=O(

√
ρ4(d+ log(1/δ))

nU
)LB(β̂),

which finishes the proof.

D.1. Random design on source domain.

In the main text or the subsection above, the worst case excess risk is upper bounded by 1.25RN , which is achieved by best
estimator that is using the same set of training data (XS ,yS). Here we would like to take into consideration the randomness
of XS and compare the worst case excess risk using our estimator with a stronger notion of linear estimator.

For this purpose, we consider estimators that are linear functionals of yR := Σ
1/2
S β∗ + z ∈ Rd, z ∼ N (0, σ2/nSId) (this

σ2/nS is the correct scaling since X>S XS/nS is comparable to ΣS). We consider the minimax linear estimator with yR
and with access to ΣS , and we compare our estimator against this oracle linear estimator. This estimator is not computable
in practice since ΣS must be estimated, but we will show that our estimator is within an absolute multiplicative constant in
minimax risk of the oracle linear estimator.

To recap the notations and setup, let

L̂B(β̂) := max
β∗

EyS
1

nU
‖XT (β̂(yS)− β∗)‖2,

LB(β̂) := max
β∗

EyS Ex∼pT ‖x>(β̂(yS)− β∗)‖2,

LB,R(β̂) := max
β∗

EyR Ex∼pT ‖x>(β̂(yR)− β∗)‖2.

Our target is to find the best linear estimator using L̂B(β̂) (trained with XT ) and prove its performance on the population
(worst-case) excess risk LB(β̂) is no much worse compared to the minimax linear risk trained on yR and ΣS .
Theorem D.3. Fix a failure probability δ ∈ (0, 1). Suppose both target and source distributions pS and pT are ρ2-
subgaussian, and the sample sizes in source domain and target domain satisfies nS , nU � ρ4(d + log 1

δ ). Let Ĉ be the
solution for Eqn.(4), and set β̂(yS)← ĈΣ̂−1

S X>S yS . Then with probability at least 1− δ over all the unlabeled samples
from target domain and all the labeled samples XS from source domain, our estimator β̂(yR) yields the worst case expected
excess risk that satisfies:

LB(β̂) ≤

1 +O(

√
ρ4(d+ log(1/δ))

nU
) +O(

√
ρ4(d+ log(1/δ))

nT
)

 min
β linear in yR

LR,B(β).

Proof of Theorem D.3. For each matrix C ∈ Rd×d, we first conduct bias-variance decomposition and rewrite each worst-
case risk with linear estimator in terms of a matrix C. When β̂(yS) = CΣ̂−1

S X>S yS , we have:

L̂B(β̂) =‖Σ̂1/2
T (C − I)‖2opr2 +

σ2

n
Tr(Σ̂TCΣ̂−1

S C>) =: l̂(C),

LB(β̂) =‖Σ1/2
T (C − I)‖2opr2 +

σ2

n
Tr(ΣTCΣ̂−1

S C>) =: l(C),

Similarly, when β̂R = CΣ
−1/2
S yR, we have:

LR,B(β̂) =‖Σ1/2
T (C − I)‖2opr2 +

σ2

n
Tr(ΣTCΣ−1

S C>) =: lR(C).

Claim D.4. Fix a failure probability δ ∈ (0, 1), and assume nU , nS � ρ4(d+ log(1/δ)), XS ∈ RnS×d, XT ∈ RnU×d are
respectively from pS pT which are both ρ2-subgaussian. We have for any matrix C ∈ Rd×d:

(1−O(

√
ρ4(d+ log(1/δ))

nU
))l̂(C) ≤ l(C) ≤ (1 +O(

√
ρ4(d+ log(1/δ))

nU
))l̂(C),



Near-Optimal Linear Regression under Distribution Shift

with high probability 1− δ/10 over the random samples XT .

(1−O(

√
ρ4(d+ log(1/δ))

nS
))l(C) ≤ lR(C) ≤ (1 +O(

√
ρ4(d+ log(1/δ))

nS
))l(C),

with high probability 1− δ/10 over the random samples XS .

Proof of Claim D.4. We omit the proof of the first inequality since it’s exactly the same as proof of Claim D.2.

For the second line, we have:

lR(C)− l(C) =
σ2

nS
Tr(ΣTC(Σ−1

S − Σ̂−1
S )C>)

≤O(

√
ρ4(d+ log(1/δ))

nS
)
σ2

nS
Tr(ΣTCΣ̂−1

S C>)

≤O(

√
ρ4(d+ log(1/δ))

nS
)l(C).

Therefore we prove the RHS of the second inequality. The LHS follows with the same proof techniques.

Now let Ĉ be the minimizer for l̂(C), and CR be the minimizer for lR(C).

l(Ĉ) ≤(1 +O(

√
ρ4(d+ log(1/δ))

nU
))l̂(Ĉ) (w.p. 1− δ/10; due to Claim D.4)

≤(1 +O(

√
ρ4(d+ log(1/δ))

nU
))l̂(CR) (Due to the definition of Ĉ)

≤(1 +O(

√
ρ4(d+ log(1/δ))

nU
))2l(CR) (w.p. 1− δ/5; due to Claim D.4)

=(1 +O(

√
ρ4(d+ log(1/δ))

nU
))l(CR) (since nU is large enough)

≤(1 +O(

√
ρ4(d+ log(1/δ))

nU
))(1 +O(

√
ρ4(d+ log(1/δ))

nT
))lR(CR) (w.p. 1− 3δ/10; due to Claim D.4)

=

1 +O(

√
ρ4(d+ log(1/δ))

nU
) +O(

√
ρ4(d+ log(1/δ))

nT
)

min
C

lR(C).

This finishes the proof.

E. More empirical results
We include some more empirical studies. In the main text our results have small noise. Here we show some more results
with larger noise, and also the case with varied eigenspace. For the following results, we use σ = 10 and r = 0.2

√
d. Other

meta data remains the same as presented in the main text. Figure 4 (a)(b) show similar phenomenon as the small noise
setting presented in the main text. From Figure 4 (c) we see no particular relationship between the performance of each
algorithm with eigenspace shift.



Near-Optimal Linear Regression under Distribution Shift

(a) covariate eigen-spectrum (b) signal strength (c) covariate eigenspace

Figure 4: (a): The x-axis α defines the spread of eigen-spectrum of ΣS : si ∝ 1/iα, ti ∝ 1/i. (b) x-axis is the normalized
value of signal strength: ‖ΣTβ∗‖/r. (c) X-axis is the covariate shift due to eigenspace shift measured by ‖US − UT ‖F .


